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Medical image restoration of dynamic lungs using
optical transfer function of lung motion
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Abstract. When carrying out medical imaging based on detection of
isotopic radiation levels of internal organs such a lungs or heart, dis-
tortions, and blur arise as a result of the organ motion during breath-
ing and blood supply. Consequently, image quality declines, despite
the use of expensive high resolution devices and, such devices are not
exploited fully. A method with which to overcome the problem is
image restoration. Previously, we suggested and developed a method
for calculating numerically the optical transfer function (OTF) for any
type of image motion. The purpose of this research is restoration of
original isotope images (of the lungs) by restoration methods that de-
pend on the OTF of the real time relative motion between the object
and the imaging system. This research uses different algorithms for the
restoration of an image, according to the OTF of the lung motion,
which is in several directions simultaneously. One way of handling
the three-dimensional movement is to decompose the image into sev-
eral portions, to restore each portion according to its motion charac-
teristics, and then to combine all the image portions back into a single
image. An additional complication is that the image was recorded at
different angles. The application of this research is in medical systems
requiring high resolution imaging. The main advantage of this ap-
proach is its low cost versus conventional approaches. © 2001 Society of
Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.1352749]
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1 Introduction
Ventilation studies are clinically useful for evaluating lung
function. By quantizing ventilation studies, we are able to
evaluate the degree of ventilatory dysfunction, evaluate th
response to therapy, and assess the relationship between ve
tilation and perfusion. When generating medical images ove
a prolonged exposure time~'30 s!, such as in imaging of
lungs, distortions, and blur arise due to organ motion during
breathing and blood supply. One of the options for image
motion restoration is to apply the optical transfer function
~OFT! unique to high-frequency vibrations.1 In this case of
medical image restoration of dynamic organs, one must dea
with motion in several directions.

This paper presents results of medical image restoration o
dynamic lungs, using the OTF for high-frequency vibrations.
The images are shown as energy levels of detected nucle
radiation~Xe-133! inserted into the body by ventilation.

Image motion restoration refers to the problem of estimat
ing the ideal image from blurred and noisy versions. It is well
known that image restoration is an ill-posed inverse problem
That is, a unique solution may not exist and/or solution~s!
may not continuously depend on the data. In solving such
problems it is essential to havea priori information about the
ideal solution. Every image restoration algorithm is based on
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the observation model that establishes the relationship
tween the input~ideal image! and the output~observed de-
graded image! of the imaging system. The success of ima
restoration in a given application depends on how good
assumed mathematical model fits the input/output characte
tics of the imaging system. In our case, where the OTF
known a priori or can be estimated from numerical calcul
tions, the degraded image can be filtered in order to comp
sate for the degradations introduced by the limited spatial
quency of the image motion OTF. The filters are based
knowledge of the OTF and the power of the noise in t
picture.

The point-spread function or the line-spread functi
~LSF! of image motion are the key for calculating the inver
filter for image restoration. Direct solution can be availab
only if they are suitably characterized. In the case where m
tion and therefore OTF is random such characterization
be calculated numerically in real time.1 Significant improve-
ments to idealized solutions cannot be constructed straigh
wardly. In each case it is necessary to adopt an iterative
proach that will converge to the true image. When th
algorithm should be applied and how many iterations sho
be attempted can only be decided on the basis of prac
computational experiments.
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Fig. 1 Motion of lung idealized as linear actuator/piston of area Al
with spring and viscous resistance effects (after Ref. 2).
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2 Lung Motion Description
There are two options to obtain the function of lung motion,
by experiment and measurement, or by appropriate simula
tions based on lung motion. Our research results were com
pared with computer simulation packages aimed at develop
ing the model of the human respiratory system, such as:~a!
BATHfp;2,3 and ~b! ACSL simulation.4

2.1 Model of the Lung2,3

When defining lungs motion for medical image restoration,
one needs to consider random motion caused by patien
movement and ordinary motion caused by heart beats an
respiration. We focused only on ordinary motion. The concep
of a moving piston forms the basis for models of the motion
and gas flow processes associated with the lungs. The oper
tion of the lung is idealized as a linear piston of areaAl
~Figure 1! with spring and viscous resistance effects. The
model deals with the following effects:~1! stiffness ~or
elastance! of the lung and surrounding tissue,~2! variation in
lung elastance,~3! alveolar pressure,~4! rate of change of
alveolar lung pressure,~5! transpulmonary pressure,~6! lung
dimension,~7! lung area,~8! mass of lung,~9! fractional dead
volume, ~10! total lung capacity,~11! functional residual ca-
pacity ~FRC!, ~12! residual volume,~13! acceleration,~14!
velocity and displacement of the lung wall,~15! air density,
~16! orientation of the human,~17! Coulomb friction~hyster-
esis!, and~18! viscous friction thoracic force.

