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ABSTRACT   

The rapid development of new-generation synchrotron facilities with excellent coherence demands more accurate 
evaluation of beamline performance. A perturbation theory based on wave optics is proposed in this work to describe the 
effect of imperfections on the performance of X-ray optical elements. It shows that the perturbed performance of the 
non-ideal optical element could be derived from the perfect performance of the ideal optic through a convolution 
operation. The semi-analytical approach proposed here provides a new way to improve the simulation efficiency for 
imperfect optical elements. The finite aperture effect on diffraction-limited optics and focal shape distortion by surface 
height error are treated to show the application of the proposed method.  
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1. INTRODUCTION  
As more and more low emittance sources are been built or planned1-5, the coherence of the X-ray beam starts to play an 
important role. However, the great advances of coherent X-ray sources make the tolerances on optical elements more 
stringent if the high coherence originating at the source is to be preserved throughout the beamline. It is widely accepted 
that for highly coherent sources, such as diffraction-limited synchrotron radiation (DLSR) or X-ray free electron lasers 
(FEL), the wave optics needs to be taken into consideration. Wave optics simulation codes calculate wavefront 
propagation using the Fresnel diffraction integral. Several types of methods for wavefront propagation calculation have 
been used by different simulation codes. Among them are the Fourier-optics-based code SRW6, stationary-phase-
approximation-based code PHASE7, hybrid-method-based codes OASYS8,9 and xrt10, etc. Although wave optics 
simulations yield more accurate results than ray tracing for DLSR and X-ray FELs, they also require substantially more 
computational resources. Some improvements11,12 have been done to make wave optics simulations less computationally 
demanding. 

In this work, a theoretical approach to evaluate the optical performance distortion caused by imperfect optical elements is 
given. The proposed theory could be used to evaluate the impacts of finite size aperture, surface height error and other 
imperfections of optical elements as long as they can be described by a complex transfer function. The proposed theory 
provides a perspective to regard the imperfection’s influence as a “perturbation” to convolve with its ideal optical 
performance. The proposed theoretical framework is universal. It can deal with various SR source models such as 
Gaussian-Schell model or more rigorous undulator models. In addition, the existing measures11,12 to reduce the 
computation load can be integrated into this framework. It is shown in this paper that the coherent mode decomposition 
can be used to deal with the 4D convolution which comes from the proposed theory. As a result, this theoretical 
framework could be potentially applied to new simulation software designs to improve current computation efficiency in 
the future.  

In section 2 we give the detailed derivation of the proposed theoretical framework. Two examples of the performance 
distortion of a mirror, one from its finite aperture and one from its surface height error, are given in section 3 to show the 
application of the proposed theory. 
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2. PERTURBATION THEORY FOR PARTIALLY COHERENT BEAM 
2.1 Basic concepts  

The coherence properties of X-rays can be well described by the mutual coherence function and other related functions 
derived from it13. The mutual coherence function characterizes the time-space correlation of the wavefield at two time-
space coordinates (r1, t) and (r2, t+τ). The mutual coherence function (r1, r2; t+τ) is defined as:  

  *( ; ) ( , ) ( , )
T

E t E tτ τΓ = +1 2 1 2r ,r r r  (1) 

where the bracket <…>T means time averaging. E(r, t) is the complex amplitude of the wavefield. We discuss only the 
spatial (transverse) coherence in this work. It is convenient to introduce the cross spectral density (CSD), which can be 
defined as the Fourier transform of the mutual coherence function: 

  ( ; ) ( ; ) ( )G t exp i t dtω ω
∞

−∞
= Γ∫1 2 1 2r ,r r ,r  (2) 

where ω is the frequency of the radiation. By definition, when the two spatial coordinates r1 and r2 are set to be equal, 
CSD function represents the intensity at the spatial position, G(r1,r1;ω)=I(r1). The normalized CSD function is also 
important and defined as spectral degree of coherence (SDC): 
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Hereafter, we will discuss the spectral functions, omitting the ω for simplicity. 

