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Abstract. Optical Doppler tomography is a valuable functional exten-
sion of optical coherence tomography (OCT) that can be used to
study subsurface blood flows of biological tissues. We propose a
novel frequency estimation technique that uses an adaptive notch fil-
ter (ANF) to track the depth-resolved Doppler frequency. This new
technique is a minimal-parameter filter and works in the time domain
without the need of Fourier transformation. Therefore, the algorithm
has a computationally efficient structure that may be well suited for
implementation in real-time ODT systems. Our simulations and imag-
ing results also demonstrate that this filter has good performance in
terms of noise robustness and estimation accuracy compared with

existing estimation algorithms. © 2007 Society of Photo-Optical Instrumentation
Engineers. [DOI: 10.1117/1.2710240]
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1 Introduction

Optical coherence tomography (OCT) is a high resolution im-
aging technique.'™ With more than a decade of development,
it has proven to be a useful imaging modality for many bio-
logical applications. Doppler OCT (DOCT) or optical Dop-
pler tomography (ODT)*” is a functional extension of OCT
with great potential to explore subsurface blood flow informa-
tion. ODT estimates the depth-resolved frequency or phase
changes in addition to the backscattering intensity from OCT
raw data. The development of suitable estimation algorithms
is therefore a key issue. The most straightforward approach is
to use the short-time Fourier transform (STFT) to find the
spectral centroid in successive time windows.*”" Extensions
of STFT include adaptive centroid® and weighted centroid
methods.” The sliding-window filter technique implements a
moving digital filter bank in the time domain instead of the
Fourier transform to estimate the local spectral maximum.”"’
Our previous studies have shown advantages of a sliding-
window filter technique, such as improved noise robustness
compared with several other techniques. While these tech-
niques have been found to be effective for ODT signal pro-
cessing, the use of a finite time window to localize the fre-
quency results in coupled frequency sensitivity and spatial
resolution. For example, a longer time window enhances the
frequency sensitivity at the expense of reduced spatial resolu-
tion. These algorithms are also unable to achieve simulta-
neous fine velocity sensitivity and fast frame rate, both of
which are important in biomedical applications.

Chen et al."' and Zhao et al.'* have pioneered a phase-
resolved technique, which utilizes the analytic continuation of
the OCT coherence function to obtain the phase term via the
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Hilbert transform. This technique can be readily applied to a
single A-line, successive A-lines, or A-lines obtained from
successive frames. One disadvantage of this technique is the
intensive computational cost. For example, a digital Hilbert
transform in Matlab involves fast Fourier transform (FFT) and
inverse FFT operations. Several groups have implemented the
algorithm with additional hardware, such as dual processors, a
quadrature detector, or an optical Hilbert transformer to
achieve real-time and multifunctional imaging.'*'® Another
typical frequency estimation method is the correlation tech-
nique, which is well established in ultrasound and can be
implemented in hardware for fast processing.'’ It has been
successfully applied in OCT to estimate Doppler shifts in real
time.'™'? Both phase-resolved and correlation techniques are
very sensitive to noise because of the use of adjacent phase
changes.

In this work, the Doppler frequency estimation problem is
treated from a different approach. Time-domain OCT hetero-
dyned signals can be modeled as data series with a single
time-variant central frequency, similar to some signal models
in radar, sonar, and communication systems. In these systems,
the frequency-tracking filters have been designed to estimate
central frequencies based on an adaptive filter theory.20 We
introduce the use of an infinite impulse response (IIR) adap-
tive notch filter (ANF) to track the Doppler frequency.”'
This filter has a compact computation structure amenable to
real-time processing. In the following, we introduce the math-
ematics of the filter and discuss its performance in a quanti-
tative view by an A-line simulation model. Images of an in-
tralipid conduit and an in-vivo skin sample are also presented.
The results using the ANF are compared to those of several
established algorithms. Both simulations and sample data
demonstrate that the ANF is a very effective frequency esti-
mator for OCT signals.
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Fig. 1 (a) The frequency response of the IIR notch filter [Eq. (2)] with two sets of b and « values. (b) The adaptive notch filter diagram. BPF stands
for band-pass filter. Upper branch is the ANF for Doppler frequency estimation. The lower branch is a dynamic bandpass filter for OCT.

