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Abstract. Despite the unique brain imaging capabilities and advan-
tages of functional near-infrared spectroscopy �fNIRS�, including port-
ability and comprehensive hemodynamic measurement, widespread
acceptance in the neuroimaging community has been hampered by
low spatial resolution and image localization errors. While recent
technical developments such as high-density diffuse optical tomogra-
phy �HD-DOT� have, in principle, been shown to have superior in
silico image quality, the majority of optical imaging studies are still
conducted with sparse fNIRS arrays, perhaps partially because the
performance increases of HD-DOT appear incremental. Without a
quantitative comparative analysis between HD-DOT and fNIRS, using
both simulation and in vivo neuroimaging, the implications of the
new HD-DOT technology have been difficult to judge. We present a
quantitative comparison of HD-DOT and two commonly used fNIRS
geometries using �1� standard metrics of image quality, �2� simulated
brain mapping tasks, and �3� in vivo visual cortex mapping results in
adult humans. The results show that better resolution and lower posi-
tional errors are achieved with HD-DOT and that these improvements
provide a substantial advancement in neuroimaging capability. In par-
ticular, we demonstrate that HD-DOT enables detailed phase-
encoded retinotopic mapping, while sparse arrays are limited to im-
aging individual block-design visual stimuli. © 2010 Society of Photo-Optical
Instrumentation Engineers. �DOI: 10.1117/1.3368999�

Keywords: medical imaging; biomedical optics; image quality; imaging systems;
diffusion; diffuse optical tomography; optical neuroimaging.
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Introduction

ear-infrared spectroscopy �fNIRS� holds the promise to ex-
end functional neuroimaging methods into new settings, such
s the assessment of brain function in clinical patients unable
o be transported for functional magnetic resonance imaging
fMRI�. However, the successful transition of optical tech-
iques from intriguing concept to useful neuroscience tool has
een hampered by difficulties in acquiring measurements
hrough the scalp and skull. The standard fNIRS method of
cquiring arrays of sparsely distributed measurements has
imited spatial resolution and irregular spatial sensitivity, re-
ulting in subsequent mislocalization of cortical hemodynam-
cs. Initial simulation studies of an emerging technique known
s high-density diffuse optical tomography �HD-DOT� have
hown potential improvements for neuroimaging in both res-
lution and localization errors.1–4 Human brain mapping stud-
es have shown that HD-DOT studies have been able to gen-
rate detailed activation maps.5–9 However, the link between

ddress all correspondence to: Dr. Joseph P. Culver, Washington University in
t. Louis, Department of Radiology, Campus Box 8225, 4525 Scott Avenue, St.
ouis, Missouri 63110. Tel: 314-747-1341; Fax: 314-747-5191; E-mail:
ulverj@wustl.edu
ournal of Biomedical Optics 026006-
theoretical comparisons and in vivo results remains circum-
stantial. In this paper, we provide a thorough evaluation of the
abilities of sparse fNIRS and HD-DOT from simulation
through in vivo cortical mapping. This analysis consists of
three parts: �1� a comparison of resolution and localization
errors in dense and sparse diffuse optical imaging using point-
spread functions; �2� simulations of more realistic activation
patterns similar to those seen in vivo; and �3� in vivo cortical
mapping using both the HD-DOT system and a sparse subset
of the same imaging array.

fNIRS systems use diffusely scattered near-infrared light
to measure changes in tissue absorption, scattering, and fluo-
rescence. Within the context of brain imaging, changes in ab-
sorption are primarily due to variance in blood volume and
oxygenation. Task-induced changes in the concentrations of
oxy-, deoxy-, and total hemoglobin can then be used to access
neural activation in much the same manner as the blood oxy-
genation level dependent �BOLD� contrast for fMRI.10,11 The
majority of such fNIRS studies are conducted using distinct
measurements of sources and detectors arranged in a sparse
grid. Since sources and detectors generally need to be dis-
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laced by approximately 3 cm in order for the sensitivity
unction to have significant brain sensitivity, this separation
ecomes a primary factor limiting spatial resolution.

HD-DOT systems use a grid of overlapping source–
etector measurements to allow multiple measurements
ithin each voxel of the imaged volume.12–14 This technique
rovides better spatial sampling and a more robust approach
o image reconstruction, which in turn provides better local-
zation and resolution of the imaged activations.1,2 The goal of
he present work is to provide multiple analyses that quanti-
atively evaluate the imaging improvements possible with
D-DOT. First, we examine standard simulation metrics in
rder to understand the ideal performance of multiple fNIRS
ystems in current use. It is not possible to reproduce such
oint activations in vivo due to the large spatial extent of brain
ctivations. However, as shown in our earlier publication,6 the
isual cortex provides an ideal control system for such a com-
arison due to its highly organized and detailed structure. For
hese reasons, the visual cortex has served to validate past
mprovements in optical neuroimaging analysis.9,15–19 Thus,
econd, we examine the performance of multiple imaging
trategies during a simulated retinotopic mapping paradigm.
his task synthesizes information from multiple stimulus pre-
entation frames to create a complete map of cortical organi-
ation. Here, subtle imaging defects can become apparent.
hen, third, these results are compared with our adult human
ata mapping the structure of the visual cortex. Both simula-
ions and human data show that sparse optode arrangements
re unable to provide high enough image quality to perform
etailed neuromapping studies, such as retinotopy, that move
eyond individual activations to resolving the pattern’s corti-
al organization. In contrast, we show that HD-DOT has su-
erior performance and is able to reproduce expected in silico
erformance during in vivo applications.

Methods
.1 Optode Array Arrangements

n order to test the performance of various fNIRS optode grids
or in vivo brain imaging, we created three arrangements of
ources and detectors. All of the grids were first created in two
imensions with the standard interoptode spacing: 3 cm be-
ween sources and detectors in the sparse grids, and 1.3 cm
or first-nearest neighbors and 3 cm for second-nearest neigh-
ors in the high-density grid. The grids were then conformed
o an 8-cm-radius hemisphere preserving distance and angle
etween each optode and the center point of the grid, which
as located at the apex of the hemisphere. The first array was
standard square sparse array of interleaved sources and de-

ectors �Fig. 1�a�; 7 sources and 8 detectors for 22 total mea-
urements�, which is the most commonly used fNIRS
eometry.20,21 The second array was a second sparse array
sing a line of sources flanked by two rows of detectors �Fig.
�b�; 8 sources and 14 detectors for 28 total measurements�,
hich is another commonly used arrangement with the goal
f increasing resolution along one axis.22,23 �We will refer to
his arrangement as the triangular sparse array.� The third ar-
ay was a high-density grid developed for the visual cortex5

Fig. 1�c�; 24 sources and 28 detectors for 212 first- and
econd-nearest neighbor measurements�.
ournal of Biomedical Optics 026006-
2.2 Forward Model
A two-layer, hemispherical head model �80-mm radius� was
used for forward light modeling. The model consisted of an
inner brain region �70-mm radius; optical properties at
750 nm: �a=0.15 cm−1, �s�=8.4 cm−1; at 850 nm:
�a=0.17 cm−1, �s�=7.4 cm−1� surrounded by an outer skin/
skull region �10-mm thickness; optical properties at 750 nm:
� =0.19 cm−1, ��=12.0 cm−1; at 850 nm: � =0.19 cm−1,

