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Abstract—Since x-ray scattering is a major cause
of artifacts, its correction is a crucial step in almost
any CT application. Most existing approaches, how-
ever, are based on complex theoretical models that
need to be tailored to that particular application.
To perform scatter estimation in absence of such
models, we propose the unsupervised deep scatter
estimation (uDSE). Here, uDSE combines a scat-
ter estimation network that operates in projection
domain with a scatter correction layer and CT re-
construction layer. In that way scatter estimation
can be trained using an unsupervised Wassersten
GAN (WGAN) setup in which the parameters of
the scatter estimation network are optimized such
that the resulting scatter corrected reconstructions
cannot be distinguished from samples of a true
artifact-free reference set. To demonstrate the feasi-
bility of the proposed approach, uDSE is evaluated
for simulated CBCT scans. Applied to the corre-
sponding test data, uDSE is able to remove most of
the present scatter artifacts and yields similar CT
value accuracy (mean error of 27.9 HU vs. 24.7 HU)
as a state-of-the-art supervised scatter estimation
approach. Thus, uDSE may be used in the future
to learn scatter estimation in cases where labels are
not available or cannot be generated with sufficient
accuracy.

Index Terms—CT, scatter estimation, deep learn-
ing, unsupervised learning.

I. Introduction

THE contribution of scattered x-rays to the ac-
quired projection data leads to a violation of CT

reconstruction criteria, and thus, to the introduction
of CT artifacts. In particular this holds true for cone-
beam CT (CBCT), where scatter-to-primary ratios
may easily be in the order of 1 and above. Therefore,
scatter correction is a crucial preprocessing step to
achieve diagnostic image quality. Typically, existing
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approaches implement such a correction by deriving
an estimate of the present scatter distribution and by
subtracting it subsequently from the acquired raw data.
Here, the scatter distribution can either be estimated
using dedicated hardware such as beam blockers or pri-
mary modulation grids [1]–[5],or using software-based
approaches. The latter rely on physical, empirical, or
consistency-based models to predict x-ray scattering
[6]–[13],or more recently, on neural networks that make
use of such models during training, e.g. by being trained
to reproduce the output of Monte Carlo simulations
[14]–[18]. While these approaches have proven great
potential in terms of accuracy and computation time,
their performance highly depends on the quality and
the availability of labeled data. Since several appli-
cations may lack such data, this study proposes the
unsupervised deep scatter estimation (uDSE) which is
able to overcome this limitation. Instead of using a
supervised setup, uDSE relies on a Wasserstein GAN
(WGAN) setup that can be trained without labeled
data or prior knowledge about the CT scanner’s x-ray
and scatter properties [19]. Here we demonstrate the
feasibility of the proposed approach using simulated
CBCT data and compare the results against DSE, our
supervised scatter estimation approach [14], [15].

II. Material and Methods
A. Deep Scatter Estimation (DSE)
The basic idea of the DSE approach is illustrated

in figure 1. Here, DSE uses a U-net-like architecture
to predict scatter as a function of the acquired projec-
tion data. To learn the corresponding mapping, DSE
is trained to reproduce Monte Carlo simulations, i.e.
the U-net’s weights are determined by minimizing the
following loss function:

LDSE(θ) =
B∑
n

∣∣∣∣DSEθ(In)− Sn
Sn

∣∣∣∣ , (1)

where θ denotes the parameter vector, n the sample
number within a batch of size B, In the flat field-
corrected intensities, and Sn the Monte Carlo scatter
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Fig. 1. Schematic of the DSE and the proposed uDSE approach. DSE uses a U-net-like architecture to predict scatter as a function
of the acquired projection data. In a supervised setup DSE is trained to reproduce a ground truth Monte Carlos scatter distribution.
uDSE, in contrast, uses a Wasserstein GAN (WGAN) setup. Here, a scatter correction followed by a CT reconstruction is performed.
Subsequently, the correction is evaluated by a critic network that is trained simultaneously to recognize scatter artifact-free images.
By optimizing the weights of the scatter estimation network to fool the critic network, scatter estimation can be learned without
labels.

estimate. It has to be noted that the first layer of the
DSE network performs a "pep"-transform

Tpep : I → −I · ln(I), (2)

to be consistent with our DSE publication [14].

B. Unsupervised Deep Scatter Estimation (uDSE)
The proposed uDSE approach, shown in figure 1,

extends the concept of DSE to cases where labeled
data are not available. To do so, it is composed of
a generator network and a critic network. Here, the
generator combines the DSE network with a scatter
correction layer and a Feldkamp reconstruction layer,
such that it is able to map acquired intensities I of
a CT scan to scatter-corrected CT reconstructions.
The critic network, in turn, is designed to distinguish
between the generator’s output and true scatter-free
CT reconstructions. Thus, letting the critic network

act as loss function for the generator allows to learn
CT scatter estimation without labeled or paired data,
respectively.
Here, the corresponding optimization is performed

using a WGAN setup in which the generator netork
Gθg

(I) and the critic network Cθc
(f) are optimized in

an alternating manner according to the following loss
functions:

Lcritic(θc) =
B∑
n

Cθc(Gθg (In))− Cθc(freal, n), (3)

Lgen(θg) = −
B∑
n

Cθc
(Gθg

(In)), (4)

where θc and θg denote the parameter vectors of the
generator and the critic network, n is the sample
number within a batch of size B, and freal corresponds
to a sample from a set of almost scatter-free clinical
CT reconstructions.
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Fig. 2. DSE and uDSE scatter estimates for an exemplary shifted detector projection of the test dataset (top row), as well as the
corresponding error with respect to the ground truth Monte Carlo scatter distribution (bottom row).