2 Theory

A notch filter is a filter that contains one or more deep notches
or nulls in its frequency response characteristic. It can remove
certain frequency components from the input signal. A pair
of complex-conjugate zeros on the unit circle at zj,
=exp(xjwp) can create a null at frequency w, with the system
function given as:

Hy(z) =[1 —exp(jwp)z ' I[1 - exp(= jwg)z ' 1=1+bz" +272,

(1)
where b=-2 cos(wy). This finite impulse response (FIR) filter
has an asymmetric response at the null frequency and the
bandwidth is relatively large, so a pair of complex-conjugate
poles at py ,=a-exp(+jw,) is added in the vicinity of the null
and introduces a resonance to adjust the shape and bandwidth
of the notch. The system response becomes:

[1 - exp(jwg)z”'I[1 - exp(=jwp)z"']
[1-a-exp(jog)z' 1 - a-exp(=jwg)z']

1+bz ' +2772

H(z) =

=5 5. 2

1+ abz '+ a?z2 @)
This notch filter has a more symmetric filter band and nar-
rower bandwidth, provided that « is less than but close to 1;
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the closer « is to 1, the narrower the bandwidth becomes. In
the meantime, the notch center is uniquely decided by b. An
example of the filter frequency response is shown in Fig. 1(a).
If an input signal x(n) with a narrow bandwidth is filtered by
this notch filter, the power of the filtered data is at the mini-
mum when the null frequency is located at the central fre-
quency of x(n). Now, via adaptive signal processing
techniques,zo’24 the frequency parameter b can be adapted to
the central frequency of x(n) by minimizing the cost function
of

J(n)=y(n)?, (3)

where y(n) is the filter output of x(n), given as:

y(n) == ab(n)y(n-1) - a?y(n - 2) + x(n) + b(n)x(n - 1)
4)

+x(n-2).

The steepest descent method”*** is used to form the adaptive
structure of the filter. When there is a small shift between the
notch center and the actual signal frequency, a sensitive gra-
dient dJ(n—1)/db will be generated to track the notch center
b back to the target frequency with a step size parameter u,
such that
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b(n)=b(n—l)—Ab:b(n_l)_M%. 5)

With Egs. (3)-(5), we obtain

b(n)=b(n-1) - py(n-Dlx(n-2) —ay(n-2)]. (6)

Finally, the central angular frequency wy(n)=arccos
[=b(n)/2] can be retrieved to construct the ODT image. The
filter block diagram is shown in Fig. 1(b). The upper branch is
the ANF diagram for ODT signal processing. In OCT, the
Doppler spectrum is broadened because of the flow. The
lower branch in Fig. 1(b) forms an adaptive digital bandpass
filter. It always adapts to the central frequency, and its band-
width can be much narrower than the fixed bandwidth of an
analog filter to accommodate the flow information. Therefore,
the noise level can be reduced to improve OCT intensity im-
ages. We can also see from Egs. (3)-(6) that besides the en-
folded adaptive filter theory, the final filter structure turned
out to be quite simple. In fact, the ANF is a computationally
efficient frequency estimator.

3 Methods

Mathematically, the estimation precision of an estimator can
be evaluated via the Cramer-Rao lower bound (CRLB).
Yazdanfar et al.”® have discussed the use of the CRLB for the
frequency estimation problem in ODT, and pointed out that
the estimated frequency precision could surpass the Fourier
limit f,;,=1/¢ barrier and achieve the lower bound. As a
well-developed method, the estimation accuracy of the ANF
estimator has been systematically studied in Ref. 22 (station-
ary frequency case) and Ref. 23 (nonstationary frequency
case) in detail using the CRLB. These studies showed that the
ANF, as a prediction error method, is a nearly optimal esti-
mator with a mean square error close to the CRLB. Besides
the use of established mathematical approaches for estimator
evaluation, we also implement a sinusoid-in-noise model to
assess quantitatively the estimation performance of the ANF,
such as estimation accuracy and processing speed The signal
model is given as:

s(t) = A(t)cos[ wyt + d(1)] + W(1), (7)

where A(t) is the envelope of the OCT raw data, W(z) is the
additive white noise, w, is the carrier frequency, and () is
the term arising from Doppler shifts. A(z) is set to be a con-
stant. The variation of signal-to-noise ratio (SNR) effectively
changes this amplitude term when different levels of additive
Gaussian noise are used to test the noise robustness of the
ANF. Although the sinusoidal model does not comprise all
OCT signal properties such as the bandwidth, it has been
widely used as a mathematical model for the OCT heterodyne
signal in the literature.'"*> The method to generate the simu-
lated data in this work is similar to that used in Ref. 11, except
that a parabolic frequency profile instead of a Gaussian profile
was used. In Eq. (7), ¢(z) is given by:
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(8)

as
a

where w, is the maximum Doppler shift occurring at time 7.
This formula is used to simulate the laminar flow scenario of
a fluid conduit to be shown later. Other signal parameters in
the simulations such as the carrier frequency and the maxi-
mum Doppler shift are also selected according to our laminar
flow signal. Six other established algorithms (centroid,
weighted centroid, adaptive centroid, sliding-window filter,
phase-resolved, and correlation) were processed for compari-
son. For the algorithms that involve a short-time window, we
used a uniform 32-pixel dataset. This is the setting for equal
spatial-resolution and frequency-resolution conditions among
these algorithms. The particular parameters used in different
algorithms were optimized for estimation accuracy rather than
computation speed. For example, the number of filtering
banks used in the sliding-window filter algorithm is 80, with
which the estimation is already within the process accuracy.
The frequency profile was estimated from the linear fitting of
the local slopes of the phase function in the phase-resolved
algorithm. The correlation algorithm used in this work com-
puted the phase difference of a 32-point autocorrelation func-
tion R(7) with one-pixel lag between R(0) and R(1).

To verify the imaging quality using the ANF technique,
ODT image data were acquired from a fiber-based OCT sys-
tem developed earlier,'” where two galvanometers were syn-
chronized for depth and lateral scan. The wavelength was
1.3 um with an axial resolution of about 16 um. The 0.5%
intralipid solution was pumped into a circular conduit by a
peristaltic pump and the pulsatile fluid flow was imaged. The
glass conduit had a 1.0-mm inner diameter and 1.2-mm outer
diameter. The carrier frequency of the flow images was
60 kHz. The incident angle was 80 deg and the maximum
flow speed was about 50 mm/sec, corresponding to 14-kHz
maximum Doppler shift. The pulsatile flow data were pro-
cessed with the seven algorithms. The cross sectional ODT
images were also obtained from a female volunteer who had a
spot of an aggregated blood vessel on the subepidermal area
of her hand. The sample-arm grin lens was placed perpendicu-
larly to the skin surface and laterally scanned.

4 Results

With the simulation model described in Egs. (7) and (8), the
estimated frequency profiles (dotted line) and actual fre-
quency profiles (solid line) are plotted together for the seven
algorithms using two SNR levels. In Fig. 2, where the SNR is
5 dB, the centroid algorithm gives a noisy and underestimated
frequency profile. The weighted centroid, adaptive centroid,
and sliding-window filter algorithms emphasize the central
frequency and result in improved estimation accuracy. The
estimation of phase-resolved and correlation algorithms is
very noisy at this SNR level. The ANF and sliding-window
algorithms are the most noise robust and provide the accurate
frequency estimation profile. The CRLB analysis we dis-
cussed gives a mathematical evaluation of the ANF perfor-
mance. Besides this, we can use a simple picture to explain
the noise robustness of this filter: during the adaptive process,
the response of the ANF to additive noise is like an additional
“random walk” around the tracked frequency signal. The am-
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Fig. 2 Estimated laminar flow profile (dotted line) and actual flow profile (solid line) of seven algorithms with SNR=5 dB: (a) centroid, (b) weighted
centroid, (c) adaptive centroid, (d) sliding-window filter, (e) phase resolved, (f) correlation algorithm, and (g) ANF.
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Fig. 3 Estimated laminar flow profile (dotted line) and actual flow profile (solid line) of seven algorithms with SNR=20 dB: (a) centroid, (b)
weighted centroid, (c) adaptive centroid, (d) sliding-window filter, (e) phase resolved, (f) correlation algorithm, and (g) ANF.
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Fig. 4 The estimation error (RME) of seven algorithms versus signal-
to-noise ratio. The ANF algorithm has the best estimation accuracy
when SNR is below 17 dB.