1.84 cm

3
cm

3 cm

3 cm

1.3 cm

1.84 cm

b

a

c

d e

Fig. 1 Diffuse optical imaging optode arrays. Sources are red squares,
detectors are blue circles, and measurements are green lines. �a� Sche-
matic of the square sparse imaging array. The two-dimensional �2-D�
grid with 3-cm spacing was conformed to an 8-cm-radius sphere.
Shown is a projection of the resulting three-dimensional �3-D� optode
locations. �b� Schematic of the triangular sparse imaging array. �c�
Schematic of the high-density imaging array. First-nearest neighbors
have 1.3-cm spacing and second-nearest neighbors have 3-cm spac-
ing. �d� Cross section through the 3-D head model. The inner brain
region �yellow� has a radius of 7 cm, and the outer skin/skull region is
1 cm thick. All images shown in later figures are posterior coronal
projections �direction of view noted by arrows� of a 1-cm-thick shell
around the cortical surface �dashed lines�. �e� Schematic of the high-
density imaging array placed over the occipital cortex of a human
subject. �Color online only.�
a s a
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s�=11.0 cm−1�. These optical properties were derived by lin-
ar interpolation from the values used by Strangman et al.24 A
etrahedral mesh �162,040 nodes� was created in NetGen.
inite-element forward light modeling was performed using
IRFAST25 to generate Green’s functions for the sensitivities
f each source and detector. These Green’s function were con-
erted from the tetrahedral geometry to a voxelized space
voxels were cubic with a side length of 2 mm� and cropped
o the region with high sensitivity �140-mm width, 80-mm
eight, 48-mm depth, for a total of 67,200 voxels�. Sensitivity
atrices, A, for each array were constructed using the adjoint

ormulation and normalized consistent with the Rytov ap-
roximation: y=Ax, where y is a vector of differential light
easurements �yi=−log�Ii / �Ii��; where i runs over all mea-

urements�, and x is a vector of the discrete representation of
bsorption perturbations in the volume.

.3 Inverse Formulation and Reconstruction
he finite-element model was directly inverted for image

econstruction.26,27 The inverse problem minimizes the objec-
ive function: min��ymeas−Ax�2

2+��Ix�	. A solution, x
A#ymeas, was obtained using a Moore-Penrose generalized

nverse with, A#=AT�AAT+�2I�−1ymeas. The optimal value
f �=10−2s �where s is the maximal singular value of A� was
ound to provide a good balance between resolution and
ontrast-to-noise by evaluating in vivo activation data.6 The
ame values were used for reconstructing all three optode ar-
ays.

.4 Visualization
rom the resulting three-dimensional �3-D� inverted A-matrix,
e selected a 10-mm-thick cortical shell centered over the

urface of the cortex �radius 65 mm to 75 mm�. Voxels
ithin this shell were averaged in depth to create a two-
imensional �2-D� posterior cortical projection �Fig. 1�d�� of
imensions 140 mm by 80 mm. All reconstructions were per-
ormed using this shell. �Note that this is different from a
ortically constrained reconstruction,28 since the cortical re-
ion is chosen after rather than before inversion.� For visual-
zation, we display a smaller, centered field of view of
02-mm width and 50-mm height in order to focus on the
egions under the arrays with the highest sensitivities and
ower image artifacts. This region is shown in Figs. 1�a�–1�c�
y the black dashed line.

.5 Simulation and Point-Spread Function Analysis
oint-spread functions �PSFs� were created by simulating a
erturbation at a single point. The simulated absorption per-
urbation, xsim, is a vector of zeros except for one target pixel
ith a value of one. We then generated simulated measure-
ents ysim=Axsim and reconstructed an image xrecon
A#ysim. With this particular choice of xsim, this is equivalent

o examining a row from the matrix A#A �known as the res-
lution matrix�.

Since the sparse arrays often reconstruct asymmetric and
lliptical responses, using the square root of the area above
alf maximum to construct a full width at half maximum
FWHM� tends to be a poor measure of a response’s charac-
eristic length. Thus, we defined FWHM as the maximum
eparation between all pairs of points in the activation, which
ournal of Biomedical Optics 026006-
is a lower bound on the diameter of a circle needed to com-
pletely enclose the activation �Fig. 2�a��. Another standard
image metric is the localization error, defined as the distance
between the centroid of the response and the known location
of the target �Fig. 2�b��. In neuroscience applications where
the location of the activation is unknown, mislocalization and
an overly large activation are both equivalent in that they
cause brain hemodynamics to be measured where none actu-
ally occurred. Thus, we combined these two image metrics
into a single “effective resolution” defined as the diameter of
a circle centered at the known perturbation position needed to
enclose the entire activation �Fig. 2�c��, which should more
closely characterize expected in vivo performance. For sim-
plicity, all images shown were made using the 850-nm
A-matrices.

Note that we do not explicitly include noise in the simu-
lated data. However, we do set the regularization based on in
vivo imaging. Thus, the reconstructed images implicitly reflect
the smoothing necessary to accommodate real-world measure-
ment noise. Working with noiseless simulated data allows us
to focus the image quality evaluations on the systematic mod-

a

b

c

FWHM

Localization Error

Effective Resolution

Fig. 2 Definitions of imaging metrics for point-spread function analy-
sis shown using a simulated image reconstruction from the triangular
sparse array. The target perturbation is the blue square, and the con-
tour at half-maximum of the reconstruction is the blue line. �a� Full
width at half maximum �FWHM� is defined as the maximum separa-
tion between any two points above half maximum in the reconstruc-
tion �red arrows�. This is a lower bound on the diameter of a circle
needed to enclose the reconstruction �red circle�. �b� Localization er-
ror is the separation of the known target position and the centroid of
the reconstruction �red arrows�. �c� Effective resolution is the diameter
of a circle centered at the known target position needed to enclose all
points above half maximum in the reconstruction �red circle and ar-
rows�. �Color online only.�
March/April 2010 � Vol. 15�2�3
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ling and data sampling errors which are the central theme of
his paper. The evaluation of image quality in the presence of
oise is addressed in full with the in vivo data evaluations.

.6 Simulated Cortical Activations
s a bridge between point-spread functions and in vivo re-

ults, we also simulated the type of target brain activations
ne would expect from a retinotopic mapping study. Because
ach area of the visual cortex contains a map of the visual
eld �with adjacency preserved�, moving visual stimuli create

raveling waves of neuronal activity. We thus created a se-
uence of target activations xsim�t�, where each frame has a
arget similar to the activations seen in our previous retino-
opic mapping study.6 The visual angle mapping sequence
onsists of target activations 10 mm in radius traveling in an
llipse �20-mm and 15-mm major and minor axes� with a
enter slightly off center from the center of the field of view
from here on referred to as the elliptical target�. The eccen-
ricity mapping sequence consists of two rectangular targets
30-mm width, 14-mm height� moving upward in the field of
iew �to be referred to as the bar target�. Reconstructed re-
ponses xrecon�t� were then constructed as earlier. Phase-
ncoded mapping of these periodic responses was performed
s explained in below with the in vivo visual cortex data.

