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Abstract. When carrying out medical imaging based on detection of
isotopic radiation levels of internal organs such a lungs or heart, dis-
tortions, and blur arise as a result of the organ motion during breath-
ing and blood supply. Consequently, image quality declines, despite
the use of expensive high resolution devices and, such devices are not
exploited fully. A method with which to overcome the problem is
image restoration. Previously, we suggested and developed a method
for calculating numerically the optical transfer function (OTF) for any
type of image motion. The purpose of this research is restoration of
original isotope images (of the lungs) by restoration methods that de-
pend on the OTF of the real time relative motion between the object
and the imaging system. This research uses different algorithms for the

restoration of an image, according to the OTF of the lung motion,
which is in several directions simultaneously. One way of handling
the three-dimensional movement is to decompose the image into sev-
eral portions, to restore each portion according to its motion charac-
teristics, and then to combine all the image portions back into a single
image. An additional complication is that the image was recorded at
different angles. The application of this research is in medical systems
requiring high resolution imaging. The main advantage of this ap-
proach is its low cost versus conventional approaches. © 2001 Society of
Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.1352749]
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1 Introduction the observation model that establishes the relationship be-

Ventilation studies are clinically useful for evaluating lung tWween the inputiideal imagg and the outpufobserved de-
function. By quantizing ventilation studies, we are able to 9raded imageof the imaging system. The success of image
evaluate the degree of ventilatory dysfunction, evaluate the restoration in a given application depends on how good the
response to therapy, and assess the relationship between vergssumed mathematical model fits the input/output characteris-
tilation and perfusion. When generating medical images over tics of the imaging system. In our case, where the OTF is
a prolonged exposure time=30 9, such as in imaging of  knowna priori or can be estimated from numerical calcula-
lungs, distortions, and blur arise due to organ motion during tions, the degraded image can be filtered in order to compen-
breathing and blood supply. One of the options for image sate for the degradations introduced by the limited spatial fre-
motion restoration is to apply the optical transfer function quency of the image motion OTF. The filters are based on
(OFT) unique to high-frequency vibratiodsln this case of  knowledge of the OTF and the power of the noise in the
medical image restoration of dynamic organs, one must dealpicture.
with motion in several directions. The point-spread function or the line-spread function
This paper presents results of medical image restoration of (| SF) of image motion are the key for calculating the inverse
dynamic lungs, using the OTF for high-frequency vibrations. fjjter for image restoration. Direct solution can be available
The images are shown as energy levels of detected nuclear,y it they are suitably characterized. In the case where mo-
radlatlon(Xe-1_33 mserte(_i into the body by ventilation. . tion and therefore OTF is random such characterization can
. Image mo_tlon restoration refers to th_e probI(_am of e;tlmat- be calculated numerically in real tinfeSignificant improve-
ing the ideal image from blurred and noisy versions. It is well . . . .
known that image restoration is an ill-posed inverse problem. ments to idealized SOIL.m.O ns cannot be constructed_ stra|_ghtfor-
That is, a unique solution may not exist and/or solun wardly. In each case it is necessary to aqlopt an iterative ap-
may not continuously depend on the data. In solving such proagh that will converge to the true image. When this
algorithm should be applied and how many iterations should

problems it is essential to hawaepriori information about the ) ‘ -
ideal solution. Every image restoration algorithm is based on P€ attémpted can only be decided on the basis of practical
computational experiments.
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Fig. 1 Motion of lung idealized as linear actuator/piston of area A, 1 ! L]
. . . . -] - - 20 30 40 50 cm Water
with spring and viscous resistance effects (after Ref. 2). Transmural Prossure

Fig. 2 Variation of lung volume with the transmural (differential) pres-
sure between the alveolar and pleural compartments (L), and the pleu-

2 Lung Motion Description (rzfltg)rggar;rjent and the atmosphere (W) for a normal healthy human

There are two options to obtain the function of lung motion,
by experiment and measurement, or by appropriate simula-
tions based on lung motion. Our research results were com-
pared with computer simulation packages aimed at develop-
ing the model of the human respiratory system, such(@s:
BATHfp;>2 and (b) ACSL simulation?