plitude of the random walk is regulated by the small step-size
parameter w and will not be very large in each adaptive step.
In Fig. 3, where SNR is 25 dB, all seven algorithms show
consistent increase in estimation accuracy. A notable change
at this low noise level is the improved performance of phase-
resolved and correlation techniques. ANF again provides the
smooth and unbiased estimate of the parabolic frequency pro-
file. To give a quantitative comparison, the estimation errors
of seven algorithms with different SNR levels are plotted in
Fig. 4. The root mean square error (RMSE) between the esti-
mated and actual parabolic frequency of the 1024-point A-line
is calculated to assess the overall estimation accuracy. As we
can see, the ANF achieves the best performance among all
algorithms at SNR <17 dB. The sliding-window filter algo-
rithm also shows favorable estimation accuracy at low SNR.
In fact, the two algorithms have many similarities, because
both of them use a filter approach in estimating Doppler fre-
quency. The sliding-window filter uses a narrow sliding band-
pass filter, while ANF uses a narrow tracking notch filter.
However, the sliding-window filter needs to search and com-
pare the signal power with a number of filtering operations in
a data window to obtain each frequency estimate. The se-
lected number of filtering operations gives a tradeoff between
estimation accuracy and computation cost. On the other hand,
the ANF continuously and adaptively locates the signal fre-
quency at each estimate with only one simple filtering pro-
cess. Therefore, the ANF has an overall better performance
than the sliding-window filter technique. Only the phase-
resolved and correlation algorithms surpass the ANF in esti-
mation accuracy at high SNR. A real OCT signal, however,

does not always possess such high SNR, especially for a
deeper target. The phase-resolved and correlation algorithms
give also poor estimation accuracy at low SNR, which sug-
gests that these algorithms are more sensitive to noise.

The signal processing is performed on a Pentium 4 proces-
sor in Matlab. The computational cost for 100 A-lines (1024-
point/A-line) for each algorithm is listed in Table 1. The ANF
has the fastest processing speed among all seven algorithms.
This can be attributed to two reasons. First, the ANF is a
time-domain filter with only real computations. Most other
algorithms listed in the table involve more intensive compu-
tations due to the Fourier transform. The sliding-window filter
method does not require Fourier transform; however, it is
computationally intensive with a large number of filtering cal-
culations. Second, this IIR notch filter is a minimal-parameter
filter, i.e., only a bandwidth parameter a and a notch fre-
quency parameter b are used in the filter structure. When us-
ing a transposed (direct form II) IR realization, the ANF
takes only five real additions, five real multiplications, plus an
arcos(—b/2) operation for one frequency data, while the cen-
troid algorithm (second fastest in the table) needs 32 log, 32
complex multiplications and additions for FFT, followed by
the centroid calculations. In fact, the computation time in
Table 1 is still not the actual CPU consumption on these al-
gorithms under equal conditions. The processing of FFT-
related algorithms is optimized because of the built-in FFT
function in Matlab, but the ANF does not need this advantage,
as it requires only simple calculations. The computational
simplicity and efficiency of the ANF algorithm will be more
apparent in real-time ODT systemsm’ls’18 where all the algo-
rithms are implemented in “C” or a digital signal processor
(DSP) instead of in Matlab.