The transpulmonary pressure, the pressure differenc
across the lung, is given by:

Pl5Pal2Ppl , ~1!

wherePal represents the alveolar pressure andPpl intrapleural
pressure, which exists inside the pleura and acts on the lun
wall.

The stiffness~or elastance!, k ~inverse of compliance! of
the lung and chest wall system consists of two distinct com
ponents, lung stiffnesskl , and surrounding tissue, i.e., rib-
cage, diaphragm, and pleural compartment stiffnesskpl .
Moreover, stiffness varies considerably over the working
range of the lung, from the residual volume to total lung ca-
pacity. Figure 2 shows the variation of lung volume with the
transmural~differential! pressure between the alveolar and
pleural compartments~markedL!, and the pleural compart-
ment and the atmosphere~markedW! for a normal healthy
194 Journal of Biomedical Optics d April 2001 d Vol. 6 No. 2
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human. The gradients of these graphs are proportional to c
pliance of the lung or chest wall and the reciprocals are
respective elastances2

f ~Vl !5D~Pl !/D~Vl !, ~2!

wheref (Vl) is the variation in lung elastance(D(Pl)/D(Vl))
with the lung volumeVl .

Stiffness is defined as the ratio of the rate of change
force with respect to displacement,D(Fl)/D(x). This is re-
lated to elastanceD(Pl)/D(Vl) by

stiffness5
D~Fl !

D~x!
5

A2
•D~Pl !

D~Vl !
, ~3!

whereA is the area which is affected by the pressure in t
lung.

2.2 Functional Residual Capacity (FRC)2,3

The FRC is the lung volume in the rest position, when t
spring force due to the lung~acting on the pleural compart
ment! is exactly balanced by the chest wall force. The lu
wall displacementxf at FRC(Vf) is given by

xf5Vf /Al . ~4!

At this condition, when balance between the forces occu
alveolar pressure is equal to atmospheric pressure, and
flow from lungs is zero. At FRC, the interpleural pressure~in
the pleural compartment! Pp0 is subatmospheric,5 with a typi-
cal value taken as25 cm water.

A more detailed description of the lung motion, whic
starts by defining the displacement in steady state and in
absence of Coulomb fictional resistance,6 is presented in Refs.
2 and 3. Typical values for mass of a lung are used,7 0.5 kg
being typical for a normal male.

The lung is regarded as a control volumeVl into which air
flows (Ql) during exhalation and from which air flows durin
inhalation. The volume is determined from the displacem
of the lung. The net flow of gas into the lungs is given by

Ql5r•Al

dx

dt
, ~5!

Fig. 2 Variation of lung volume with the transmural (differential) pres-
sure between the alveolar and pleural compartments (L), and the pleu-
ral compartment and the atmosphere (W) for a normal healthy human
(after Ref. 2).
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Medical Image Restoration of Dynamic Lungs
Fig. 3 Lung segmentation of left and right lungs with three segments
each.
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wherer is air density,Al is lung area, andx is the displace-
ment of the lung wall.

The rate of change of alveolar lung pressure is given by

dP0

dt
5S nRT

Vl
D • d~V32Vl2VO2

1VCO2
!

dt
, ~6!

where for airn is the polytropic index,R is the gas constant,
T is the temperature, andVO2

andVCO2
are, respectively, oxy-

gen flow into carbon dioxide flow from the pulmonary blood.

3 Lung Segmentation
3.1 Lobar Anatomy8

The lobar architecture of the right lung includes three lobes
~1! right upper lobe~RUL!, ~2! right middle lobe, and~3!
right lower lobe. The RUL occupies the upper 1/3 of the right
lung. The lobar architecture of the left lung is slightly differ-
ent from the right. Because there is no defined left minor
fissure, there are only two lobes on the left:~1! left upper and
~2! left lower lobes.