human. The gradients of these graphs are proportional to com-
pliance of the lung or chest wall and the reciprocals are the
respective elastances

f(V)=A(P)/A(V)), 2
2.1 Model of the Lung®? wheref (V) is the variation in lung elastana (P,)/A(V,))

When defining lungs motion for medical image restoration, With the lung volumeV, .

one needs to consider random motion caused by patient Stiffness is defined as the ratio of the rate of Change of
movement and ordinary motion caused by heart beats andforce with respect to displacememn(F,)/A(X). This is re-
respiration. We focused only on ordinary motion. The concept lated to elastanca (P)/A(V,) by

of a moving piston forms the basis for models of the motion
and gas flow processes associated with the lungs. The opera-
tion of the lung is idealized as a linear piston of aka
(Figure 1 with spring and viscous resistance effects. The
model deals with the following effects(l) stiffness (or
elastancgof the lung and surrounding tissu@) variation in
lung elastance(3) alveolar pressure4) rate of change of
alveolar lung pressurgb) transpulmonary pressuré) lung 2.2 Functional Residual Capacity (FRC)*?

dimension,(7) lung area,8) mass of 'U”9(9) fractiorjal dead The FRC is the lung volume in the rest position, when the
vqu_me,(lO) total Iung_ capacity(11) functional res_ldual ca- spring force due to the lungacting on the pleural compart-
pacity (FRO), (12) residual volume(13) acceleration,(14) men) is exactly balanced by the chest wall force. The lung

velocity and displacement of the lung wallL5) air density, Il displ k. at ERC(V.) is gi b
(16) orientation of the humar(17) Coulomb friction(hyster- wall displacement; & (V1) is given by

A(F)  AZ-A(P)
A AV

whereA is the area which is affected by the pressure in the
lung.

(©)

stiffness=

esi9, and(18) viscous friction thoracic force. .=V /A (4)
The transpulmonary pressure, the pressure difference R
across the lung, is given by: At this condition, when balance between the forces occurs,

alveolar pressure is equal to atmospheric pressure, and air
flow from lungs is zero. At FRC, the interpleural press(ire

P1=Pa~Po, @ the pleural compartmenP , is subatmospheritwith a typi-
whereP,, represents the alveolar pressure &gintrapleural cal value taken as-5 cm water. _ _
pressure, which exists inside the pleura and acts on the lung A more detailed description of the lung motion, which

wall. starts by defining the displacement in steady state and in the
The stiffness(or elastance k (inverse of compliandeof absence of Coulomb fictional resistarids,presented in Refs.
the lung and chest wall system consists of two distinct com- 2 @nd 3. Typical values for mass of a lung are used kg
ponents, lung stiffnesk,, and surrounding tissue, i.e., rib- P€ing typical for a normal male. _ o
cage, diaphragm, and pleural compartment stiffnkss The lung is regarded as a control vqu_Mpm_to which air
Moreover, stiffness varies considerably over the working flows (Q) during exhalation and from which air flows during
range of the lung, from the residual volume to total lung ca- inhalation. The volume is detern_uned from the_ dls_placement
pacity. Figure 2 shows the variation of lung volume with the ©Of the lung. The net flow of gas into the lungs is given by
transmural(differential) pressure between the alveolar and
pleural compartmentémarkedL), and the pleural compart- Q=p-A d_x (5)
ment and the atmosphefenarkedW) for a normal healthy AN TS
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balloon, and the lower region of the lung moves like the lower
half of the balloon. This assumption simplifies the image res-
toration results. The additional segmentation process we de-
veloped is based on the stiffness of the lung. We chose to
slice every region, where each slice is of different width
(which will be used later in the OT)Faccording to the model

of the motion of the lung. That way of handling the movement
in the image reduced the distortions caused by the restoration
process.

It should be mentioned that the edge of the lung, the lung
wall, is not a perfectly smooth curve, so we had to use image
processing algorithms to find the edges of the lungs in the
image to prevent image processing of the background.