It is widely known that the free space propagation of the CSD function obeys the following relation14: 

  ' ' * 2 2
2 0 0 1 2( , ; ) ( , ; 0) ( ) ( )z z zG z z G z K K d d= = = − −∫ ' ' ' '

1 1 1 2 2 1 2r r r r r r r r r r  (4) 

where Kz(r) is the Fresnel propagator along the optical axis, z=0 is the initial plane, z=z0 is the final observing plane. For 
synchrotron radiation or FEL beamlines, the paraxial approximation is always satisfied. Thus, the Fresnel propagator 
Kz(r) has the following expression: 
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Under the assumption of paraxial approximation, the free space propagation of CSD function has the following form: 
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In the above equation, the spatial coordinate r1
’, r2

’ represent the positions in the initial plane immediately after the ideal 
optical elements or at the secondary source plane. The spatial coordinate r1, r2

 are in the observing plane, which is 
usually considered to be the sample plane or the focal plane of the final optical elements. No optical elements are present 
between the initial plane and focal plane. In addition, G0(r1, r2) is the CSD function right after the ideal optical surface, z 
is the distance between the initial plane and the observing plane, λ is the wavelength of the beam, k=2π/λ is the wave 
vector. As a result, G0z(r1, r2) represents the ideal CSD function in the observing plane. The ideal CSD function means 
that it goes through perfect optical elements. An ideal optical element may be defined as a surface of infinite extent with 
the ideal physical shape for beam profile shaping. For example, an ideal infinite plane mirror only deflects the incident 
beam such that the reflected beam propagates as a free space diffraction along its reflected direction. An ideal infinite 
focusing mirror images the source according to its demagnification factor.  

Every real optical element is imperfect. The impact from various types of imperfection can be expressed as a different 
complex transfer function t(r’). The complex transfer function t(r’) can represent partial transmission due to mirror 
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reflectivity, finite mirror size, mirror surface height error, etc. When the imperfection of the optical element is taken into 
consideration, the resulting distorted CSD function obeys a relation similar to Equation (6): 
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2.2 Perturbation perspective of the imperfect CSD function propagation 

The basic idea of our new treatment is to compare the distorted CSD function, Gz(r1, r2), from equation (7) to the ideal 
one, G0z(r1, r2), from equation (6) in order to set the relation between these two CSD functions. Notice that equation (6) 
could be written as 
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In the above equation, 
'
1

z

F
λ

1r

r

and 1

'
2

z

F
λ

−

2r

r

are 2D Fourier and inverse Fourier transform, respectively. 
'
1

z

F
λ

1r

r

means 

performing the Fourier transform from r1
’=(x1

’, y1
’) into spatial frequency (x1/λz, y1/λz). 1

'
2

z

F
λ

−

2r

r

means performing the 

Fourier transform from r2
’=(x2

’, y2
’) into spatial frequency (x2/λz, y2/λz). The 2D Fourier transform and inverse Fourier 

transform are defined as  
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Similarly, equation (7) has the following form 
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Applying the convolution theorem15 repeatedly and interchanging the integration order of equation (10), we have: 
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The “⊗ ” denotes 4D convolution: 

  
1 1 2 2

' ' ' ' ' ' ' '
1 2 1 2 1 1 2 2 1 1 2 2 1 1 2 2( , ) ( , ) ( , , , ) ( , , , )f g f g x y x y d d d dξ η ξ η ξ η ξ η ξ η ξ η⊗ = − − − −∫ ∫ ∫ ∫r r r r  (12) 

Comparing equation (8) and equation (11), the ideal CSD function at the focal plane and the distorted CSD function have 
the following relation: 
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Equation (13) provides us a perturbation perspective to view the optical performance degradation due to the 
imperfections of the optics. According to equation (13), the impact from the imperfect optical elements can be treated as 
a perturbation to the ideal optical performance. This perturbation interacts with the ideal performance through a 
convolution operation.  

In order to use equation (13) to explore the impact that comes from optical imperfections, we need the ideal performance 
of the perfect optical element. A perfect optical system images the source according to the magnification factor M. No 
loss of intensity and no distortion of the intensity profile will occur at the focal plane if all the elements are perfect. As 
long as the source information is known, the CSD function at the observing plane can be deduced from the source 
according to the demagnification factor of the optical layout. 

2.3 Reducing computational consumption by means of coherent mode decomposition  

Equation (13) uses a 4D convolution for calculation. In the worst case, if all the coordinates are coupled with each other, 
4D integration is unavoidable. This 4D integration requires vast computer memory and therefore suffers from very slow 
computation speed if limited memory is available. We propose to use coherent mode decomposition12, 13 to reduce the 
memory required for the convolution in equation (13).  