In general, fissures are not readily identifiable on plain
films, with only small portions typically visualized at best.
This is because fissures, which are composed of only tw
layers of visceral pleura, may not present a significant radio
graphic interface and will not produce a shadow. However, if
there is fluid within the pleural space or if the visceral pleura
is thickened, fissures may be seen in their entirety. Neither th
major nor minor fissures are definitively demonstrated on CT
In fact, because of the axial orientation of the right minor
fissure, exact delineation of the border between the righ
middle and upper lobes is almost impossible on CT.

3.2 Image Processing Segmentation
One way of handling the movement in a medical image of the
dynamic lung, is by decomposing the image into several im
ages~segments!. We chose to decompose the lung image into
three segments according to the lobar anatomy and a compa
son of the lung to a balloon as seen in the model of the lung
The three segments are:~1! the upper region,~2! the middle
region, and~3! the lower region~Figure 3!.

We assumed that the upper region moves like the uppe
half of a balloon, the middle region moves like a cylindrical
i-

r

balloon, and the lower region of the lung moves like the low
half of the balloon. This assumption simplifies the image r
toration results. The additional segmentation process we
veloped is based on the stiffness of the lung. We chose
slice every region, where each slice is of different wid
~which will be used later in the OTF!, according to the mode
of the motion of the lung. That way of handling the moveme
in the image reduced the distortions caused by the restora
process.

It should be mentioned that the edge of the lung, the lu
wall, is not a perfectly smooth curve, so we had to use ima
processing algorithms to find the edges of the lungs in
image to prevent image processing of the background.

4 Image Motion OTF
There are two methods presented to calculate MTF for
type of motion, including random motion that cannot be ch
acterized by any unique MTF.9,1 One is based on calculatio
in the spatial frequency domain.9 The second is based on ca
culation carried out in the spatial domain and yields act
OTF. The latter method is much faster so it is more suita
for practical systems that work in real time. In addition, t
phase transfer function is also obtained.1 We used the second
method. All that is required for both methods is the functi
of relative image motion.

4.1 Spatial Frequency Domain (MTF)
The spatial frequency domain method9 is based on the as
sumption of an object with a sinusoidal luminance pattern

i ~x!5B01Bmcos~2p f x!, ~7!

where f is spatial frequency,x(t) is the motion function for
spatial coordinatex, andB0 andBm are constants.

To determine the modulation of the intensity pattern of t
image it is necessary to know the relative motionx(t) be-
tween the camera and the object. When this motion is kno
analytically, the MTF also can be obtained analytically, as
the cases of linear motion, high-frequency vibration, or pa
bolic motion. For other cases when the exact analytic funct
x(t) is not available, it is necessary to expand this method
numerical calculation. This method works with discrete poi
of image motion instead of the mathematical function. T
MTF is calculated for each spatial frequency separately an
obtained by measuring the modulation contrast function o
a multitude of closely spaced spatial frequencies.

4.2 Spatial Domain (LSF)
In this section, the LSF derived from image motion transve
to the optical axis is obtained.1 The MTF is derived as the
modulus of the OTF or Fourier transform of the LSF, and t
PTF is derived as the phase of the OTF.

Let x(t) be the relative displacement between the obj
and sensor beginning at timets and ending at timets11, in
which ts is measured from the instant the sensor is first
posed. The LSF of the motion is the PDF or the histogram
x(t). The intuitive explanation for this determination is th
following. Image motion causes the system line spread im
response to move spatially. These displacements are
grated during the exposure. Such motion can be describe
Journal of Biomedical Optics d April 2001 d Vol. 6 No. 2 195
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Fig. 4 Similarity between sin(vt) and A3 sin(vt).
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a histogram of the LSF, in which frequency of occurrence of
a given portionx(t) is depicted as a function ofx during the
time interval (ts , ts1te). This histogram is the LSF itself.
The quantityts is a random variable representing initial expo-
sure time and is uniformly distributed according tof t(t)
51/te .