.7 Retinotopic Imaging Paradigm
he data for this analysis was acquired in a previous
xperiment;6 for this analysis, the data has been reimaged
sing the A-matrices described earlier. The study was ap-
roved by the Human Research Protection Office of the
ashington University School of Medicine, and informed

onsent was obtained from all participants prior to scanning.
ubjects were seated in an adjustable chair in a sound-isolated
oom facing a 19-in LCD screen at a viewing distance of
0 cm. The imaging pad was placed over the occipital cortex,
nd the optode tips were combed through the subject’s hair.
ook-and-loop strapping around the forehead held the array

n place. All stimuli were phase-encoded, black-and-white re-
ersing logarithmic checkerboards �10-Hz contrast reversal�
n a 50% gray background.29,30 Polar angle within the visual
eld was mapped using counterclockwise and clockwise ro-

ating wedges: minimum radius 1 deg, maximum radius
deg, width 60 deg, and a rotation speed of 10 deg /s for a

ycle of 36 s. This rotation frequency allows for each stimu-
ated brain region to return to baseline before subsequent
ctivations.31 Eccentricity within the visual field was mapped
ith expanding and contracting rings: minimum radius 1 deg,
aximum radius 8 deg, width 1.4 deg �three checkerboard

quares�, and 18 positions with 2 s per position for a total
ycle of 36 s. Subjects were instructed to fixate on a central
rosshair for all experiments. All stimuli started with 5 s of a
0% gray screen, continued with 10 cycles of the phase-
ncoded stimulus, and concluded with 15 s of a 50% gray
creen.

.8 DOT System
ur high-density DOT instrument uses light-emitting diode

LED� sources at 750 nm and 850 nm �750-03AU and
PE5T85, Roithner Lasertechnik� and avalanche photo diode

APD, Hamamatsu C5460-01� detectors.5 Each detector has a
ournal of Biomedical Optics 026006-
dedicated 24-bit analog-to-digital converter �MOTU HD-
192�. Sources and detectors were coupled with fiber-optic
bundles to a flexible imaging cap held on to the back of the
head with hook-and-loop strapping �Fig. 1�e��. After being
digitized, the APD measurements were written directly to
hard disk at 96 kHz. With temporal, frequency, and spatial
encoding, the system worked in continuous-wave mode with a
frame rate of 10.78 Hz.

2.9 Processing of In Vivo Data
Source-detector pair data �Vi�t�� were converted to log-ratio
data �yi�t�=−log�Vi�t� / �V��� and bandpassed
�0.02 Hz to 0.5 Hz� to remove long-term trends and pulse. A
subset of the data corresponding to the second �triangular�
sparse grid �Fig. 1�b�� was imaged using the inverted
A-matrix constructed earlier. Since the square sparse array
�Fig. 1�a�� was not a subset of the high-density array used for
data collection, it was not used in the in vivo analysis. Chan-
nels with high variance ��7.5%� are excluded from further
analysis and not included during A-matrix inversion. This data
was then inverted using the high-density A-matrix constructed
earlier. For both imaged data sets, hemoglobin species con-
centrations were determined using their extinction coeffi-
cients. As earlier, all DOT images are posterior coronal pro-
jections of a 1-cm-thick cortical shell with the same 102 mm
by 50 mm field of view. For simplicity, all images shown are
�HbO2.

The phase-encoded stimuli create a traveling wave of neu-
ronal activity along the cortical surface as the stimuli move
through the visual field. Relative to the stimulus onset, each
cortical position will be periodically activated with a different
delay. Since we know the position of the stimulus at each
time, we can match each pixel’s measured delay to the area of
the visual field to which it corresponds.6,32 In order to perform
this analysis, the series of activations due to each stimuli �as
well as the simulated cortical activation time courses corre-
sponding to these stimuli� were down-sampled to 1 Hz �36
time points per stimulus cycle�. Every pixel’s time course was
Fourier transformed and the phase at the stimulation fre-
quency �0.0278 Hz=1 /36 s� found. This phase then corre-
sponds to the delay between stimulus onset and the pixel’s
activation. We additionally need to correct for the finite neu-
rovascular �hemodynamic� response time. Assuming that this
lag time remains fixed at each cortical position, we correct for
this delay using counterpropagating stimuli.32 Our convention
is to define zero phase as the center of the visual field for the
ring stimuli and as the lower vertical meridian for the wedge
stimuli. Both before and after averaging, the phase maps were
smoothed using a 3 pixel by 3 pixel moving box average.

3 Results
3.1 Point-Spread Function Simulations
First, we analyzed the point-spread functions �PSFs� for every
pixel within our imaging domain �Video 1�. Moving the target
activation point sequentially through the domain showed that
the dense array was able to reconstruct the response with good
localization and a slightly blurred but symmetric PSF. Both
sparse arrays displaced activations to the nearest area of high
sensitivity �i.e., onto the line between the nearest source–
March/April 2010 � Vol. 15�2�4
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etector pair�. These errors can result in the reconstructed
esponses to multiple targets appearing either artificially far
part upon inversion �Figs. 3�a�–3�c�� or nearly identical de-
pite large true separations �Figs. 3�d�–3�f��. Additionally,
hile the triangular sparse array performs well in horizontal

ocalization, it has essentially only two voxels vertically: it is

Target

High−Density Array

ideo 1 Point-spread functions of targets placed at every location in
argets �2 mm�2 mm�10 mm� to be measured and reconstructed
igh-density array. Note that the response tracks the movement of
econstructed with the square sparse array. The response jumps to
islocalization and large response sizes. �lower right� The response re

arget well horizontally, it has only two major positions vertically �MP

a b

Square Sparse Grid Triangu

d e

ig. 3 Representative image performance of sparse and high-density a
he reconstructed responses are shown with the appropriately colored
he horizontal midline of the arrays. The high-density array can corr
owever, the triangular sparse array artificially displaces the two reco
rray results in reconstructions with an L-shape, which gives a large
1.5 mm�. �d� to �f� Here, two targets have been placed far apart.
separation between centroids of only 0.6 mm�, the high-density arra
tructs one of the activations in an L-shape, resulting in intermediate
ournal of Biomedical Optics 026006-
binary, placing responses either above or below the center
source line with no further discrimination. Both sparse arrays
have multiple lines of symmetry, points that fall equidistant
between two measurements. The location of activations at
these points cannot be distinguished and are projected equally
into the two measurements, resulting in large reconstructed

Square Sparse Array

Triangular Sparse Array

of view for the sparse and high-density grids. �upper left� Simulated
different arrays. �lower left� The response reconstructed with the

get and that there is minimal blurring. �upper right� The response
igh sensitivity underneath the nearest source-detector pair, causing
cted with the triangular sparse array. While the array can localize the
MB�. �URL: http://dx.doi.org/10.1117/1.3368999.1�.

c

se Grid High-Density Grid

f

argets are shown as red and blue squares. Half-maximum contours of
�a� to �c� Here, two targets have been placed 4 mm apart adjacent to
lace the responses with a relatively small PSF �separation 4.4 mm�.
tions �separation 23.2 mm� and enlarges the PSFs. The square sparse
on size, but reasonably close placement of the centroids �separation
ugh the triangular sparse array reconstructs them as superimposed
ctly separates them �17.5 mm�. The square sparse array again recon-
ion values �8.2 mm� with a large response size. �Color online only.�
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esponses. One particularly notable symmetry is along the
ource line in the triangular sparse array; a target directly
eneath this line is reconstructed as a large vertical activation
tretching the entire height of the pad.

