Currently the mainstream technology of SAN is SAN storage virtualization and its implementation. The switch-based storage virtualization embeds the virtualizer in the core of the storage networking fabric in an "intelligent switch" rather than an appliance or a host. This paper describes the SV-FC SAN switch's hardware and software architecture. The main aid of design and implementation the switch is to give a new way to realize FC-SAN storage virtualization. Storage virtualization modules are embedded in the switches firmware. The switch can provide simple and friendly interfaces for users to configure and manage the FC SAN.
In the parallel processing system, large numbers of processors are interconnected in order to improve the performance of the computer, such as the symmetric multiprocessor (SMP) architecture. When the basic node is an SMP or a computer having a single processor, the characteristics of an interconnection networks are important factors which influence the performance of the entire system. Fibre Channel (FC) has a lot advantages, such as excellent scalability; the bandwidth is large; delay time is short and fault tolerance is large. It is assumed that an SMP is used for a basic node. We construct the cluster system using FC as interconnection network, which are a fabric method and a FC Arbitrated Loop (FC-AL) method. According the method, if the number of nodes supported by the interconnection network is small, the addition of extra nodes can be added at small expense. The bandwidth of each node is large, the delay time is short, and the fault tolerance effect is large in the interconnection network. In the case of connecting to a shared disk, a large bandwidth is provided and time required for gaining access to the shared disk becomes short.
RRP has two means to transmit data: store-and-forward and cut-through. In this paper, the high and low priority packet transfer delay of the N nodes Resilient Packet Rings (RPR) in store-and-forward architecture is analyzed based on the queuing theory. According to queuing theory, we set up the nodes model and analyzed the factors that influenced the packet transfer delay in a constrained condition. By calculation and simulation, the result indicates that both high priority and low priority packets’ delay increase with the node number N of the RPR rings. The high priority traffic has less packet delay than the low priority traffic at the same node number N. The increase of the low priority transfer delay is much larger than the high priority traffic with the increase of the node number.
A 5 to 10 Gbps bandwidth optical interconnecting and switching network system used on parallel computing is introduced in this paper. This system provides a high bandwidth to meet the request of high bandwidth of the parallel computing. Optics is used to be a media to carry data and optical crossbar interconnection board is used to switch data in this system. It comes over the inherent disadvantage of the R, L, C delay and clock skew of the electronics interconnection. This system has good stability and scalability.
A rate-equation-based thermal VCSEL model is established, which allows simulation in the non-dc operating regimes, namely, small-signal and transient modulating condition. The model is implemented in conventional SPICE-like circuit simulators, and used to simulate key features ofVCSEL. Making use ofthis equivalent subcircuit representation in the circuit-level EDA design, the authors developed the circuit of VCSEL-based transceiver applied in Gigabit Ethernet.
We brought forward a scheme for knubbly therapy with laser and designed a multifunctional therapeutical equipment applying two wavelengths KTP/YAG laser. Applied in clinic, it showed excellent performance and could treated the knub with multiform ways.
This thesis analyzed the principle of photon-forceps and explained the effects that a laser beam acts on a transparent particle using the simple theory of radial optics. We also established a model of ray-trap which can catch particles easily and simulated a photon-forceps which is produced by a highly focused laser beam. And with computer we calculated the catching power of this forceps to the transparent tiny balls whose diameters are from 1 micrometers to 10 micrometers . In addition, to realize the photon-forceps we carry out a new focusing system. On the base of analyzing the value gotten in computing process, an improved forceps was achieved.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.