The CSD function G0z(r1, r2) can be decomposed into a sum over independent coherent modes13: 

  *
0 1 2 1 2

0
( , ) ( ) ( )z m m m

m
G λ
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=

= Φ Φ∑r r r r  (14) 

where λm are the eigenvalues and Φm are the eigenfunctions or coherent modes. Using coherent mode decomposition, the 
two spatial coordinates in equation (13) are decoupled: 
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The “*” denotes 2D convolution: 

  1 1 1 1 1 1 1 1 1 1( )* ( ) ( , ) ( , )f g f g x y d dξ η ξ η ξ η= − −∫ ∫r r  (16) 

The previous 4D integration reduces to the outer product of two 2D “images” according to equation (15). Another 
advantage of equation (15) is that the fast Fourier transform (FFT) can be used not only for the complex transfer 
functions, but also for the convolution operations through the convolution theorem15. 

3. SIMULATION  
3.1 Source parameters and optical layout for simulation 

Figure 1 shows a typical optical layout for a nano-focusing beamline. The source is directly focused in the vertical 
direction using an elliptical mirror (VKB). The source to mirror distance is 207m and the mirror to image distance is 
0.36m. The demagnification factor My in the vertical direction is 575. In the horizontal direction, the source goes through 
two focusing mirrors before it hits the sample. A horizontally focusing mirror (HFM) images the source onto a secondary 
source slit. An elliptical mirror (HKB) then produces an image of the secondary source. The secondary source has the 
same size as the undulator source. The distance from the secondary source to the horizontal focusing mirror HKB is 
130.25m, and the mirror to image distance is 0.11m. The demagnification factor Mx in the horizontal direction is 1184. 
We will discuss the KB mirrors (HKB and VKB) in this work. The source used is from the High Energy Photon Source 
(HEPS) project3, see Table 1 for the parameters. 

 
Figure 1. Typical layout of nano-focusing beamline. In the horizontal direction, the source is first imaged at the secondary 
source slit. The secondary source has the same horizontal size as the undulator source. The secondary source then is focused 
to the sample position by a second horizontal focusing mirror. In the vertical direction, the undulator source is directly 
focused to the sample plane. 

 

Table 1.  Source parameters. 

Photon energy 10 keV Source divergence (H×V) 4.97μrad×4.04μrad 

Source size (H×V) 9.14μm×3.43μm Coherence length (H×V) 4.07μm×6.96μm 
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3.2 Gaussian Schell-model  

For the convenience of the discussion in this paper, we use the Gaussian Schell-Model (GSM) to describe the source16, 17. 
The advantage of the GSM is that the CSD function of the source can be written analytically given just a few parameters 
describing the properties of the source.  

The CSD function of a GSM source is: 
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4 4 2 2
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where I0 represents the maximum intensity at the source, and σsx,sy and ξsx,sy represent the source’s RMS size and 
coherence length in two directions, respectively. xs1, xs2, ys1, ys2 are the coordinates at the source plane. Within the 
framework of the GSM, these parameters have the following relation: 

  ,
, 2 2 2

, ,
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ξ

σ σ
=

−
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where σ’sx,sy is the angular divergence of the source in two directions. Usually, the product σsxσ’sx and σsyσ’sy are defined 
as beam emittance. As discussed in previous, the CSD function of the wave transmitted by a perfect focusing element is 
affected only by the demagnification factors. The CSD function at the image plane of the perfect optical element may be 
written as: 

  
( ) ( )2 22 2 2 2

1 2 1 21 2 1 2
0 1 2 0 2 2 2 2( , ) exp exp

4 4 2 2x y x y

x x y yx x y yG I
σ σ ξ ξ

    − −+ +
= − − − −           

r r  (19) 

with σx,y=Mx,yσsx,sy, ξx,y= Mx,yξsx,sy, Mx and My are the demagnification factors in two directions, r1, r2 are the coordinates at 
the observing plane. Figure 2 shows the perfect intensity distribution and two normalized CSD functions G0(x1, x2, 
y1=y2=0) and G0(x1=x2=0, y1, y2) along the central horizontal and vertical lines in the observing plane.  

 
Figure 2. The ideal performance at the image plane. Left: The intensity distribution if all the optical elements are perfect. 
Middle: The normalized CSD function in horizontal central line. Right: The normalized CSD function in vertical central 
line. 