Image errors can be quantified using standard metrics of
maging performance �Tables 1 and 2�. The size of the recon-
tructed response is measured with the full effective width at
alf maximum �FWHM� of each target’s point-spread func-
ion �Figs. 4�a�–4�c��. Displacement of the response from the
arget point is calculated using localization error �Figs.
�d�–4�f��. Since both broadening and misplacement of acti-
ations are similar in the sense that they both cause recon-
tructed responses where no activity should be measured, we
ombined resolution and localization error into a single metric
f effective resolution, defined as the diameter of a circle
entered at the known target location needed to enclose all
ctivated points above half maximum �Figs. 4�g�–4�i��. Judg-
ng by all three metrics, the high-density system has two ad-
antages over the sparse arrays. First, the average image qual-
ty is higher �an improvement of 1.76� in FWHM, 5.4� in
ocalization error, and 2.27� in effective resolution�. Second,
his high performance is relatively even over the entire field of
iew. The performance maps of the sparse arrays alternate
etween areas of good and poor quality. Since most brain
ctivations have an extent on the order of 1 cm, it is likely
hat sparse arrays will perform only up to the quality of their
orst pixel.

.2 Simulated Cortical Activations
n order to provide an intermediary evaluation between in
ilico point-spread functions and in vivo retinotopy experi-
ents, which necessarily excite extended areas of cortex, we

erformed simulations of activations designed to approximate
euronal activation patterns seen with a retinotopic mapping
xperiment.6

In the first experiment, the target was a 1-cm-radius circle,
hich moved in an elliptical pattern through the field of view

Table 1 Examination of point-spread function
deviation�.

Array FWHM �mm� Lo

Square sparse 21.6±4.6

Triangular sparse 20.9±4.3

High density 12.1±1.4

Table 2 Performance ranges for point-spread fu
maximum�.

Array FWHM �mm� Lo

Square sparse 14.6–42.0

Triangular sparse 16.5–48.2

High density 8.2–17.2
ournal of Biomedical Optics 026006-
�Figs. 5�a�–5�c� and upper-left panel of Video 2�. In the sec-
ond experiment, the target was a bilateral pair of rectangles
moving vertically in the field of view �Figs. 6�a�–6�c� and
upper-left panel of Video 3�. A reconstructed time series was
generated for both series of targets and for each of the optode
arrays. The square sparse grid results in linear reconstructions
along the nearest source–detector measurement �Figs.
5�d�–5�f� and 6�d�–6�f� and upper-right panel of Videos 2 and
3�. The triangular sparse array localizes the activations well
horizontally, but has only binary vertical discrimination—it
can only tell whether the target is above or below the source
line �Figs. 5�h�–5�j� and 6�h�–6�j� and lower-right panel of
Videos 2 and 3�. The high-density grid performs well in lo-
calizing the targets throughout both series �Figs. 5�k�–5�m�
and 6�k�–6�m� and lower-left panel of Videos 2 and 3�.

By Fourier transforming each pixel’s time traces and find-
ing the phases at the rotation frequency, we can perform in
silico phase-encoded retinotopic mapping. By convention,
zero phase of the elliptical target is defined as its most vertical
position �Fig. 5�n�� and for the bar target as the bottom of the
field of view �Fig. 6�n��. Although the square sparse grid mis-
localized many of the reconstructed targets, we see that it
generates the correct pinwheel phase pattern for the elliptical
target �Fig. 5�o�, although around the edges there are some
abnormalities due to the uneven sampling sensitivity� and a
distorted but recognizable general phase trend from bottom to
top for the bar target �Fig. 6�o��. To the contrary, while the
triangular sparse array appeared to accurately reconstruct in-
dividual target frames, this in fact masked an inability to cre-
ate a proper phase pattern for either target. With the elliptical
target �Fig. 5�p��, there are three main errors: �1� what should
be vertical gradients in phase �e.g., yellow to green and blue
to purple along the horizontal midline� are instead reported as
horizontal gradients �in the upper field of view�; �2� these
gradients are reconstructed as bidirectional, resulting in local
extrema of phase �yellow between two regions of green and
purple between two regions of blue�; and �3� in the lower field

arse and dense fNIRS arrays �mean±standard

ion error �mm� Effective resolution �mm�

.3±2.0 29.9±5.2

.4±3.6 31.7±7.1
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f view, the phase pattern is actually reversed, with orange
ppearing on the lower left and pink on the lower right. With
he bar target, the triangular sparse array is unable to recon-
truct the expected phase pattern �Fig. 6�p��, again resulting in
ncorrect horizontal gradients and local extrema. Additionally,
here is a discontinuity in phase between the lower and upper
alves of the array. The high-density array is able to accu-
ately replicate both expected phase patterns throughout the
eld of view �Figs. 5�q� and 5�q��.

.3 In Vivo Activations
o complete the comparison of sparse and high-density imag-

ng arrays, we analyzed data from our in vivo retinotopic map-
ing experiment6 using the full high-density system as well as
subset that forms the triangular sparse array. Since data was
ot collected with an array having the square sparse array as a
ubset, that array is not included in this analysis. This para-
igm included four stimuli: a counterclockwise rotating

a b

Full Width at Half Maximum (m

Square Sparse Grid Triangu

Localization Error (mm

Effective Resolution (mm

d e

g h

ig. 4 Image quality metrics for the point-spread functions of targets p
t half maximum of the imaging arrays. The FWHM was defined as th
or the sparse arrays, there is overall poor resolution �high FWHM� w
hat the triangular array has the worst resolution directly beneath the
esolution for the high-density array is high across the entire imaging d
he localization error was defined as the separation between the k
alf-maximum contrast. While the sparse arrays have low localization
easurements, it is high. Localization error for the high-density array
f imaging arrays. The effective resolution was defined as the diameter
he sparse arrays have poor effective resolution between the measure
nd detectors. Effective resolution for the high-density array is good a
ournal of Biomedical Optics 026006-
wedge, a clockwise rotating wedge, an expanding ring, and a
contracting ring.