Z;gc.h?.; Lung segmentation of left and right lungs with three segments 4 Image Motion OTE
There are two methods presented to calculate MTF for any
type of motion, including random motion that cannot be char-

wherep is air density,A, is lung area, and is the displace- acterized by any unique MT¥ One is based on calculation

ment of the lung wall. in the spatial frequency domafriThe second is based on cal-
The rate of change of alveolar lung pressure is given by culation carried out in the spatial domain and yields actual
OTF. The latter method is much faster so it is more suitable
dP, (nR d(V3—V|—V02+ Vcoz) for practical systems that work in real time. In addition, the
WZ( V|T) : dt ) (6) phase transfer fu.nctlon Is also obtairted/e useq the seconq
method. All that is required for both methods is the function
where for airn is the polytropic indexR is the gas constant,  of relative image motion.
T is the temperature, and02 andvco2 are, respectively, oxy-

gen flow into carbon dioxide flow from the pulmonary blood. 4.1 Spatial Frequency Domain (MTF)

The spatial frequency domain metfiod based on the as-
3 Lung Segmentation sumption of an object with a sinusoidal luminance pattern:

3.1 Lobar Anatomy?®

) ) _ i(x)=Bg+Bpcog27fx), (7)
The lobar architecture of the right lung includes three lobes: _ ) ] ] )
(1) right upper lobe(RUL), (2) right middle lobe, and3) wheref is spatial frequencyx(t) is the motion function for
right lower lobe. The RUL occupies the upper 1/3 of the right Spatial coordinate, andB, andBy, are constants.
lung. The lobar architecture of the left lung is slightly differ- To determine the modulation of the intensity pattern of the

ent from the right. Because there is no defined left minor image it is necessary to know the relative motioft) be-
fissure, there are Oniy two lobes on the |ém left upper and tween the camera and the ObJeCt. When this motion is known

(2) left lower lobes. analytically, the MTF also can be obtained analytically, as in
In general, fissures are not readily identifiable on plain the cases of linear motion, high-frequency vibration, or para-
films, with only small portions typically visualized at best. bolic motion. For other cases when the exact analytic function
This is because fissures, which are composed of only two X(t) is not available, it is necessary to expand this method to
|ayers of visceral pieura’ may not present a Significant radio- numerical calculation. This method works with discrete pOintS
graphic interface and will not produce a shadow. However, if Of image motion instead of the mathematical function. The
there is fluid within the pleural space or if the visceral pleura MTF is calculated for each spatial frequency separately and is
is thickened, fissures may be seen in their entirety. Neither theobtained by measuring the modulation contrast function over
major nor minor fissures are definitively demonstrated on CT. & multitude of closely spaced spatial frequencies.
In fact, because of the axial orientation of the right minor
fissure, exact delineation of the border between the right 4.2 Spatial Domain (LSF)

middle and upper lobes is almost impossible on CT. In this section, the LSF derived from image motion transverse
. . to the optical axis is obtain€dThe MTF is derived as the
3.2 Image Processing Segmentation modulus of the OTF or Fourier transform of the LSF, and the

One way of handling the movement in a medical image of the PTF is derived as the phase of the OTF.
dynamic lung, is by decomposing the image into several im-  Let x(t) be the relative displacement between the object
ages(segments We chose to decompose the lung image into and sensor beginning at tinig and ending at timeg_, 1, in
three segments according to the lobar anatomy and a compariwhich tg is measured from the instant the sensor is first ex-
son of the lung to a balloon as seen in the model of the lung. posed. The LSF of the motion is the PDF or the histogram of
The three segments argl) the upper region(2) the middle X(t). The intuitive explanation for this determination is the
region, and(3) the lower regionFigure 3. following. Image motion causes the system line spread image
We assumed that the upper region moves like the upperresponse to move spatially. These displacements are inte-
half of a balloon, the middle region moves like a cylindrical grated during the exposure. Such motion can be described by
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Fig. 4 Similarity between sin(wf) and 3/sin(w!).

a histogram of the LSF, in which frequency of occurrence of
a given portionx(t) is depicted as a function of during the
time interval (ts, ts+t.). This histogram is the LSF itself.
The quantitytg is a random variable representing initial expo-
sure time and is uniformly distributed according fgt)
=1/lte.

