Teaching optics to small groups of students allows them to share ideas and leads to discussions, which will enable them to understand concepts better. This is a form of peer teaching/evaluation. This group dynamic favors creativity and inhibits obstacles to learning and understanding due to shyness, and other psychological factors. In addition, this paradigm allows the learner to be an active participant in the learning process rather than a passive recipient of knowledge as in the traditional lecture based teaching methodology. The project proposed here is based on both experimental and numerical approaches. Groups of students will be using simple and inexpensive equipment in a hands-on way. Additionally using numerical tools with open source environments such as the Python programming language allows one to perform numerical experiments. These two approaches are perfectly complementary; indeed the experiments favor observations and measurements and on the other hand numerical modeling favors abstraction and familiarization of mathematical formalisms of the optical phenomena. We propose a pedagogical methodology “Active Learning in Simulating Optics” (ALSO), where the active learning method is used not only for hands on experimentation while numerical modeling facilitates development of computer codes wherein students can design their own experiments. Mixing these two approaches, experimentation and simulation, is also very well adapted in working within projects for the elaboration of a new tools for teaching. This ALSO methodology will be presented along with results from workshops utilizing this technique.
Python is an easy open source software that can be used to simulate various optical phenomena. We have developed a suite of programs, covering both geometrical and physical optics. These simulations follow the experimental modules used in the ALOP (Active Learning in Optics and Photonics) UNESCO program in the sense that they complement it and help with student prediction of results. We present these programs and the student reactions to these simulations.
Investment in laser technology has led to significant advances in remote sensing, astronomy, industrial processing, and medical technology. To celebrate this rich heritage and promote public awareness in optics and photonics, the SPIE Student Chapter at the Air Force Institute of Technology (AFIT) developed the Laser Propagation Demonstration (LPD). This interactive demonstration serves as one of AFIT’s legacy outreach projects for events involving education in science, technology, engineering, and mathematics (STEM). Initially developed with funding from a LaserFest grant awarded by SPIE in 2010, the goal was to develop a simple hands-on demonstration to highlight the optical effects of diffraction, refraction, and attenuation on laser propagation. Since then, the LPD has undergone several upgrades (thanks to the continued support from a 2012 SPIE Education Outreach Grant) to better highlight these optical phenomena and make it more engaging for a wider range of audiences. This paper celebrates the continued success of the LPD and shares the knowledge gained with an overview of its design and use in STEM-based outreach events.
Optics is an enabling science that has far ranging importance in many diverse fields. However, many students do not find it to be of great interest. A solution to this problem is to train teachers in active learning methodologies so that the subject matter can be presented to generate student interest. We describe a workshop to present an example of an active learning process in Optics developed for training of teachers in developing countries (a UNESCO project) and will focus on 2 two different activities: 1. Interference and diffraction is considered by students as being very hard to understand and is taught in most developing countries as purely theoretical with almost no experiments. Simple experiments to enhance the conceptual understanding of these wave phenomena will be presented and 2. Image formation by the eye. Here we will discuss myopia, hyperopia and astigmatism as well as accommodation. In this module we will discuss image. The objective of the workshop will be to provide an experience of the use of the active learning method in optics including the use of experiments, mind’s on and hands-on exercises, group and class discussions
“Active Learning in Optics and Photonics” (ALOP), funded by UNESCO within its Physics Program framework with the support of ICTP (Abdus Salam International Centre for Theoretical Physics) and SPIE (Society of Photo-Optical Instrumentation Engineers), aimed to helps and promotes a friendly and interactive method in teaching optics using simple and inexpensive equipment. Many workshops were organized since 2005 the year when Z. BenLakhdar, whom is part of the creators of ALOP, proposed this project to STO (Société Tunisienne d’Optique). These workshops address several issues in optics, covering geometrical optics, wave optics, optical communication and they are dedicated to both teachers and students. We focus this lecture on Fraunhofer diffraction emphasizing the facility to achieve this mechanism in classroom, using small laser and operating a slit in a sheet of paper. We accompany this demonstration using mobile phone and numerical modeling to assist in the analysis of the diffraction pattern figure.
Based on physics education goals adopted at the 2005 World Conference on Physics and Sustainable Development,
the workshop on "Active learning in optics and photonics (ALOP)" has been described as a model for teacher
training and professional development. This paper describes the basic philosophy and elements of the workshop and
how it has served physics teachers in schools and introductory college/university in the developing world. Its main
philosophy of fostering modern hands-on learning techniques-- adapted to local culture, needs and availability of
teaching resources-- is elaborated. The workshop provides the participants with a conceptual evaluation instrument,
drawn from relevant physics education research, giving teachers an important tool to measure student learning.
To deduce the wave nature of light, explain its behavior when it interacts with material obstacles (diffraction) or its behavior when light from two coherent sources interfere with each other (interference), we need to explain what are waves and what are their properties (wavelength, frequency, mathematical relationship between wavelength and frequency, superposition principle, …). Two principal approaches are generally used to introduce waves:
1/ An experimental approach (the example commonly used approach): to observe the water waves pattern obtained when drops of water (with an eye dropper, two eye droppers, or equivalent) fall -at a steady rate- on a calm pool of water surface.
2/ A theoretical approach: Wave coming from one source is represented by a sinusoidal function; Superposition of waves coming from two coherent sources is done by a sum of two sinusoidal functions with constant phase difference.
In Tunisia, different workshops on “wave nature of light based on interference and diffraction” using Active Learning process have been organized for about 150 secondary school teachers in 2009. These workshops are based on UNESCO Active Learning in Optics and Photonics (ALOP) project. This paper will show how taking water wave’s pattern using some participant’s mobile camera helps to make some misconceptions resolved and includes at the same time other more complex phenomena.