Two frames from the counterclockwise wedge and expand-
ing ring stimuli are shown in Figs. 7�a�, 7�b�, 8�a�, and 8�b�,
respectively. �The entire stimuli are shown in the left frame of
Videos 4 and 5.� From previous electrophysiology, fMRI, pos-
itron emission tomography �PET�, and DOT studies, we ex-
pect each wedge stimulus to produce an activation in the op-
posite visual cortex. From our previous DOT studies, we
expect the ring stimulus to produce an activation moving up-
ward in the field of view. While the triangular sparse array can
somewhat place the wedge activations in the correct quadrant,
the activations are extended and have strange shapes �Figs.
7�c� and 7�d� and upper-right frame of Video 4�, often with
components in the wrong quadrants. Similarly, this array often
mislocalizes the ring responses or fails to reconstruct entire
hemispheres of activity �Figs. 8�c� and 8�d� and the upper-
right frame of Video 5�. The high-density array accurately

c
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se Grid High-Density Grid
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t every location in sparse and high-density grids. �a� to �c� Full width
imum separation of all pairs of points above half maximum contrast.
se resolution along lines of symmetry in the grid geometry. Also, note
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with little variation. �d� to �f� Localization error of the imaging arrays.
target location and the centroid of the voxels reconstructed above
directly under measurements and along points of symmetry, between
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ig. 5 Simulations of activations similar to those from phase-encoded mapping of visual angle. The stimulus is of 1-cm radius and moves in an
lliptical pattern, with the center of the ellipse displaced from the center of the field of view. There are a total of 36 activations in the entire rotation
eries. �a� to �c� Three equally spaced frames from the sequence of targets. �d� to �f� These three activations are reconstructed with the square sparse
rray. The activations are displaced to the nearest measurement location. �h� to �j� Reconstructions using the triangular sparse array. The activations
re located correctly horizontally, but displaced to the same vertical location. �k� to �m� Reconstructions using the high-density array. Activations
re correctly placed with the correct size. �n� Legend defining the phase of the target phase-encoded stimulus. �o�The phase of each pixel’s
ctivation at the rotation frequency using the square sparse array. This measure gives the delay between the start of the stimulus and the maximum
ctivation of each pixel. Areas with gray have low signal-to-noise and are discarded. The square sparse array is able to correctly reconstruct the
inwheel of phase from the original stimulus, with some lobes of abnormal phases near the edges and an asymmetric shape. �p� Phase-encoded
apping using the triangular sparse array. Vertical gradients have been incorrectly reconstructed as horizontal, and some phases have been placed

n the incorrect quadrant. �q� Phase mapping with the high-density array, which correctly locates all phases in the pinwheel.
Target Square Sparse Array

Triangular Sparse ArrayHigh−Density Array

ideo 2 Simulations of activations similar to those from phase-encoded mapping of visual angle. The stimulus is of 1 cm radius and moves in an
lliptical pattern, with the center of the ellipse displaced from the center of the field of view. There are a total of 36 activations in the entire rotation
eries. �upper left� The video of 36 targets. �lower left� Reconstructions using the high-density array. Activations are correctly placed with the correct
ize. �upper right� Activations reconstructed with the square sparse array. The activations are displaced to the nearest measurement location. �lower
ight� Reconstructions using the triangular sparse array. The activations are located correctly horizontally but jump from above the source line to
elow it �MPEG, 1 MB�. �URL: http://dx.doi.org/10.1117/1.3368999.2�.
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ig. 6 Simulations of activations similar to those from phase-encoded mapping of eccentricity. The stimulus is two 1.4-cm-tall rectangles moving
pward in the field of view. There are a total of 18 activations in the entire rotation series. �a� to �c� Three equally spaced frames from the sequence
f targets. �d� to �f� These three activations are reconstructed with the square sparse array. The activations are displaced to the nearest measurement
ocation, often resulting in squeezing in the horizontal direction. �h� to �j� Reconstructions using the triangular sparse array. Activations under the
ource planes are unconstrained vertically due to the pad’s symmetry. �k� to �m� Reconstructions using the high-density array. Activations are
orrectly placed with the correct size. �n� Legend defining the phase of the target phase-encoded stimulus. �o� The phase of each pixel’s activation
t the rotation frequency using the square sparse array. The square sparse array is able to find the general trend of increasing phase vertically, but
ith many artifacts in shape. �p� Phase-encoded mapping using the triangular sparse array. Due to the inability to vertically localize activations, the
rray can only define two general regions of phase, and it converts gradients that should be vertical to be horizontal. �q� Phase mapping with the
igh-density array, which correctly locates all phases in the target.
Target Square Sparse Array

Triangular Sparse ArrayHigh−Density Array

ideo 3 Simulations of activations similar to those from phase-encoded mapping of eccentricity. The stimulus is two 1.4-cm-tall rectangles moving
pward in the field of view. There are a total of 18 activations in the entire rotation series. �upper left� The video of 18 targets. �lower left�
econstructions using the high-density array. Activations are correctly placed with the correct size. �upper right� Activations reconstructed with the
quare sparse array. The activations are displaced to the nearest measurement location, often resulting in squeezing in the horizontal direction.
lower right� Reconstructions using the triangular sparse array. Activations under the source planes are unconstrained vertically due to the pad’s
ymmetry �MPEG, 1 MB�. �URL: http://dx.doi.org/10.1117/1.3368999.3�.
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ig. 7 In vivo measurement from a phase-encoded mapping study of visual angle. The stimulus is a counterclockwise rotating, counterphase
ickering wedge. There are a total of 36 activations in the entire rotation series. In order to line up stimuli and activations, we used our measured
-s neurovascular lag. �a� and �b� Two frames from the stimulus. �c� and �d� Activations from these stimuli reconstructed with the triangular sparse
rray. Note the poor localization and strange activation shapes. �e� and �f� Reconstructions using the high-density array. Activations are correctly
laced with reasonable sizes. �g� Legend defining the phase of the target phase-encoded stimulus. Note the 180-deg shift from Fig. 5�n� due to the
ransfer from visual field to cortex. �h� The phase of each pixel’s activation at the rotation frequency using the triangular sparse array. Note the
bility to reconstruct a pinwheel of phase. The errors are similar to those from the simulation in Fig. 5�p�. �i� Phase mapping with the high-density
rray, which correctly locates all phases.
Stimulus Triangular Sparse Array

High−Density Array

ideo 4 In vivo measurement from a phase-encoded mapping study of visual angle. �left� The stimulus is a counterclockwise rotating, counter-
hase flickering wedge. There are a total of 36 activations in the entire rotation series. In order to line up stimuli and activations, we used our
easured 6-s neurovascular lag. Here, the stimulus is shown without flicker and at 10� actual presentation speed. �upper right� Activations from

hese stimuli reconstructed with the triangular sparse array. Note the poor localization �especially in the lower half of the field of view� and strange
ctivation shapes. �lower right� Reconstructions using the high-density array. Activations are correctly placed with reasonable sizes. The videos
ave been thresholded such that changes in hemoglobin concentration below baseline are not shown �MPEG, 1 MB�. �URL:
ttp://dx.doi.org/10.1117/1.3368999.4�.
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ig. 8 In vivo measurement from a phase-encoded mapping study of visual eccentricity. The stimulus is an expanding counterphase flickering ring.
here are a total of 36 activations in the entire rotation series. In order to line up stimuli and activations, we used our measured 6-s neurovascular

ag. �a� and �b� Two frames from the stimulus. �c� and �d� Activations from these stimuli reconstructed with the triangular sparse array. Note the poor
ocalization, especially when the activation passes beneath the source line, and the inability to always locate activations in both hemispheres. �e�
nd �f� Reconstructions using the high-density array. Activations are correctly placed with reasonable sizes. �g� Legend defining the phase of the
arget phase-encoded stimulus. �h� The phase of each pixel’s activation at the rotation frequency using the triangular sparse array. Note the ability
o distinguish only two regions, and the conversion of vertical gradients into horizontal gradients, similar to Fig. 6�p�. �i� Phase mapping with the
igh-density array, which correctly locates all phases.
Stimulus Triangular Sparse Array