By decomposing the relative displacement imtanono-
tonic parts existing in one exposure tirg that is,

ti ottty =1, (8)
the PDF is shown to be of the form
1 1
fx(x)zft(t)'[mf.ﬁmf.l
1 1 1
=E' X’(t1)+”'+ X’(tn)+”' ,
(ts<t<tstty), (dnin<X<dmay, 9)

wherex’(t) is the derivative of(t) andf,(x) is the PDF.
The lower and the upper limits, respectively, foare the

motion (t.=T,). The LSF for this motion is given by the
histogram of the sine function over one period. The exact
calculation appears in Ref. 1, and the result is

LSFye=1[ =(D>—x%)"], (12)

whereD is the maximum vibration amplitude. The MTF for
this case is given by the Fourier transform of Etjl):

|x|<D,

M(f)=Jo(27D), (12)

whereJ, is the zero-order Bessel function. The PTF for the
ideal case is equal to zero because the LSF is an even func-
tion. It is important to mention that the result in this case
remains the same fag>T,. The blur radius is still the peak-
to-peak displacementi®as long ag.=T,.

2. Low-frequency Vibration in which the exposure pe-
riod is short compared to the vibration perigd<<T,). Quan-
tification of the low-frequency vibrational image blur radiis
is much more complicated, however, because it depends on
the initial phase of the oscillatory motion as well as on the
instant and duration of the time exposure, both of which are
often random processes. The influence of the MTF degrada-

results of the minimum and maximum displacement between tion is much more severe than that of the PTF; therefore, the

the object and sensor. The P&+ histogram f,(X) repre-
sents the LSF. The LSF is equal tg(x) and the OTF is the
one-dimensionallD) Fourier transform of the LSF:

OTF(f):f f (x)e 127Xdx, (10)
wheref is spatial frequency.

Thus, LSF for image motion can be determined from a
histogram of the motion, and the resulting OTF for such mo-
tion is given by Eq.(10).

4.3 Image Degradation by Sinusoidal Vibration

Sinusoidal vibration is a very critical factor in dynamic imag-
ing systems. The sinusoidal motion can be prevented in prin-
ciple by proper design; in practice, however, it is often the

following discussion concentrates only on the MTF.

4.4 Degradation Process of High Frequency
Vibration

For the case of high-frequency vibration, for sinusoidal move-
ment, the amplitude of the vibration is peak-to-peak displace-
mentd=2D. In this case, the MTF is the well-known zero-
order Bessel functionJo(27fD). The first zero of this
function occurs af,,,=0.76554. The width of the MTF is
smaller than in the cases of linear motion or acceleration mo-
tion, so most degradation occurs in the case of high-frequency
vibration. These results are obtained for any constant blur
radius. However, they are not valid for constant time
exposuré-

In the case of lung image restoration, we should notice that
the lungs volume changes sinusoiddllyut the displacement

most serious image motion. Degradation of image quality as ain one direction is the third root of the volunim a spherg

result of sinusoidal motidfi depends on the ratio of exposure
time t, to the period of the sinusoidal motidn,. In this case,
it is necessary to distinguish between two categories.

1. High-frequency Vibration in which the exposure pe-
riod is long compared to the period of the simple harmonic
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and the square root of the volunfim a cylinde). It means

that we had to find the OTF for those functions. In practice,
we decided to use the zero-order Bessel function, because of
the similarity until the first zero as can be seen in Figure 4. In
our experiment, described in Sec. 5, the assumption of using
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Nucloar bmaging of Tong vohame caparity rgstorgtlon, because pf thg prolonged exposure time, we deal
Dynamic Lungs measurements with high-frequency vibration, so we need only the amplitude

and may ignore the frequency. We can derive the amplitude
from the volume capacity signals, and this is one way to ob-
Image Segmentation o o o Wiener tain the amplitude parameter for the OTF formed by zero-
e order Bessel functiod.