By decomposing the relative displacement inton mono-
tonic parts existing in one exposure timete , that is,

t11t21t31...1tn5te , ~8!

the PDF is shown to be of the form

f x~x!5 f t~ t !•F 1

x8~ t1!
1...1

1

x8~ tn!
1...G

5
1

te
•F 1

x8~ t1!
1...1

1

x8~ tn!
1...G ,

~ ts,t,ts1te!, ~dmin,x,dmax!, ~9!

wherex8(t) is the derivative ofx(t) and f x(x) is the PDF.
The lower and the upper limits, respectively, forx are the

results of the minimum and maximum displacement betwee
the object and sensor. The PDF~or histogram! f x(x) repre-
sents the LSF. The LSF is equal tof x(x) and the OTF is the
one-dimensional~1D! Fourier transform of the LSF:

OTF~ f !5E f x~x!e2 j 2p f xdx, ~10!

wheref is spatial frequency.
Thus, LSF for image motion can be determined from a

histogram of the motion, and the resulting OTF for such mo-
tion is given by Eq.~10!.

4.3 Image Degradation by Sinusoidal Vibration
Sinusoidal vibration is a very critical factor in dynamic imag-
ing systems. The sinusoidal motion can be prevented in prin
ciple by proper design; in practice, however, it is often the
most serious image motion. Degradation of image quality as
result of sinusoidal motion10 depends on the ratio of exposure
time te to the period of the sinusoidal motionT0. In this case,
it is necessary to distinguish between two categories.

1. High-frequency Vibration in which the exposure pe-
riod is long compared to the period of the simple harmonic
196 Journal of Biomedical Optics d April 2001 d Vol. 6 No. 2
motion (te>T0). The LSF for this motion is given by the
histogram of the sine function over one period. The ex
calculation appears in Ref. 1, and the result is

LSFHF51/@p~D22x2!1/2#, uxu,D, ~11!

whereD is the maximum vibration amplitude. The MTF fo
this case is given by the Fourier transform of Eq.~11!:

Ms~ f !5J0~2p f D !, ~12!

whereJ0 is the zero-order Bessel function. The PTF for t
ideal case is equal to zero because the LSF is an even f
tion. It is important to mention that the result in this ca
remains the same forte@T0. The blur radius is still the peak
to-peak displacement 2D as long aste>T0.

2. Low-frequency Vibration in which the exposure pe
riod is short compared to the vibration period(te,T0). Quan-
tification of the low-frequency vibrational image blur radiusd
is much more complicated, however, because it depends
the initial phase of the oscillatory motion as well as on t
instant and duration of the time exposure, both of which
often random processes. The influence of the MTF degra
tion is much more severe than that of the PTF; therefore,
following discussion concentrates only on the MTF.

4.4 Degradation Process of High Frequency
Vibration
For the case of high-frequency vibration, for sinusoidal mo
ment, the amplitude of the vibration is peak-to-peak displa
mentd52D. In this case, the MTF is the well-known zero
order Bessel functionJ0(2p f D). The first zero of this
function occurs atf rmax50.7655/d. The width of the MTF is
smaller than in the cases of linear motion or acceleration m
tion, so most degradation occurs in the case of high-freque
vibration. These results are obtained for any constant b
radius. However, they are not valid for constant tim
exposure.1

In the case of lung image restoration, we should notice t
the lungs volume changes sinusoidally,4 but the displacemen
in one direction is the third root of the volume~in a sphere!,
and the square root of the volume~in a cylinder!. It means
that we had to find the OTF for those functions. In practic
we decided to use the zero-order Bessel function, becaus
the similarity until the first zero as can be seen in Figure 4
our experiment, described in Sec. 5, the assumption of u
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Medical Image Restoration of Dynamic Lungs
Fig. 5 Block diagram of imaging system and restoration.
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OTF based on high frequency vibration is correct, especially
for prolonged exposure time of 300 s which is much longer
than the breathing vibrational cycle.

5 Experimental Description and Results
We divided the experiment into four stages:~1! generation of
signals of lung volume capacity in respiration assisted by
BREEZE software combined with the lung ventilation medical
system,~2! dynamic scan lung ventilation nuclear images, and
signals of lungs, generated by the ‘‘Elscint APEXView
V4.00A’’ medical systems,~3! image segmentation, and~4!
image restoration using motion OTF~see Figure 5!.