High−Density Array

ideo 5 In vivo measurement from a phase-encoded mapping study of visual eccentricity. �left� The stimulus is an expanding counterphase
ickering ring. There are a total of 36 activations in the entire rotation series. In order to line up stimuli and activations, we used our measured 6-s
eurovascular lag. Here, the stimulus is shown without flicker and at 10� actual presentation speed. �upper right� Activations from these stimuli
econstructed with the triangular sparse array. Note the poor localization, especially when the activation passes beneath the source line, and the
nability to always locate activations in both hemispheres. �lower right� Reconstructions using the high-density array. Activations are correctly
laced with reasonable sizes. The movies have been thresholded such that changes in hemoglobin concentration below baseline are not shown
MPEG, 1 MB�. �URL: http://dx.doi.org/10.1117/1.3368999.5�.
ournal of Biomedical Optics March/April 2010 � Vol. 15�2�026006-11
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laces both activation series throughout the field of view with
ighter localization �Figs. 7�e�, 7�f�, 8�e�, and 8�f� and lower-
ight frame of Videos 4 and 5�. We then performed retinotopic
apping using Fourier analysis, with the zero phase defined

or the wedge stimulus at the stimulus directly downward
Fig. 7�g�� and for the ring stimulus at the center of the sub-
ect’s vision �Fig. 8�g��. The triangular sparse array suffers the
ame problems in vivo that were predicted in simulation �Figs.
�h� and 8�h�; compare to Figs. 5�p� and 6�p��. The high-
ensity array is able to accurately reconstruct the full range of
hases with the correct localization for both stimuli �Figs. 7�i�
nd 8�i��.

Discussion
e have conducted a quantitative comparison of the imaging

erformance of multiple imaging arrays for diffuse optical
maging. The goal of this exercise was to evaluate the poten-
ial improvements in image resolution and localization error
f HD-DOT over sparse imaging geometries in the context of
etailed in vivo neuroimaging tasks. This work builds on pre-
ious literature that has evaluated the theoretical performance
f neuroimaging DOT systems. Boas et al. analyzed the res-
lution and localization error of a square and a hexagonal
D-DOT grid.1 In contrast to this paper, both grids were high
ensity, and the subject of the comparison was the use of
ack-projection versus tomographic imaging techniques.
imilarly, Joseph et al. demonstrated qualitative improvement
f performing tomography over using single source–detector
istances within the context of an HD-DOT array and simple
ocal activations.2 Since no sparse array was included in the
omparison, it is difficult from those results to judge possible
mprovements over the sparse arrangements that are in wide-
pread current use. Tian et al. examined multiple optode ar-
angements �of both sparse and dense styles�; however, their
eometries have a limited field of view, and the arrays do not
orrespond to those in standard use.4 Furthermore, while they
ound a useful rule-of-thumb for determining whether a new
rray geometry is “sparse” or “dense,” their data are not ana-
yzed with standard metrics and are not quantified over the
ntire field of view. Thus, it is difficult to directly compare
heir data against either our data or the data from most other
ublications and systems. Additionally, all three of these stud-
es have two algorithmic limitations: they assume a semi-
nfinite head geometry, and the reconstructions are depth-
onstrained to a plane with a known perturbation location.
hese assumptions limit translation of the simulations to
valuating neuroscience results. For further reference, the per-
ormance of DOT has also been analyzed in other applica-
ions, including infant neuroimaging by Heiskala et al.,3 slab
ransmission geometries by Culver et al.,33 and breast imaging
y Azizi et al.34 Other papers have also addressed other
ources of error in optical imaging, including a mismatch in
ptical properties3 and the modeling of cerebral spinal fluid.35

hile we have dealt with the spatial analysis of diffuse opti-
al imaging, quantification of hemoglobin concentrations is an
mportant clinical parameter subject to different sources of
rror and deserving of its own evaluation.22,24

Our first analysis judged three imaging geometries based
n their performance on standard metrics of image quality.
hese simulations yield a FWHM of 12 mm for the high-
ournal of Biomedical Optics 026006-1
density array and 21 mm for the two sparse arrays. Boas et al.
report their resolution using characteristic areas: 2.0 cm2 for
high-density DOT and 4.5 cm2 for a back-projection.1 �This is
not the same as using a sparse grid, but it serves as a useful
comparison for our results.� Converting our characteristic di-
ameters to areas yields 1.1 cm2 for high density and 3.5 cm2

for sparse. Assuming similar regularization, our simulation
might have higher resolution since we used first-nearest-
neighbor separations of 1.3 cm and second-nearest-neighbor
separations of 3.0 cm, compared to 1.9 cm and 4.25 cm for
the Boas et al. study. Additionally, this paper shows the high-
density array to have much better localization error than
sparse arrays, 1.0 mm versus 5.3 mm. Boas et al. measured
localization errors of 2 mm for DOT versus 5 mm for back-
projection.

While activation size and mislocalization can be easily
separated in simulations since the target is known a priori,
this rigor does not translate to in vivo separations. When per-
forming a brain activation study, the goal is to locate the area
of the brain that responds preferentially to a given stimuli.
This challenge is especially problematic with sparse arrays,
which mislocalize many different, widely separated areas to
the same area of high sensitivity. From a neuroimaging per-
spective, it is equivalent if two distinct areas are superim-
posed due to a broad reconstruction or due to them both being
artificially displaced to the same area. Since fNIRS systems
currently sample only superficial regions of cortex,36 their
brain sensitivity jumps from gyri to gyri. Thus, seemingly
small mislocalizations laterally can actually result in large er-
rors in terms of position along the two-dimensional cortical
surface. So, to combine knowledge of FWHM and localiza-
tion error into a single metric of expected in vivo perfor-
mance, we used the effective resolution �the diameter of a
circle centered at the known activation point needed to cir-
cumscribe all voxels above half-maximum contrast�. The
high-density array has an effective resolution of about 1.3 cm,
which should prevent identification to the wrong gyrus. How-
ever, the sparse arrays both have effective resolutions greater
than 3 cm �as expected heuristically based on their source–
detector separation�.

In order to move beyond previous simulation studies of
high-density DOT, we examined the performance of these ar-
rays during a task to map the detailed organization of the
visual cortex. This revealed subtle effects that limit wider util-
ity of sparse systems. When examining individual point acti-
vations from individual stimuli, it might not appear that the
worse resolution of the sparse systems is a problem. For ex-
ample, in Figs. 5�a�–5�m�, the sparse arrays seem to do an
acceptable job at reconstructing the target activations. How-
ever, due to heterogeneous localization errors and resolution,
they are unable to move beyond individual stimuli to assimi-
lating that information to perform retinotopic mapping. The
triangular sparse array is unable to properly decode phase in
either the elliptical �Fig. 5�p�� or bar �Fig. 6�p�� retinotopy
simulations. While the square sparse array can do a reason-
able job with the elliptical target �Fig. 5�o��, it suffers many
artifacts when attempting to map the bar target �Fig. 6�o��.
Only the high-density array can reconstruct both simulations
properly �Figs. 5�q� and 6�q��. This in silico performance is
duplicated in vivo, where a triangular sparse subset of the
March/April 2010 � Vol. 15�2�2
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igh-density array is unable to generate visual cortex maps of
ither visual angle or eccentricity that capture the correct glo-
al neural architecture �Figs. 7 and 8�.