The images of intralipid flow experiments are shown in
Figs. 5(a)-5(g), which correspond to the centroid, weighted
centroid, adaptive centroid, sliding-window filter, phase-
resolved, correlation, and ANF algorithms, respectively. The
time interval between adjacent A-lines at the same depth was
1/128 s with a spatial distance of about 10 um. The maxi-
mum flow speed was about 50 mm/s. Because of the phase
wrapping and weak cross correlation between adjacent
A-lines, the phase-resolved and correlation techniques were
processed on a single A-line only, and no cross-correlation
was applied. The imaging target was diluted intralipid without
strong backscattering. The average SNR was approximately a
few decibels, which was close to the lower side in our simu-
lation shown in Fig. 4. The vertical color strips appearing in
the image are due to the coupling of the pulsatile flow with
the lateral scan. All images were obtained with no additional
threshold or averaging operation. The images from centroid
and sliding-window filter algorithms [Figs. 5(a)-5(d)] are
relatively smoother than the phase-resolved [Fig. 5(e)] and

Table 1 Process time (seconds) of seven algorithms using Matlab with a Pentium 4 desktop computer for

100 A-lines with 1024 data points.

Weighted  Adaptive Sliding- Phase-
Method  Centroid centroid centroid window filter  resolved  Correlation ~ ANF
Process 17 19 26 330 72 26 7
time (s)
Journal of Biomedical Optics 014018-6 January/February 2007 < Vol. 12(1)
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At the right side, the estimation error increases suddenly because ANF
starts to oscillate when u is too large. u works well in the middle
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correlation algorithms [Fig. 5(f)], which are more subjective
to noise. Many noise spikes are seen in Figs. 5(a)-5(f), par-
ticularly in the low SNR region outside the conduit circle. In
Fig. 5(g), the ANF produces the smoothest flow image with a
remarkable reduction of noise. The ANF also provides fine
spatial resolution and the fastest processing speed. Besides
these good properties, some meteorite-like tails can be ob-
served in the image. This is a unique feature from the ANF
technique. In fact, these tails occur only in the air region
outside the circular tube, where no OCT signal exists except a
small carrier frequency residual. In these regions (close to
white noise), the adaptivity of ANF is reduced. The line-shape
structure appears along the depth direction because the
tracked frequency at the last signal region is “memorized.”
Several methods can be used to avoid this effect. For ex-
ample, a noise threshold can remove these tails. In Fig. 6 the
structural and blood flow images are obtained from the sub-
epidermal area of a human hand. The flow area is highlighted
with a color map obtained from ANF and superimposed on
the grayscale structural image in Fig. 6(b), where two vessel
cluster spots with different flow directions can be identified.
For comparison, the color map obtained from FFT-based
weighted centroid is also given in Fig. 6(c). Frequency and
power thresholds were applied to select the flow region. This
in-vivo ODT flow image demonstrates the capability of the
ANF technique to estimate subsurface biological blood flows.

5 Discussion and Summary

The ANF is an IIR filter with a constrained structure: its poles
are always at a given radius (a) from the origin. Since in most
implementations « is not an adaptive quantity, this means that
stability of the filter is not an issue. However, ANF is a track-
ing algorithm, and as always with tracking algorithms there is
a tradeoff between the ability to track quickly and track accu-
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rately. The relevant tracking quantity is the bandwidth of the
tracking filter, and in the case of the ANF, this bandwidth
corresponds nicely to the bandwidth of the filter itself. That is,
when « is close to unity, the tracking accuracy is very fine,
but the ability to track quick changes is less; conversely, as
decreases to some more moderate value, the response im-
proves, but there is more estimation bias. It is a matter of
tuning. That said, there do exist methods from the adaptive
signal processing literature that can mitigate the issue: speed
is often enhanced by an update that involves the sign of the
error rather than the error itself (this is called the “normal-
ized” least mean square); and of course there are schemes that
involve a time-varying a. We have not explored these here. In
reported simulations and experiments, no significant differ-
ence in filter performance was found when the o was varied
between 0.75 and 0.95.