The active learning project consists in a series of workshops for educators, researchers and students and promotes an innovative method of teaching physics using simple, inexpensive materials that can be fabricated locally. The objective of the project is to train trainers and inspire students to learn physics. The workshops are based on the use of laboratory work and hands-on activities in the classroom. The interpretation of these experiments is challenging for some students, and the experiments can lead to a significant amount of discussion. The workshops are organized within the framework of the project ‘‘Active Learning in Optics and Photonics” (ALOP) mainly funded by UNESCO, with the support of ICTP (Abdus Salam International Centre for Theoretical Physics) and SPIE. ALOP workshops offer high school, college or university physics teachers the opportunity to improve their conceptual understanding of optics. These workshops usually run for five days and cover several of the topics usually found in any introductory university physics program. Optics and photonics are used as subject matter because it is relevant as well as adaptable to research and educational conditions in many developing countries [1].
In this paper, we will mainly focus on a specific topic of the ALOP workshops, namely optical communications and Wavelength Division Multiplexing technology (WDM). This activity was originally developed by Mazzolini et al [2]. WDM is a technology used in fibre-optic communications for transmitting two or more separate signals over a single fibre optic cable by using a separate wavelength for each signal. Multiple signals are carried together as separate wavelengths of light in a multiplexed signal. Simple and inexpensive WDM system was implemented in our laboratory using light emitting diodes or diode lasers, plastic optical fibres, a set of optical filters and lenses, prism or grating, and photodiodes. Transmission of audio signals using home-made, simple, inexpensive electronic circuits was also demonstrated. The experimental set-up was used during national ALOP workshops. Results are presented and discussed in this paper. Current explorations to further develop these and other closely-related experiments will also be described.
Science Development leads to new concepts, new tools and new techniques. It leads to a society development with new Truth. This Truth is shared by the Society which development is built on Knowledge, on rationality thinking and scientific behavior. This takes its origin in the experimental approach introduced by Ibn Al Haythem in optics at the Xth century. By the end of the last millennium, this approach-known as Active Learning in Physics- has been adopted in most developed countries in physics education programs. Active Learning in Optics and Photonics- ALOP- is extended actually to some developing countries through a UNESCO program. A French edition of ALOP takes place through many workshops over Morocco and Tunisia. It aims to build Truth on evidence and not on intuition or personal authority.
Optics scholars did not only discover optical phenomena and laws governing them. Some of them also invented impressive optical systems and instruments or offered us techniques to juggle with optical signals and rays. One typical example of the impressive optical systems is the camera obscura invented by Ibn Al-Haytham. For techniques enabling us to easily handle optical rays, one can mention Young’s method to handle rays put into play by refraction. Nine centuries before him, Ibn Sahl proposed an elegant method to manipulate refraction related rays. These three examples will be handled in this paper, together with a historical overview inviting the reader to be in the context of this fascinating works.
Surface plasmon resonance (SPR) technique is an optical method that allows the real time detection of small
changes in the physical properties (in particular the refractive index) of a dielectric medium near a metallic surface. This
technique is today applied to the realization of dynamic optical biochips where multiple interactions can be monitored in
parallel and in real time. One of the main advantage compared to other techniques as fluorescence detection is that it
does not require the presence of labels, which could influence the kinetics or the equilibrium of the biomolecular
interactions. However, as the SPR signal amplitude depends on the refractive index shift of the dielectric medium in the
contact with the metallic layer, one way to increase the SPR signal shift is to incorporate a substance possessing a strong
dispersive refractive index. We present the influence of organic chromophores incorporated in the DNA target molecules
on the spectral SPR response of a SPR sensor. Theoretical and experimental results are presented, showing that the DNA
target molecules labeled with chromophores presenting strong spectral refractive index variation in the spectral range of
the SPR spectrum induce significant spectral SPR response changes. The use of specific chromophores provides a
potential way of SPR response enhancement and initial results suggest that this phenomenon can also be used in realtime
SPR imaging detection.
Within the framework of its scientific activities, the Optical Society of Tunisia organized the first photographic workshop called Ibn Al-Haytham session. This activity enabled, through conferences, the evocation of the research done by one of the most distinguished and prolific mathematicians in the medieval tradition of Arabic Islamic science. The camera obscura that he thoroughly studied was the theme of a training where more than twenty participants build and used this basic camera. The adopted training approach based on active teaching and learning made possible the achievements of interesting results in spite of the heterogeneity of the group of trainees.
The UNESCO Active Learning in Optics and Photonics project is designed for the benefit of teachers of introductory university physics from developing countries. Initial implementation has taken place in two African nations, Ghana and Tunisia. The training curriculum includes student materials to teach topics in geometrical and physical optics in an active way with a high level of student involvement in the learning process. The curriculum makes use of simple, inexpensive materials. A conceptual learning assessment instrument is being developed as part of the project. Follow-up activities are planned. Experiences of the international group of workshop trainers are reported.
Tunable diode laser spectrometers are extensively used for the monitoring of trace gases in the atmosphere. We present the results of experimental researches on atmospheric methane concentration, responsible for industrial pollution in Tunisia. Pulsed and tunable, 3.31 micrometers lead salt, single mode, cryogenically cooled diode laser was employed. Evolution of the laser signal corresponding to methane absorption was observed. The gas to be sampled flows through an optical cell or in open-atmosphere-path. Detection was carried out by observing infrared absorption lines. An acquisition system was developed and data were stored and treated online. Traces of methane at the level of 100 ppb could be detected. This gives access to information involving methane concentration in local atmosphere.
Highly correlated ab-initio potential curves are calculated for the fundamental states of CH, NH, OH and SH. These potentials are first used in a numerical treatment of nuclear motion then fitted with modified Morse potential functions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.