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Abstract. The Habitable-Zone Exoplanet Observatory Mission (HabEx) is one of four large
missions under review for the 2020 astrophysics decadal survey. Its goal is to directly image and
spectroscopically characterize planetary systems in the habitable zone around nearby Sun-like
stars. In addition, HabEx will perform a broad range of general astrophysics science enabled by
a 115- to 1700-nm spectral range and 3 × 3 arcminute field of view. Critical to achieving its
science goals, HabEx requires a large, ultrastable UV/optical/near-IR telescope. Using science-
driven systems engineering, HabEx specified its baseline telescope to be a 4-m off-axis,
unobscured three-mirror anastigmatic architecture with diffraction-limited performance at
400 nm, and wavefront stability on the order of a few tens of picometers. We summarize the
systems-engineering approach to the baseline telescope assembly’s optomechanical design,
including a discussion of how science requirements drive the telescope’s specifications. We also
present structural thermal optical performance analysis showing that the baseline telescope struc-
ture meets its specified tolerances. We report new and updated analysis that is not in the HabEx
final report. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported
License. Distribution or reproduction of this work in whole or in part requires full attribution of the origi-
nal publication, including its DOI. [DOI: 10.1117/1.JATIS.6.3.034004]
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1 Introduction

“Are we alone in the Universe?” is maybe the most compelling science question of our gener-
ation. Per the 2010 New Worlds, New Horizons decadal survey: “One of the fastest growing and
most exciting fields in astrophysics is the study of planets beyond our solar system. The goal is to
image rocky planets that lie in the habitable zone of nearby stars.”1 The survey recommended, as
its highest priority, medium-scale activity such as a “New Worlds Technology Development
Program” to “lay the technical and scientific foundations for a future space imaging and spec-
troscopy mission.” The National Research Council report, NASA Space Technology Roadmaps
& Priorities,2 states that the second-highest technical challenge for the National Aeronautics and
Space Administration (NASA) for expanding our understanding of Earth and the universe in
which we live is to “develop a new generation of astronomical telescopes that enable discovery
of habitable planets, facilitate advances in solar physics, and enable the study of faint structures
around bright objects by developing high-contrast imaging and spectroscopic technologies to
provide unprecedented sensitivity, field of view (FOV), and spectroscopy of faint objects.”

In preparation for the 2020 decadal survey, NASA performed detailed concept studies of
four potential missions. One of these was the Habitable-Zone Exoplanet Observatory (HabEx)
Mission. HabEx has three goals: to seek out nearby worlds and explore their habitability, to map
out nearby planetary systems and understand the diversity of the worlds they contain, and
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to carry out observations that open new windows on the universe from the ultraviolet through
near-IR (UV-NIR). The HabEx Science and Technology Definition Team selected as
‘Architecture A’ a 4-m telescope with four science instruments (coronagraph, Starshade instru-
ment, UV-NIR imaging multiobject slit spectrograph, and high-resolution UV spectrograph),
and a 52-m external starshade occulter.3

Section 2 reviews how the HabEx optical telescope assembly (OTA) specifications derive
from the HabEx science requirements. Section 3 describes the baseline optomechanical OTA
design, key components, and features. Section 4 summarizes detailed performance analysis
of the baseline optomechanical design, which shows that the design, using proven technology
and engineering practices, can achieve the specifications necessary to perform HabEx science.
Section 5 shows how structural thermal optical performance (STOP) model predictions are used
to construct an error budget. Section 6 presents an analysis of the telescope’s response to an
impulse. The baseline 4-m, off-axis HabEx optomechanical telescope design “closes” for its
line of sight (LOS) and wavefront error (WFE) stability specifications. The only external
assumptions are that the mission is launched in a Space Launch System (SLS) 8.4-m fairing,
and the spacecraft uses low-disturbance microthrusters for pointing control.

2 OTA Specifications

The HabEx OTA design team followed a science-driven, systems-engineering method. Design
element specifications were derived from science requirements (Table 1), and error budgets were
created for each specification.

Exoplanet science drives the choice of an off-axis architecture, aperture diameter, and pri-
mary mirror (PM) F∕#. General astrophysics and its desire for a 3 × 3 arcminute FOV drives
the choice of a three-mirror anastigmatic (TMA) optical design (Fig. 1). UV science drives the
spectral range and operating temperature. Both exoplanet and general astrophysics sciences need
400-nm diffraction-limited telescope performance. Diffraction limit, LOS jitter, and WFE
stability are discussed in Secs. 2.1–2.3.

Table 1 HabEx optical telescope specification flow-down from science requirements.

Science Telescope Specification

Exoplanet: inner working
angle

Architecture Off-axis unobscured circular aperture

Aperture diameter >3.7 m

Primary mirror F∕# Slower than F∕2.25 to minimize polarization
crosstalk

Diffraction limit 400 nm

WFE stability 1 to 250 pm depending on coronagraph and
spatial frequency

LOS stability (jitter) <0.3 mas per axis

Science instruments On the side (in the SM tower structure) to
maximize thermal stability and to minimize
reflecting angles for polarization.