The experimental stages are based on the simulation re
sults, which are given in the literature.2–6 The results and the
conclusions in Refs. 2–6, are similar to the actual results fo
the medical systems. For image restoration purposes it is a
ways better to use actual displacement measurements o
tained from a sensor attached to the patients’ body instead o
motion estimation tools. Usually, estimation results are use
when there are no actually measured data. However in ou
case the medical system produced the specific characteriz
tion of the organ motion. On the other hand, if measurement
could not be acquired in parallel to the image scan, it is rec
ommended that you use an average signal based on seve
measurements.11–13

5.1 Generated Signals Images and Segmentation
With BREEZE software combined with the lung ventilation
medical system, we measured the volume capacity versu
time lung ventilation signals. One sample is shown in Figure
6. It is clear that the ventilation signals are essentially sinu
soidal, as suggested in respiratory physiology literature.2–4 It
can be seen that there is a visual decline in the signal, whic
is due to the measurement system. However, we succeeded
correcting this problem by subtraction of the linear dc slope
We can see that the volume amplitude varies over a range o
about 2 L. This point is very important in calculating the
displacement of the lung wall~see Sec. 4.4!. For lung image
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restoration, because of the prolonged exposure time, we
with high-frequency vibration, so we need only the amplitu
and may ignore the frequency. We can derive the amplit
from the volume capacity signals, and this is one way to
tain the amplitude parameter for the OTF formed by ze
order Bessel functionJ0.

To simplify the restoration process we divided the ima
into three segments, assuming that the upper segment ha
shape of a dome, the middle segment has a shape similar
cylinder, and the lower segment has an upside dome sh
Each segment was restored separately, the upper and
lower segments were restored by using the radial MTF,
the middle part was restored using the MTF along thex andy
axis. The restoration process described above, deals only
the lung image that was extracted from the surrounding ba
ground.

The following are recommended camera parameter
tings ~400 mm field of view! for Xenon-33:~1! acquisition—
dynamic,~2! pharmaceutical—xenon-133 gas,~3! energy—78
keV, ~4! frame size—64364, ~5! zoom—1.

Figure 3 shows an example of lung segmentation, in wh
the generated image is decomposed into three segments

5.2 Image Restoration Using Wiener Filter Based on
High-frequency Vibration OTF
The exposure time for generating an image is very long~30 s
and even more!. Since this is much longer than the breathi
cycle, it was appropriate to choose OTF based on hi
frequency vibration. This was inserted into the Wiener filte

Wiener5OTF*/~uOTFu211/SNR), ~13!

where the signal-to-noise ratio~SNR! is a constant estimated
value, and the OTF is the zero-order Bessel function@Eq.
~12!# limited to f rmax50.7655/d. We obtain the displacemen
D(D5d/2) by calculations or measurements. The medi
image system finds the displacement in real time through
imaging process. Two options for calculations are~1! to de-
rive the displacement from the measured volume of the lu
or ~2! to scan the logarithm of the fast Fourier transform
the original vector where zero points occur. The displacem
D is the displacement between two zeros.14,15

5.3 Results
The following figures show the restored images using
Wiener filter based on the zero-order Bessel function M
and the numerical MTF derived from the actual motion o
tained from the motion sensor. Notice we deal only with t
object close to the edges. The image size is 1283128 pixels.
Calculations indicate a blur of 4–5 pixels. As presented
Figures 7 and 8, the energy of the radiation is spread aro
the center of the lung. We should remember that we deal w
images generated by isotopic radiation, and the image is b
shown as energy levels of radiation. Consequently, we exp
to focus all the spread energy into the center of the ima
where most of the radiation is.

Figures 7~a1! and 8~a1! present the original images of th
left and right lungs followed by the restored image using t
zero Bessel function as the MTF@Figures 7~b1! and 8~b1!#,
and the restored images from the numerical MTF@Figures
7~c1! and 8~c1!#. Figures 7~a2!, 7~b2!, 7~c2!, 8~a2!, 8~b2!, and
Fig. 6 Measured signal of respiration.
Journal of Biomedical Optics d April 2001 d Vol. 6 No. 2 197



