In the absence of quantum repeaters, the only way to increase the quantum communication capacity at a given reach is to employ more modes for encoding and transmitting information. While frequency, temporal, and polarization modes have already been exploited for this purpose, the use of many spatial modes over long distances has only recently become possible owing to the development of low-loss few-mode fibers (FMFs). We will discuss the development of two key enablers of quantum communication over FMF spatial modes: 1) spatiallyentangled photon-pair generator and 2) dynamically-reconfigurable spatial-mode de-multiplexer that can perform projective measurements alternating between two sets of mutually unbiased bases in a given spatial mode space. Both devices are based on the spatial-mode-selective quantum frequency conversion process, implemented in either χ(2) (multimode LiNbO3 waveguide) or χ(3) (custom-made FMF) nonlinear medium.
Spatial-mode-selective frequency conversion is potentially useful for both classical and quantum communication applications. By a judicious choice of the quasi-phase-matching period in a Kai(2) multimode waveguide, such conversion can be achieved with high efficiency (close to 100%) and with low crosstalk (< -20 dB). For space-division multiplexing application with classical signals, where each spatial mode represents a separate signal channel, the selective conversion of a spatial mode without disrupting other signal modes can be used for reconfigurable spatial-mode de-multiplexing. This classical de-multiplexing capability can be also extended to the quantum regime, where the quantum state of the signal is preserved during frequency conversion, owing to the unitary nature of the sum-frequency generation (SFG) process.
Building upon our previous experimental demonstration of the classical spatial-mode-selective frequency up-conversion in a two-mode PPLN waveguide, here we report the extension of this work into the single-photon-level regime. The signal (1540 nm) in either a single mode (TM00 or TM01) or a superimposition mode (TM00+TM01, TM00+iTM01) of the waveguide is selectively up-converted into TM01 SFG mode, by interacting with an appropriate pump mode (1560 nm). An accurate measurement of the single-photon-level SFG signals requires thorough filtering of the unwanted photons contributed by the second harmonic of the pump, residual pump noise extending to the signal band, and the Raman noise generated in the waveguide. We have investigated these unwanted photon sources and suppressed them by a combination of thin-film-interference and volume-Bragg-grating filters. Resulting single-photon-counting measurements show >70% internal conversion efficiency, better than -12dB crosstalk, and >100 ratio of the signal to background photon counts for all selected modes and mode superpositions.
We investigate spatial-mode-selective frequency up-converters of quantum states from infrared to visible region, which could be useful not only for interfacing the optical fiber links with quantum memories and for increasing the photon detection efficiency, but also for classical demultiplexing of spatial modes that are otherwise difficult to discriminate in both spatial and spatial-frequency domains. We consider two approaches: first, based on sum-frequency generation (SFG) in 2D free space, and second, based on SFG in a multimode waveguide with 2D confinement. For the latter approach, we find that under proper quasi-phase-matching arrangement, several different pairs of signal and pump modes are converted to the same SFG mode. By adjusting the relative phases and magnitudes of the pump modes, any superposition of the corresponding signal modes can be selected for up-conversion without affecting other modes.
We study sum-frequency generation (SFG) in a multimode PPKTP waveguide. We show that under proper quasi-phasematching, it can support one of the two scenarios. In the first, a single pump mode up-converts several different signal modes to different SFG modes. In the second, several different pairs of signal and pump modes are converted to the same SFG mode. By adjusting the relative phases and magnitudes of the pump modes, any superposition of the corresponding signal modes can be selected for up-conversion without affecting other modes, which can be used for spatial-mode de-multiplexing in both classical and quantum communications.
We analyze sum-frequency generation (SFG) in a χ(2) slab waveguide with the goal of achieving a single spatial-mode operation. We first develop Green’s function formalism for the SFG equations and then perform singular-value decomposition (SVD) of the Green’s function. By adjusting the spatial profile of the pump, we manipulate the SVD spectrum to maximize the up-conversion of one signal mode while minimizing the up-conversion of all others, which opens a possibility of realizing a spatial-mode-selective quantum frequency converter for future optical communications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.