The advantages quantified here, in resolution and localiza-
ion error, are in addition to the other benefits of high-density
rrays, which include lower sensitivity to modeling errors,3

etter contrast-to-noise,4 and the ability to regress out a mea-
ure of superficial and systemic noise.5,37 This last benefit can
e particularly important to analyzing data from single sub-
ects. Since one of the main benefits of fNIRS technology is
ts potential to translate to a bedside neuroimaging tool, it is
mportant to develop techniques that can perform effectively
n neuromapping paradigms in single subjects. Noninvasive
ptical techniques have spatial resolution between fMRI and
EG. While improvements such as high-density arrays are
nlikely to result in image quality that surpasses the high
esolution of fMRI, improving image quality is always a fun-
amental goal, allowing researchers to access the advantages
f optical neuroimaging �e.g., portability and comprehensive
emodynamic measurements� without being hampered by in-
ufficient imaging performance. A reasonable objective within
he field of neuroimaging is 1-cm resolution, which would
llow the distinguishing of gyri and the ability to perform
lassical human brain mapping paradigms, such as retinotopy.
ur results show that common and traditional sparse array

pproaches have limited performance when attempting such
etailed neuroimaging studies. In contrast, new high-density
OT techniques extend the capabilities of optical methods to
eet these challenges.

cknowledgments
e thank Benjamin Zeff, Gavin Perry, and Martin Olevitch

or help with DOT instrumentation and software. This work
as supported in part by NIH Grant Nos. R21-HD057512

J.P.C.�, R21-EB007924 �J.P.C.�, R01-EB009233 �J.P.C.�, and
90-DA022871 �B.R.W.�.

eferences
1. D. A. Boas, K. Chen, D. Grebert, and M. A. Franceschini, “Improv-

ing the diffuse optical imaging spatial resolution of the cerebral he-
modynamic response to brain activation in humans,” Opt. Lett.
29�13�, 1506–1508 �2004�.

2. D. K. Joseph, T. J. Huppert, M. A. Franceschini, and D. A. Boas,
“Diffuse optical tomography system to image brain activation with
improved spatial resolution and validation with functional magnetic
resonance imaging,” Appl. Opt. 45�31�, 8142–8151 �2006�.

3. J. Heiskala, P. Hiltunen, and I. Nissila, “Significance of background
optical properties, time-resolved information and optode arrangement
in diffuse optical imaging of term neonates,” Phys. Med. Biol. 54,
535–554 �2009�.

4. F. Tian, G. Alexandrakis, and H. Liu, “Optimization of probe geom-
etry for diffuse optical brain imaging based on measurement density
and distribution,” Appl. Opt. 48�13�, 2496–2504 �2009�.

5. B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P.
Culver, “Retinotopic mapping of adult human visual cortex with
high-density diffuse optical tomography,” Proc. Natl. Acad. Sci.
U.S.A. 104�29�, 12169–12174 �2007�.

6. B. R. White and J. P. Culver, “Phase-encoded retinotopy as an evalu-
ation of diffuse optical neuroimaging,” Neuroimage 49�1�, 568–577
�2010�.

7. B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Ra-
ichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional
connectivity in the human brain revealed with diffuse optical tomog-
raphy,” Neuroimage 47�1�, 148–156 �2009�.

8. A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge,
J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three-
ournal of Biomedical Optics 026006-1
dimensional whole-head optical tomography of passive motor evoked
responses in the neonate,” Neuroimage 30�2�, 521–528 �2006�.

9. G. R. Wylie, H. Graber, G. T. Voelbel, A. D. Kohl, J. DeLuca, Y. Pei,
Y. Xu, and R. L. Barbour, “Using co-variation in the Hb signal to
detect visual activation: a near infrared spectroscopy study,” Neu-
roimage 47, 473–481 �2009�.

10. G. Strangman, J. P. Culver, J. H. Thompson, and D. A. Boas, “A
quantitative comparison of simultaneous BOLD fMRI and NIRS re-
cordings during functional brain activation,” Neuroimage 17�2�, 719–
731 �2002�.

11. J. Steinbrink, A. Villringer, F. C. D. Kempf, D. Haux, S. Boden, and
H. Obrig, “Illuminating the BOLD signal: combined fMRI-fNIRS
studies,” Magn. Reson. Imaging 24�4�, 495–505 �2006�.

12. R. L. Barbour, H. Graber, R. Aronson, and J. Lubowsky, “Model for
3-D optical imaging of tissue,” in Proc. 10th Int. Geoscience and
Remote Sensing Symposium, pp. 1395–1399, IEEE, Piscataway, NJ
�1990�.

13. R. L. Barbour, H. L. Graber, R. Aronson, and J. Lubowsky, “Imaging
of subsurface regions of random media by remote sensing,” in Time-
Resolved Spectroscopy and Imaging of Tissues, Proc. SPIE 1431,
192–203 �1991�.

14. S. R. Arridge, “Optical tomography in medical imaging,” Inverse
Probl. 15�2�, R41–R93 �1999�.

15. M. L. Schroeter, M. M. Bucheler, K. Muller, K. Uludag, H. Obrig, G.
Lohmann, M. Tittgemeyer, A. Villringer, and D. Y. von Cramon,
“Towards a standard analysis for functional near-infrared imaging,”
Neuroimage 21�1�, 283–290 �2004�.

16. M. M. Plichta, M. J. Herrmann, C. G. Baehne, A.-C. Ehlis, M. M.
Richter, P. Pauli, and A. J. Fallgatter, “Event-related functional near-
infrared spectroscopy �fNIRS�: are the measurements reliable?” Neu-
roimage 31, 116–124 �2006�.

17. V. Y. Toronov, X. Zhang, and A. G. Webb, “A spatial and temporal
comparison of hemodynamic signals measured using optical and
functional magnetic resonance imaging during activation in the hu-
man primary visual cortex,” Neuroimage 34, 1136–1148 �2007�.

18. T. J. Huppert, S. G. Diamond, and D. A. Boas, “Direct estimation of
evoked hemoglobin changes by multimodality fusion imaging,” J.
Biomed. Opt. 13�5�, 054031 �2008�.

19. T. J. Huppert, R. D. Hoge, S. G. Diamond, M. A. Franceschini, and
D. A. Boas, “A temporal comparison of BOLD, ASL, and NIRS
hemodynamic response to motor stimuli in adult humans,” Neuroim-
age 29, 368–382 �2006�.

20. M. J. Hofmann, M. J. Herrmann, I. Dan, H. Obrig, M. Conrad, L.
Kuchinke, A. M. Jacobs, and A. J. Fallgatter, “Differential activation
of frontal and parietal regions during visual word recognition: an
optical topography study,” Neuroimage 40�3�, 1340–1349 �2008�.

21. G. Taga, K. Asakawa, A. Maki, Y. Konishi, and H. Koizumi, “Brain
imaging in awake infants by near-infrared optical topography,” Proc.
Natl. Acad. Sci. U.S.A. 100�19�, 10722–10727 �2003�.