 

3.3 Finite aperture impact on diffraction limited optics 

Whereas a perfect optical element would have an infinitely large extent, a real optical surface always has a finite physical 
size. The complex transfer function t(r’) to describe the finite optical element aperture at the exit plane can be expressed 
as a rectangular function: 

  
1, / 2 ' / 2 / 2 ' / 2' '( ') rect( ) rect( )
0.

x x y y

x y
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Lx,y is the size of the optic aperture projected onto the plane immediately after the optical element. This plane is 
perpendicular to the propagation direction z. We examine the elliptical KB mirrors that form the second focusing system 
of Figure 1. The horizontal focusing mirror is 110mm long with a grazing angle of 3.1mrad and the vertical focusing 
mirror is 360mm long with the same grazing angle. Thus, Lx is about 0.34mm and Ly is about 1.12mm. It is widely 
known that for the nano-focusing case, the final spot size is larger than the ideal value because of the broadening caused 
by the finite optical aperture. According to equation (13), the CSD function after the finite aperture Gz(x1, x2) has the 
following form: 
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where sinc(x)=sin(πx)/πx. As discussed before, “⊗ ” denotes 4D convolution.  

Figure3 shows the broadened intensity distribution and two CSD functions G0(x1, x2, y1=y2=0) and G0(x1=x2=0, y1, y2) in 
the observing plane. Both functions are broadened due to diffraction.  

 
Figure 3. The distortion of the performance at the image plane caused by the finite aperture of the elliptical KB mirrors. 
Left: The broadened intensity distribution. Middle: The distorted CSD function along horizontal central cut line. Right: The 
distorted CSD function along vertical central cut line. 

 

3.4 Mirror surface height error impact 

It is well-known that the phase shift ΔΦh due to the surface height error is: 

  
4 ( )sinh sh xπ θ
λ

∆Φ = −  (22) 

where h(xs) is the height error distribution along the mirror surface. To use equation (13), xs needs to be projected to the 
plane perpendicular to the optical axis by multiplying by the factor sinθ. We apply the height error to the horizontal 
focusing mirror HKB as shown in Figure 1. The surface height error impact on the horizontal perfect CSD function is: 
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The meaning of symbol “*” is similar to the previous discussion but slightly different. The “*” in the above equation 
denotes 2D convolution with respect to the horizontal coordinates x1 and x2.  

The left side of Figure 4 shows the height error distribution we used. The middle part of Figure 4 shows the 2D intensity 
distribution at the observing plane. The right side of Figure 4 shows the horizontal distorted intensity of the central cut at 
the observing plane. The perfect intensity is shown by the dashed curve. Compared with the ideal intensity, the distorted 
central intensity drops. The lost intensity forms some side peaks next to the main peak. 

 
Figure 4. Left: The surface error distribution used for the calculation. Middle: The 2D intensity distribution due to the 
surface height error. Right: The distorted focal spot shape. The perfect focal spot is shown by the dashed curve. 

 

4. DISCUSSIONS AND CONCLUSIONS 
We have presented a universal theoretical framework for mutual coherence function calculations. This universal 
theoretical framework can deal with various synchrotron radiation source models such as the Gaussian Schell-model or 
more rigorous undulator models. This new theoretical framework provides us a new perspective to view the impacts of 
the imperfections from the optics. The proposed perspective regards the imperfection’s impact as a “perturbation” that 
convolves with the optical element’s ideal performance. To avoid the heavy computational load of the 4D integration 
that comes from the convolution, we have applied coherent mode decomposition. Two typical cases have been 
considered using the Gaussian Schell-model to show the application of the proposed theory. The finite aperture’s impact 
on the diffraction-limited optics and the surface height error’s influence on the highly coherent beam are common 
problems for beamline optics design. We have shown that the proposed theoretical framework can treat these problems 
successfully. 

By separating the ideal CSD function from the impact of the imperfections, the time-consuming wave optics simulation 
can be performed more efficiently. The imperfection impacts can be easily evaluated using 2D FFT while the ideal CSD 
function only needs to be calculated once. By integrating the proposed theoretical framework into existing software, one 
could calculate the CSD functions distorted by many different optical imperfections simultaneously. Apart from 
providing a new simulation method, the proposed theoretical framework with a “perturbation” perspective has the 
potential to provide physical insights into the deterioration of the performance that results from the various types of 
optical errors.  
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Although we have only dealt with one set of optical systems in this work, the proposed theory can also deal with 
successive optical elements. The distorted CSD function after one optical element is treated as the ideal CSD function for 
the analysis of the next optical element. Notice that the coordinates r1 and r2 in the 2D FFT term in the convolution 
operation are already decoupled. The coherent mode decomposition can used for successive optical elements as well.  
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