Aiming at high-dimensional (HD) data acquisition and analysis, snapshot compressive imaging (SCI) obtains the 2D compressed measurement of HD data with optical imaging systems and reconstructs HD data using compressive sensing algorithms. While the Plug-and-Play (PnP) framework offers an emerging solution to SCI reconstruction, its intrinsic denoising process is still a challenging problem. Unfortunately, existing denoisers in the PnP framework either suffer limited performance or require extensive training data. In this paper, we propose an efficient and effective shallow-learning-based algorithm for video SCI reconstruction. Revisiting dictionary learning methods, we empower the PnP framework with a new denoiser, the kernel singular value decomposition (KSVD). Benefited from the advent of KSVD, our algorithm retains a good trade-off among quality, speed, and training difficulty. On a variety of datasets, both quantitative and qualitative evaluations of our simulation results demonstrate the effectiveness of our proposed method. In comparison to a typical baseline using total variation, our method achieves around 2 dB improvement in PSNR and 0.02 in SSIM. We expect that our proposed PnP-KSVD algorithm can serve as a new baseline for video SCI reconstruction.
Aiming at high-dimensional (HD) data acquisition and analysis, snapshot compressive imaging (SCI) obtains the 2D compressed measurement of HD data with optical imaging systems and reconstructs HD data using compressive sensing algorithms. While the Plug-and-Play (PnP) framework offers an emerging solution to SCI reconstruction, its intrinsic denoising process is still a challenging problem. Unfortunately, existing denoisers in the PnP framework either suffer limited performance or require extensive training data. In this paper, we propose an efficient and effective shallow-learning-based algorithm for video SCI reconstruction. Revisiting dictionary learning methods, we empower the PnP framework with a new denoiser, the kernel sigular value decomposition (KSVD). Benefited from the advent of KSVD, our algorithm retains a good trade-off among quality, speed, and training difficulty. On a variety of datasets, both quantitative and qualitative evaluations of our simulation results demonstrate the effectiveness of our proposed method. In comparison to a typical baseline using total variation, our method achieves around 2 dB improvement in PSNR and 0.02 in SSIM. We expect that our proposed PnP-KSVD algorithm can serve as a new baseline for video SCI reconstruction.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.