Layer to layer alignment in optical lithography is controlled by feedback of scanner correctibles provided by analysis
of in-line overlay metrology data from product wafers. There is mounting evidence that the "high order" field
dependence, i.e. the components which contribute to residuals in a linear model of the overlay across the scanner field
will likely need to be measured in production scenarios at the 45 and 32 nm half pitch nodes. This is in particular
true in immersion lithography where thermal issues are likely to impact intrafield overlay and double pitch patterning
scenarios where the high order reticle feature placement error contribution to the in-die overlay is doubled.
Production monitoring of in-field overlay must be achieved without compromise of metrology performance in order to
enable sample plans with viable cost of ownership models. In this publication we will show new results of in-die
metrology, which indicate that metrology performance comparable with standard scribeline metrology required for the
45 nm node is achievable with significantly reduced target size. Results from dry versus immersion on poly to active
45 nm design rule immersion lithography process layers indicate that a significant reduction in model residuals can be
achieved when HO intrafield overlay models are enabled.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.