C. Datasets

In the present study, DSE as well as uDSE were
trained and tested on simulated CBCT data. Therefore,
clinical CT reconstructions of 65 patients were used as
prior. Based on the corresponding voxel volumes fprior,
CBCT scans with 360 views and an angular coverage of
360◦ were simulated at five different z-positions within
the abdomen region using a tube voltage of 120 kV,
a source-to-isocenter distance of 700 mm, a source-to-
detector distance of 1100 mm, and a 1024×768 flat
detector with an isotropic pixel spacing of 0.39 mm.
Furthermore, a shifted detector was used to increase
the field of measurement to about 380 mm. Using this
setup, three datasets were generated using different
patients: one scatter-corrupted dataset (30 patients)
from which input data for the generator network were
sampled during training, one scatter-free dataset (30
patients) that was used to provide ideal reference CT
reconstructions for the critic network, and a scatter-
corrupted dataset (5 remaining patients) for testing.
In any case, the scatter-corrupted data were simu-
lated as I = Ip + SMC, where Ip corresponds to a
polychromatic forward projection of the prior volume
and SMC is a scatter distribution that was generated
using our in-house Monte Carlo simulation. The ideal
reference data, on the other hand, correspond to a
CBCT reconstruction of only the primary intensities,
i.e. freal = X−1(− ln(Ip)), with X−1 being the CBCT
reconstruction operator. It has to be noted that freal
is not sampled directly from the set of clinical CT
reconstructions, but is generated via forward and back-

projection, to have the same spatial resolution and
the same field of measurement as the reconstructions
provided by the generator network.

D. Training and Evaluation
The uDSE approach was trained using the datasets

described in section II-C. However, to avoid memory
issues as well as to increase the computational perfor-
mance, a 2-fold angular downsampling to 180 views and
an 8-fold spatial downsampling to a detector size of
128×96 was performed in advance. This downsampling
can be justified by the fact that scatter distributions are
known to be of low frequency. Therefore, we only expect
a minor degradation of accuracy compared to a training
that uses the full size projection data. Given the small
detector size, the internal reconstruction operations
were also performed on a low resolution grid with
144×144×48 voxels and an isotropic spacing of 2.7 mm.
The corresponding optimization was implemented

according to section II-B using the Tensorflow frame-
work. Here, all hyperparameters except for the batch
size (this study: B = 16) and the number of iterations
(this study: Nitr = 5000) were chosen following to
the original WGAN publication, i.e. five updates of
the critic network are followed by one update of the
generator network using an RMSProp optimizer with
a learning rate of 0.00005 and a weight clipping to
[−0.01, 0.01] in the critic network.
Finally, uDSE was applied to the test data and com-

pared against DSE which was trained in a supervised
setting using the Monte Carlo scatter distributions a
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Fig. 3. CT reconstruction without and with DSE and uDSE scatter correction (top row), as well as difference images to the scatter
free ground truth (bottom row).

labels. In contrast to the training data, the scatter
correction was performed on the full size projection
data. Therefore, all scatter predictions were upsampled
to the original detector size of 1024 × 768 pixels prior
to scatter correction.

III. Results

To estimate scatter, DSE and uDSE were trained as
described in section II-D and evaluated for the five pa-
tients of the test dataset. Exemplary scatter predictions
are shown in figure 2. Here, the DSE approach yields
scatter estimates that are almost equal to the Monte
Carlo ground truth while uDSE shows slightly higher
deviations. This can be attributed to the fact the uDSE
loss function is evaluated in image domain. Therefore,
the scatter estimate is less reliable in regions where it
has a low impact on image quality, i.e. in regions with
low scatter-to-primary ratio. In particular this explains
the poor accuracy of uDSE scatter estimates in air
regions without patient intersection.

A quantitative evaluation of the scatter estimates
in terms of the mean absolute percentage error with
respect to the ground truth yields similar trends. Here,
the average error of DSE for all 9000 projections of the
test dataset is 3.5 % while the average error of uDSE
is 9.8 %.

CT reconstructions with and without scatter cor-
rection are shown in figure 3. Here, DSE as well as
uDSE are able to remove most of the artifacts that are
present in the uncorrected reconstruction and provide
CT images that are almost equal to the scatter-free
ground truth. Quantitatively, the application of the
scatter correction improves the mean absolute error
of the CT values from 160.7 HU (no correction) to
24.7 HU (DSE) or 27.9 HU (uDSE), respectively.

IV. Discussion and Conclusion
This study introduces a novel approach to learn

scatter estimation without labeled data. To do so,
the proposed uDSE makes use of a WGAN setup in
which the generator network is optimized such that its
output, i.e. scatter corrected reconstructions, cannot be
distinguished from samples of an artifact-free reference
set. Here, we demonstrate the feasibility of uDSE using
CBCT simulations as input and clinical CT recon-
structions as reference. However, it has to be noted
that uDSE is not restricted to this particular choice
but can be trained with any tomographic input and
any scatter-free reference as long as both distributions
are sufficiently equal after scatter correction. The fact
that this condition is perfectly met here, i.e. input and
reference distributions only differ by scatter, can be
considered as a limitation of this study. Practically,
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both distribution may additionally differ by the amount
of beam hardening, the dynamic range, or the contrast
media distribution for instance. Investigating uDSE’s
performance in such cases is subject to further research
and may require the incorporation of additional con-
straints and correction layers. In the current setup,
however, uDSE is able to remove most of the present
scatter artifacts and yields similar CT value accuracy
(mean error of 27.9 HU vs. 24.7 HU) as a state-of-
the-art supervised scatter estimation approach. Thus,
uDSE has the potential to extend the concept of neu-
ral network-based scatter estimation and correction to
scenarios where labels are not available or cannot be
generated with sufficient accuracy.
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