Arbel, Hadar, and Kopieka
Fig. 7 Sample of image restoration of dynamic left lung; (a1) original
image, (b1) restored image using the zero Bessel function as the MTF,
(c1) restored image using the numerical MTF, (a2) edge pattern of (a1),
(b2) edge pattern of (b1), and (c2) edge pattern of (c1).
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8~c2! represent the edges of the original and the restored im
ages, respectively. The edges of the medical image have
significant rule in helping us recognize defects in the investi-
gated organ. In a normal lung the blood reaches all the bloo
vessels in the organ. Consequently, the radiative material ca
ried by the blood is radiated approximately uniformly from
the whole organ. As a result, the obtained image has a con
tinuous shape~as presented in Figures 7 and 8!. On the other
hand, in a lung with a defect the blood cannot reach all the
blood vessels. As a result, the obtained image may have whi
spots close to the edges and/or brighter gray level spots in th
inner boundary~proximal parts! of the lung, representing the
defected areas. In Figures 7~b!, 7~c!, 8~b!, and 8~c! the resto-
ration results seem less successful in the inner boundary of th
lung, where all the energy of the radiation is concentrated. I
is important to clarify that the success in blur restoration is the
same in the whole organ. Despite the visual evidence of suc
cess in edge restoration only, there is a chance to see goo
restoration results in cases with inner boundary defects~areas
with different gray level spots!. The enhanced edges in the
restored images emphasize the defect area in the lung. Ther
fore, it is very important to obtain a very sharp image with
enhanced edges. The benefits of our method and the sugges
algorithm are improvement of the imaging system and conse
quently of the medical images generated, reduction in the
need for other medical systems, and assistance to doctors
making better diagnoses and decisions. Clinical interpreta
tions also become more objective and more sensitive to ven
tilation dysfunction since there are no longer variations in
regional lung volume and image intensity, which tend to re-
duce the accuracy of visual estimates or regional ventilation
198 Journal of Biomedical Optics d April 2001 d Vol. 6 No. 2
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The better the restoration of the hardware, the greater
number of pixels affected by motion blur. The techniqu
described here16 can be expected to be even more useful
hardware imaging technology improves to yield images w
larger numbers of pixels.

6 Conclusions
Using motion OTF for medical image restoration of dynam
organs is a way to improve the quality of the image, and
way to simplify the diagnosis for doctors. We suggest a n
method, which permits considering the motion in several
rections simultaneously. If we know the motion paramete
we can easily find the appropriate OTF for the image resto
tion. Otherwise, we can scan and look for the right parame
by relying on the object motion model. For the latter, it is st
a prolonged process~about 3 min!. In this experiment we used
64364 pixel images. It is difficult to improve such an imag
noticeably with a short vector, less than 30 pixels, because
blur is no more than 2–3 pixels. Nevertheless, in Figure 7
restoration process noticeably improves restoration of
lung center area. As hardware technology improves, mo
blur should affect a greater number of pixels, and the te
nique described here should be even more useful, as
already have shown to be for nonmedical imaging.16

Another aspect is the definition of image quality.
searching for the right parameters, we must instruct the im
processing system as to which image is best. The use mu
qualified and trained to choose the best image restoration
the future it may be possible, assisted by detection and id
tification systems, to choose the best result. Meanwhile,
can implement our restoration algorithm in real time, usi
medical systems that measure all the needed parameters,

Fig. 8 Sample of image restoration of dynamic right lung; (a1) original
image, (b1) restored image using the zero Bessel function as the MTF,
(c1) restored image using the numerical MTF, (a2) edge pattern of (a1),
(b2) edge pattern of (b1), and (c2) edge pattern of (c1).
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Medical Image Restoration of Dynamic Lungs
as the motion amplitude, and combine the image processin
algorithm with the image processing software in the system.

In isotopic medical images, there is limited medical infor-
mation for diagnosis. Doctors still have to be assisted by othe
medical systems. Quantitative analysis overcomes problem
of visual image interpretation caused by differences in re
gional lung volume or tracer equilibration. The benefits of our
method and the suggested algorithm are in improving the im
aging system and consequently the medical images generate
reducing the need for other medical systems, and assisting th
doctors to make better diagnoses and decisions. Clinical inte
pretations also become more objective and more sensitive
ventilation dysfunction since there are no longer variations in
regional lung volume and image intensity, which tend to re-
duce the accuracy of visual estimates of regional ventilation
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