To simplify the restoration process we divided the image
Fig. 5 Block diagram of imaging system and restoration. into three segments, assuming that the upper segment has the
shape of a dome, the middle segment has a shape similar to a
cylinder, and the lower segment has an upside dome shape.
Each segment was restored separately, the upper and the
lower segments were restored by using the radial MTF, and
the middle part was restored using the MTF alongxfaady
. .. axis. The restoration process described above, deals only with
5 Experimental Description and Results the lung image that was extracted from the surrounding back-
We divided the experiment into four stagé$} generation of ground.
signals of lung volume capacity in respiration assisted by  The following are recommended camera parameter set-
BREEZE software combined with the lung ventilation medical tings (400 mm field of view for Xenon-33:(1) acquisition—
system,2) dynamic scan lung ventilation nuclear images, and dynamic,(2) pharmaceutical—xenon-133 g48) energy—78
signals of lungs, generated by the “Elscint APEXView keV, (4) frame size—6%64, (5) zoom—1.
V4.00A” medical systems(3) image segmentation, ar(d) Figure 3 shows an example of lung segmentation, in which
image restoration using motion OTBee Figure b the generated image is decomposed into three segments.

The experimental stages are based on the simulation re-

sults, which are given in the literatufe® The results and the 5.2 Image Restoration Using Wiener Filter Based on

conclusions in Refs. 26, are similar to the actual results for High-frequency Vibration OTF

Ways better 1o use actual deplacement measurements b EXPOSUIe time for generating an image is vry (s

tained from a sensor attached to the patients’ body instead ofanOI even mope Since t_h|s is much longer than the breathl_ng

motion estimation tools. Usually, estimation results are used cycle, it was appropngte 0 .choose .OTF basgd on .hlgh'
’ ' . frequency vibration. This was inserted into the Wiener filter

when there are no actually measured data. However in our

case the medical sy*_stem produced the spe_cific characteriza- Wiener=OTF*/(|OTR?+1/SNR), (13)

tion of the organ motion. On the other hand, if measurements

could not be acquired in parallel to the image scan, it is rec- where the signal-to-noise rati@NR) is a constant estimated

ommended that you use an average signal based on severatalue, and the OTF is the zero-order Bessel funcfi&q.

Displacement Calculation

OTF based on high frequency vibration is correct, especially
for prolonged exposure time of 300 s which is much longer
than the breathing vibrational cycle.

measurements 3 (12)] limited to f,,,,=0.76554. We obtain the displacement
D(D=d/2) by calculations or measurements. The medical
5.1 Generated Signals Images and Segmentation image system finds the displacement in real time through the

With BREEZE software combined with the lung ventilation imaging process. Two options for calculations &tgto de-
medical system, we measured the volume capacity versusfive the displacement from the measured volume of the lungs
time lung ventilation signals. One sample is shown in Figure Of (2) to scan the logarithm of the fast Fourier transform of
6. It is clear that the ventilation signals are essentially sinu- the original vector where zero points occur. The displacement
soidal, as suggested in respiratory physiology literatttdt D is the displacement between two zet6s>

can be seen that there is a visual decline in the signal, which

is due to the measurement system. However, we succeeded if-3 Results

correcting this problem by subtraction of the linear dc slope. The following figures show the restored images using a
We can see that the volume amplitude varies over a range ofwiener filter based on the zero-order Bessel function MTF
about 2 L. This point is very important in calculating the and the numerical MTF derived from the actual motion ob-
displacement of the lung walbee Sec. 44 For lung image  tained from the motion sensor. Notice we deal only with the
object close to the edges. The image size iSXI P33 pixels.
Calculations indicate a blur of 4-5 pixels. As presented in
Figures 7 and 8, the energy of the radiation is spread around
the center of the lung. We should remember that we deal with
images generated by isotopic radiation, and the image is being
shown as energy levels of radiation. Consequently, we expect
to focus all the spread energy into the center of the image
where most of the radiation is.

Figures 7al) and 8al) present the original images of the
left and right lungs followed by the restored image using the
0 Time 12 zero Bessel function as the MT[Figures Tb1) and &b1l)],
and the restored images from the numerical MFgures
Fig. 6 Measured signal of respiration. 7(cl) and &cl)]. Figures Ta2), 7(b2), 7(c2), 8(a2), 8(b2), and

e~
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(@2) (b2) (2)
(a2) (2) (c2) Fig. 8 Sample of image restoration of dynamic right lung; (a1) original
. ] ) ] o image, (b1) restored image using the zero Bessel function as the MTF,
Fig. 7 Sample of image restoration of dynamic left lung; (a1) original (c1) restored image using the numerical MTF, (a2) edge pattern of (a1),
image, (b1) restored image using the zero Bessel function as the MTF, (b2) edge pattern of (b1), and (c2) edge pattern of (c1).