22. D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical
imaging of brain activation: approaches to optimizing image sensitiv-
ity, resolution, and accuracy,” Neuroimage 23�Suppl. 1�, S275–S288
�2004�.

23. T. J. Huppert, S. G. Diamond, M. A. Franceschini, and D. A. Boas,
“HomER: a review of time-series analysis methods for near-infrared
spectroscopy of the brain,” Appl. Opt. 48�10�, D280–D298 �2009�.

24. G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affect-
ing the accuracy of near-infrared spectroscopy concentration calcula-
tions for focal changes in oxygenation parameters,” Neuroimage
18�4�, 865–879 �2003�.

25. H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Mul-
tiwavelength three-dimensional near-infrared tomography of the
breast: initial simulation, phantom, and clinical results,” Appl. Opt.
42�1�, 135–145 �2003�.

26. J. P. Culver, A. M. Siegel, J. J. Stott, and D. A. Boas, “Volumetric
diffuse optical tomography of brain activity,” Opt. Lett. 28�21�,
2061–2063 �2003�.

27. J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg,
and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow,
oxygenation and metabolism in rat during focal ischemia,” J. Cereb.
Blood Flow Metab. 23, 911–923 �2003�.

28. D. A. Boas and A. M. Dale, “Simulation study of magnetic resonance
imaging-guided cortically constrained diffuse optical tomography of
human brain function,” Appl. Opt. 44�10�, 1957–1968 �2005�.

29. S. A. Engel, D. E. Rumelhart, B. A. Wandell, A. T. Lee, G. H.
March/April 2010 � Vol. 15�2�3

http://dx.doi.org/10.1364/OL.29.001506
http://dx.doi.org/10.1364/AO.45.008142
http://dx.doi.org/10.1088/0031-9155/54/3/005
http://dx.doi.org/10.1364/AO.48.002496
http://dx.doi.org/10.1073/pnas.0611266104
http://dx.doi.org/10.1073/pnas.0611266104
http://dx.doi.org/10.1016/j.neuroimage.2009.07.023
http://dx.doi.org/10.1016/j.neuroimage.2009.03.058
http://dx.doi.org/10.1016/j.neuroimage.2005.08.059
http://dx.doi.org/10.1016/j.neuroimage.2009.04.056
http://dx.doi.org/10.1016/j.neuroimage.2009.04.056
http://dx.doi.org/10.1016/S1053-8119(02)91227-9
http://dx.doi.org/10.1016/j.mri.2005.12.034
http://dx.doi.org/10.1117/12.44190
http://dx.doi.org/10.1088/0266-5611/15/2/022
http://dx.doi.org/10.1088/0266-5611/15/2/022
http://dx.doi.org/10.1016/j.neuroimage.2003.09.054
http://dx.doi.org/10.1016/j.neuroimage.2005.12.008
http://dx.doi.org/10.1016/j.neuroimage.2005.12.008
http://dx.doi.org/10.1016/j.neuroimage.2006.08.048
http://dx.doi.org/10.1117/1.2976432
http://dx.doi.org/10.1117/1.2976432
http://dx.doi.org/10.1016/j.neuroimage.2005.08.065
http://dx.doi.org/10.1016/j.neuroimage.2005.08.065
http://dx.doi.org/10.1016/j.neuroimage.2007.12.037
http://dx.doi.org/10.1073/pnas.1932552100
http://dx.doi.org/10.1073/pnas.1932552100
http://dx.doi.org/10.1016/j.neuroimage.2004.07.011
http://dx.doi.org/10.1364/AO.48.00D280
http://dx.doi.org/10.1016/S1053-8119(03)00021-1
http://dx.doi.org/10.1364/AO.42.000135
http://dx.doi.org/10.1364/OL.28.002061
http://dx.doi.org/10.1097/01.WCB.0000076703.71231.BB
http://dx.doi.org/10.1097/01.WCB.0000076703.71231.BB
http://dx.doi.org/10.1364/AO.44.001957


3

3

3

3

White and Culver: Quantitative evaluation of high-density diffuse optical tomography…

J

Glover, E.-J. Chichilnisky, and M. N. Shadlen, “fMRI of human vi-
sual cortex,” Nature 369, 525 �1994�.

0. E. A. DeYoe, P. Bandettini, J. Neitz, D. Miller, and P. Winans, “Func-
tional magnetic resonance imaging �fMRI� of the human brain,” J.
Neurosci. Methods 54, 171–187 �1994�.

1. J. Warnking, M. Dojat, A. Guérin-Dugué, C. Delon-Martin, S. Olym-
pieff, N. Richard, A. Chéhikian, and C. Segebarth, “fMRI retinotopic
mapping—step by step,” Neuroimage 17, 1665–1683 �2002�.

2. M. I. Sereno, A. M. Dale, J. B. Reppas, K. K. Kwong, J. W. Bel-
liveau, T. J. Brady, B. R. Rosen, and R. B. H. Tootell, “Borders of
multiple visual areas in humans revealed by functional magnetic-
resonance-imaging,” Science 268�5212�, 889–893 �1995�.

3. J. P. Culver, V. Ntziachristos, M. J. Holboke, and A. G. Yodh, “Op-
timization of optode arrangements for diffuse optical tomography: a
singular-value analysis,” Opt. Lett. 26�10�, 701–703 �2001�.
ournal of Biomedical Optics 026006-1
34. L. Azizi, K. Zarychta, D. Ettori, E. Tinet, and J.-M. Tualle, “Ultimate
spatial resolution with diffuse optical tomography,” Opt. Express
17�14�, 12132–12144 �2009�.

35. A. Custo, W. M. I. Wells, A. H. Barnett, E. M. C. Hillman, and D. A.
Boas, “Effective scattering coefficient of the cerebral spinal fluid in
adult head models for diffuse optical imaging,” Appl. Opt. 45�19�,
4747–4755 �2006�.

36. H. Dehghani, B. R. White, B. W. Zeff, A. Tizzard, and J. P. Culver,
“Depth sensitivity and image reconstruction analysis of dense imag-
ing arrays for mapping brain function with diffuse optical tomogra-
phy,” Appl. Opt. 48�10�, D137–D143 �2009�.

37. R. Saager and A. Berger, “Measurement of layer-like hemodynamic
trends in scalp and cortex: implications for physiological baseline
suppression in functional near-infrared spectroscopy,” J. Biomed.
Opt. 13�3�, 034017 �2008�.
March/April 2010 � Vol. 15�2�4

http://dx.doi.org/10.1038/369525a0
http://dx.doi.org/10.1016/0165-0270(94)90191-0
http://dx.doi.org/10.1016/0165-0270(94)90191-0
http://dx.doi.org/10.1006/nimg.2002.1304
http://dx.doi.org/10.1126/science.7754376
http://dx.doi.org/10.1364/OL.26.000701
http://dx.doi.org/10.1364/OE.17.012132
http://dx.doi.org/10.1364/AO.45.004747
http://dx.doi.org/10.1364/AO.48.00D137
http://dx.doi.org/10.1117/1.2940587
http://dx.doi.org/10.1117/1.2940587

