Antibiotic resistance is a burgeoning global public health threats of our time. Antibiotic resistance is a multifactorial and complex problem which cannot be solved by only developing stronger and better antibiotic compounds. Rapid detection and characterization of pathogenic bacteria are critical for effectively treating bacterial infections without exacerbating the resistance problem. Here, we present a novel highly-sensitive and label-free platform, Rapid-Ultra-Sensitive-Detector (RUSD), that utilizes the high reflectance coefficient of light at the interface between low-refractive-index and high-refractive-index media. The sensitivity of RUSD is three to four orders of magnitude higher than conventional optical density-based methods. Utilizing RUSD, we can detect as low as ~20 bacterial cells or a single fungal cell. This technique does not require any sophisticated signal processing steps and it enables growth rate measurements in less than an hour. Finally, we can now measure antibiotics resistance of several gram-negative and gram-positive bacteria, including Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli, within two hours.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.