The step size u is the most important parameter; however,
the selection of the best value is somewhat ad-hoc. The opti-
mal step size is proportional to the signal intensity and related
to the velocity gradients. It is also affected by SNR. In gen-
eral, the magnitude of w imposes a tradeoff between the spa-
tial and frequency resolution. When the step size is too small,
the filter may not respond fast enough to adapt to a changing
frequency. When the step size is too large, noise could be
introduced. By further increasing the step size beyond a cer-
tain point, the ANF may fail to converge. Although some
methods such as low and high frequency limiters can be used
to prevent this, it has been demonstrated that stability is gen-
erally not a problem for ANF, provided that u is sufficiently
small.**** For the steepest descent method given in Eq. (5),
the actual adaptive frequency step Ab is determined by the
interplay of both the step size p and the gradient of the cost
function. When the notch center is not tuned to the desired
frequency but is sufficiently close to it, such that the signal is
appreciably attenuated, the convergence of ANF is proven to
be exponential.** The Doppler frequency of an ODT signal in
general varies smoothly and gradually. It is unlikely that the
frequency change between adjacent data points will cause the
notch filter to be tuned away from the signal bandwidth.
Therefore, the tracking process of ANF for ODT signals is
effective. In both simulation and experimentation, u works
well in a range of values without encountering stability prob-
lems. This can be seen from Fig. 7, where the root mean
square errors with different values of u are presented. Since a
small u reduces the process error, we can consider using
smaller u with a few iterations to improve the accuracy but
also keep the adaptive power. This improvement is, however,
limited by the noise level of the signal.

Among the algorithms we discussed, the centroid method
is perhaps the most simple and effective, with relatively fast
processing speed. The phase-resolved and correlation tech-
niques are more sensitive to noise. But they are capable of
achieving the highest flow sensitivity when calculation is per-
formed on sequential A-lines. The sliding-window filter tech-
nique has been found to have good estimation accuracy and
noise robustness. This technique does, however, require inten-
sive computation. Both the sliding-window filter and the ANF
technique are filter methods, but the ANF has a much more
efficient structure. Regarding frequency resolution or velocity
sensitivity, the ANF is quite good and it can be and has been
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compared to the phase locked loop. FFT-based methods are
limited to the fineness of the frequency-domain sampling un-
less interpolation is used. A greater issue is the effect of noise:
interpolated FFT methods can approach the CRLB for accu-
racy, but the performance of the ANF is not well understood.
Nevertheless, we have found that an ANF works reliably
down to 0-dB SNR for sinusoid signals. Note that the ANF is
applicable to the time-domain OCT, but may not be suitable
for Fourier domain OCT.

In conclusion, we present a novel and effective frequency
estimation technique suitable for ODT applications. Simula-
tion and experimental results demonstrate several excellent
properties of ANF such as high estimation accuracy, robust-
ness to noise, and fast signal processing speed.

Acknowledgments

The authors thank John Gamelin for his valuable comments
and suggestions for this work. This work was partially sup-
ported by National Health Institute (ROIEB002136)

References

1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson,
W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G.
Fujimoto, “Optical coherence tomography,” Science 254, 1178—1181
(1991).

2. Handbook of Optical Coherence Tomography, B. E. Bouma and G. J.
Tearney, Eds., Marcel Dekker, New York (2001).

3. A.F Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical
coherence tomography—principles and applications,” Opt. Lett.
66(2), 239-303 (2003).

4. X.J. Wang, T. E. Milner, and J. S. Nelson, “Characterization of
fluid-flow velocity by optical Doppler tomography,” Opt. Lett.
20(11), 1337-1339 (1995).

5. Z.P.Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler
tomographic imaging of fluid flow velocity in highly scattering me-
dia,” Opt. Lett. 22(1), 64-66 (1997).

6. Z.P.Chen, T. E. Milner, S. Srinivas, X. J. Wang, A. Malekaf-zali, M.
J. C. van Germert, and J. S. Nelson, “Noninvasive imaging of in vivo
blood flow velocity using optical Doppler tomography,” Opt. Lett.
22(14), 1119-1121 (1997).

7. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J.
Welch, “In vivo bidirectional color Doppler flow imaging of picoliter
blood volumes using optical coherence tomography,” Opt. Lett.
22(18), 1439-1441 (1997).