(c1) restored image using the numerical MTF, (a2) edge pattern of (a1),
(b2) edge pattern of (b1), and (c2) edge pattern of (c1).

The better the restoration of the hardware, the greater the
number of pixels affected by motion blur. The techniques

described herfé can be expected to be even more useful as
%hardware imaging technology improves to yield images with

larger numbers of pixels.

8(c2) represent the edges of the original and the restored im-
ages, respectively. The edges of the medical image have
significant rule in helping us recognize defects in the investi-
gated organ. In a normal lung the blood reaches all the blood
vessels in the organ. Consequently, the radiative material car- .
ried by the blood is radiated approximately uniformly from © Conclusions

the whole organ. As a result, the obtained image has a con-Using motion OTF for medical image restoration of dynamic
tinuous shapéas presented in Figures 7 and ®n the other organs is a way to improve the quality of the image, and a
hand, in a lung with a defect the blood cannot reach all the way to simplify the diagnosis for doctors. We suggest a new
blood vessels. As a result, the obtained image may have whitemethod, which permits considering the motion in several di-
spots close to the edges and/or brighter gray level spots in therections simultaneously. If we know the motion parameters,
inner boundary(proximal part$ of the lung, representing the  we can easily find the appropriate OTF for the image restora-
defected areas. In Figuregby, 7(c), 8(b), and &c) the resto- tion. Otherwise, we can scan and look for the right parameters
ration results seem less successful in the inner boundary of theby relying on the object motion model. For the latter, it is still
lung, where all the energy of the radiation is concentrated. It a prolonged proceggabout 3 min. In this experiment we used

is important to clarify that the success in blur restoration is the 64X64 pixel images. It is difficult to improve such an image
same in the whole organ. Despite the visual evidence of suc-noticeably with a short vector, less than 30 pixels, because the
cess in edge restoration only, there is a chance to see goodlur is no more than 2—3 pixels. Nevertheless, in Figure 7 the
restoration results in cases with inner boundary def@stsas restoration process noticeably improves restoration of the
with different gray level spols The enhanced edges in the lung center area. As hardware technology improves, motion
restored images emphasize the defect area in the lung. Thereblur should affect a greater number of pixels, and the tech-
fore, it is very important to obtain a very sharp image with nique described here should be even more useful, as they
enhanced edges. The benefits of our method and the suggestealready have shown to be for nonmedical imadifig.

algorithm are improvement of the imaging system and conse-  Another aspect is the definition of image quality. In
quently of the medical images generated, reduction in the searching for the right parameters, we must instruct the image
need for other medical systems, and assistance to doctors irprocessing system as to which image is best. The use must be
making better diagnoses and decisions. Clinical interpreta- qualified and trained to choose the best image restoration. In
tions also become more objective and more sensitive to ven-the future it may be possible, assisted by detection and iden-
tilation dysfunction since there are no longer variations in tification systems, to choose the best result. Meanwhile, we
regional lung volume and image intensity, which tend to re- can implement our restoration algorithm in real time, using
duce the accuracy of visual estimates or regional ventilation. medical systems that measure all the needed parameters, such
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as the motion amplitude, and combine the image processing
algorithm with the image processing software in the system.
In isotopic medical images, there is limited medical infor-
mation for diagnosis. Doctors still have to be assisted by other g
medical systems. Quantitative analysis overcomes problems
of visual image interpretation caused by differences in re- 6.
gional lung volume or tracer equilibration. The benefits of our
method and the suggested algorithm are in improving the im-
aging system and consequently the medical images generated,
reducing the need for other medical systems, and assisting the g
doctors to make better diagnoses and decisions. Clinical inter-
pretations also become more objective and more sensitive to 9.
ventilation dysfunction since there are no longer variations in
regional lung volume and image intensity, which tend to re-
duce the accuracy of visual estimates of regional ventilation.
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