While the equipment of Micro-jet wave-guided laser was assembled, high-precision of concentricity and coaxiality between nozzle and cavity are required, which directly or indirectly influent the laser coupling precision of nozzle, the micro-jet stability and the steady length of micro-jet as well. As a result, the measurement of concentricity and coaxiality is important to improve the processing quality of Micro-jet wave-guided laser Through the new digital universal tool microscope measuring both ends of micro nozzle and diameter of nozzle, more resolution the other hand, the backlight detection the edge of nozzle is utilized. When the position of the center of a circle is indirect measured and then find out the concentricity through the uncertainty of the measurement and calculation method. V shaped groove is utilized to make certain its position. Otherwise, digital imaging through setting fixture and the use of new digital universal tool microscope and processed by software, which will cause to reduce measurement human error in tradition, after that, error theory analysis will be carried out, uncertainty theory will be utilized to make the experiment more sure at the same time. Above all, the reliability of data is obtained, compared with the traditional measurement methods are more accurate. Therefore, the processing quality of laser drilling will be enhanced significantly.
It is difficult to process quartz to get a large aperture ratio micropore(Φ127μm) by the mechanical tools, but it is possible processed by MEMS technology. The fluorine etching technology is used in experiments. The etching rate of quartz is proportional to the concentration of the HF acid. The etching rate of the mixtures of different proportions of the HF acid (49%) and the NH4F solution (35%) can be acquired, and the etching rate is lower if NH4F solution (35%) replace by the saturated NH4F solution. The experimental results conform to the chemical equation of Judge J S. In the experiment of the micropore etch, the wafers are respectively put in the mixtures of 1:1 and 3:2 ratio of the hydrofluoric acid (49%) and the ammonium fluoride solution (40%), and the morphology of micropore can be observed by the scanning electron microscopy and the confocal microscopy, and then the deepest depth of the micropore is tested by the confocal microscopy, the relationship between etching rate and the proportional of mixed solution can be got.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.