8. M. D. Kulkarni, T. G. van Leeuwen, S. Yazdanfar, A. J. Welch, and J.
A. Izatt, “Velocity-estimation accuracy and frame-rate limitations in
color Doppler optical coherence tomography,” Opt. Lert. 23(13),
1057-1059 (1998).

9. D. Piao, L. L. Otis, N. Datta, and Q. Zhu, “Quantitative assessment of

Journal of Biomedical Optics

10.

11.

14.

15.

19.

20.

21.

22.

23.

24.

25.

014018-9

flow velocity-estimation algorithms for optical Doppler tomography
imaging,” Appl. Opt. 41(29), 6118—6127 (2002).

S. Yan, D. Piao, Y. Chen, and Q. Zhu, “Digital signal processor-based
real-time optical Doppler tomography system,” J. Biomed. Opt. 9(3),
454-463 (2004).

Z. P. Chen, Y. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, and R.
D. Frostig, “Optical Doppler tomography,” IEEE J. Sel. Top. Quan-
tum Electron. 5(4), 1134-1141 (1999).

Y. Zhao, Z. P. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S.
Nelson, “Phase-resolved optical coherence tomography and optical
Doppler tomography for imaging blood flow in human skin with fast
scanning speed and high velocity sensitivity,” Opt. Lett. 25(2), 114—
116 (2000).

. B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Real-time

multifunctional optical coherence tomography,” Opt. Express 11(7),
782-793 (2003).

V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A.
Mok, B. C. Wilson, and I. A. Vitkin, “High speed, wide velocity
dynamic range Doppler optical coherence tomography (part I): sys-
tem design, signal processing, and performance,” Opt. Express 11(7),
794-809 (2003).

A. W. Schaefer, J. J. Reynolds, D. L. Marks, and S. A. Boppart,
“Real-time digital signal process-based optical coherence tomogra-
phy and Doppler optical coherence tomography,” [EEE Trans.
Biomed. Eng. 51(2), 186-190 (2004).

. Y. Zhao, Z. P. Chen, Z. Ding, H. Ren, and J. S. Nelson, “Real-time

phase-resolved functional optical coherence tomography by use of
optical Hilbert transformation,” Opt. Lett. 27(2), 98-100 (2002).

. C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time two-

dimensional blood flow imaging using an autocorrelation technique,”
1IEEE Trans. Sonics Ultrason. SU-32(3), 458—463 (1985).

. A. M. Rollins, S. Yazdanfar, J. Barton, and J. Izatt, “Real-time in

vivo color Doppler optical coherence tomography,” J. Biomed. Opt.
7(1), 123-129 (2002).

V. Westphal, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “Real-time
high velocity-resolution color Doppler optical coherence tomogra-
phy,” Opt. Lett. 27(1), 34-36 (2002).

Simon, Haykin, Adaptive Filter Theory, 4th ed., Prentice-Hall, Inc.,
Upper Saddle River, NJ (2002).

A. Nehorai, “A minimal parameter adaptive notch filter with con-
strained poles and zeros,” IEEE Trans. Acoust., Speech, Signal Pro-
cess. ASSP-33(4), 983-996 (1985).

P. Stoica and A. Nehorai, “Performance analysis of an adaptive notch
filter with constrained poles and zeros,” IEEE Trans. Acoust., Speech,
Signal Process. ASSP-36(6), 911-919 (1988).

P. Héndel and A. Nehorai, “Tracking analysis of an adaptive notch
filter with constrained poles and zeros,” IEEE Trans. Signal Process.
42(2), 281-291 (1994).

L. Pearlstein and B. Liu, “Retrieval of sinusoidal signals by adaptive
notch filtering,” Proc., 23rd Ann. Allerton Conf. on Commun., Con-
trol Comput., pp. 574-583 (1985).

S. Yazdanfar, C. Yang, M. V. Sarunic, and J. A. Izatt, “Frequency
estimation precision in Doppler optical coherence tomography using
the Cramer Rao lower bound,” Opt. Express 13(2), 410-416 (2005).

January/February 2007 + Vol. 12(1)