General astrophysics:
wide FOV

Three-mirror anastigmatic 3 × 3 arcmin per instrument inside 21 arcmin
diameter FOV

Diffraction limit 400 nm

UV science Spectral range 115 to 1700 nm (nominal)

Operating temperature 270 K (nominal); 260 K (minimum)
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Imaging habitable-zone exoplanets using a coronagraph requires a telescope/coronagraph
system that can produce a 10−10 contrast “dark hole” with the smallest inner working angle
(IWA) possible and as large of an irradiance throughput as possible. IWA is the minimum angular
distance (on the sky) where the dark hole begins—the location where the coronagraph can block
1010 of the host star’s brightness (Fig. 2). The number of habitable zones that can be searched
will be greater when the IWA is smaller and the throughput is larger. The ability to achieve a
small IWA depends on the telescope’s ability to produce a small stable point spread function
(PSF) with a compact stable encircled energy (EE). Therefore, when the EE is smaller, the IWA
is smaller. It is common knowledge that when the PSF and EE are smaller, the telescope’s aper-
ture will be larger. However, what is often overlooked is that an unobscured (off-axis) telescope
always has a more compact EE (better IWA) than an on-axis telescope with a central obscuration,
because diffraction from the central obscuration broadens the PSF. To be specific, an unobscured
circular aperture has 82.8% EE at λ∕D, and a telescope with a 10% central obscuration has
82.5% EE at 1.4 λ∕D (and for a 20% obscuration, 82% EE is at 1.63 λ∕D).4 Thus, to achieve
the same IWA performance as an unobscured 4-m telescope, an on-axis telescope with 10%
central obscuration would need to be at least 5.6 m, and one with 20% obscuration would need
to be at least 6.5 m. In addition, diffraction from secondary mirror (SM) spider obscurations
distorts the PSF and broadens the EE. A 1–2% wide spider can increase EE diameter IWA
by 5–10%, requiring a 5–10% larger on-axis telescope.4 Of course, the problem is even worse
for a segmented aperture PM.

A key attribute of a coronagraph is its core throughput. Core throughput is the fraction of the
planet light collected by the telescope PM that ends up inside the core region. Figure 3 shows
the core throughput for three coronagraphs (vector-vortex coronagraph charge 4 (VVC-4),

Fig. 2 Dark hole.

Fig. 1 TMA optical design.
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charge 6 (VVC-6), and hybrid Lyot (HLC) with the HabEx baseline 4-m, off-axis, unobscured
telescope) and the throughput for a 6-m, on-axis, segmented PM telescope (Segm) (e.g., the
James Webb Space Telescope, JWST) with an apodized pupil Lyot coronagraph (APLC).5,6

Regarding minimum aperture and diffraction limit, the specification is based on a design
reference mission (DRM) yield estimate for an off-axis-telescope/coronagraph combination.7

Threshold science occurs when the telescope PSF core radius (λ∕D) is <25 mas. This is accom-
plished with a >3.7-m off-axis monolithic telescope with a 400-nm diffraction limit.

Regarding the PM’s F∕#, to minimize package size, a fast PM F∕#, or short radius of cur-
vature is desired. But to minimize polarization cross-talk in the coronagraph, a slow PM F∕# is
required. An optical design similar to Exo-C was selected, with an F∕2.5 PM and the science
instruments located on the anti-Sun side of the telescope.8 This architecture provides the instru-
ments with a thermally stable environment. Additional benefits of this configuration are that it
minimizes the need for high angle of incidence reflections that produce unwanted polarization
effects and isolates the coronagraph from thermal disturbances. Consequently, the OTA is physi-
cally long. The baseline 4-m design has a PM-to-SM separation of ∼9 m.

2.1 Diffraction-Limited Performance

Diffraction limit is driven by both general astrophysics and coronagraphy because, along with
aperture diameter, diffraction limit directly relates to the performance parameters of PSF size,
EE, and Strehl ratio. Applying the Marechal approximation, to have a 400-nm diffraction-limited
telescope requires a static system WFE of ∼30 nm rms. Contributors to the telescope WFE are
the PM, SM, and tertiary mirror (TM) surface figure errors (SFE), as well as the ability to attach
the PM and SM to the structure and accurately align them to the TM, while maintaining that
alignment on-orbit (Fig. 4). Because the telescope has a laser metrology system that establishes
and maintains PM and SM alignment to the TM with an uncertainty of better than 7 nm rms,
the majority of the telescope’s WFE budget can be allocated to the mirrors. Moreover,

Fig. 4 Simplified system WFE budget allocation flowdown.

Fig. 3 Core throughput versus separation angle for three coronagraphs [vector-vortex corona-
graph charge 4 (VVC-4), charge 6 (VVC-6), and hybrid Lyot (HLC)] with the HabEx baseline
4-m, off-axis, unobscured telescope, and 6-m, on-axis, segmented PM telescope (Segm) with
an APLC. Vertical line is Exo-Earth at 10 pc (100 mas).5,6
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because the PM is larger and less stiff than the SM or TM, it gets the largest allocation. Note that
the measured Wide Field Infrared Survey Telescope (WFIRST) PM WFE is 13.2 nm rms.

Figure 5 shows how the PM WFE allocation flows into nominal PM engineering specifica-
tions. Recall that surface error is half of WFE and that these specifications are independent of
aperture size. This error budget defines the engineering specifications that must be achieved by
the PM fabrication process. The SFE allocation is the allowed fabrication error between the
specified surface and the as-built surface. It is set to what was demonstrated on WFIRST.9

Metrology error is the uncertainty to which the SFE is measured and is set to what was dem-
onstrated on JWST.10 The last two boxes define specific PM error contributors: uncertainty in the
ability to quantify and remove coefficient of thermal expansion (CTE) homogeneity effects and
uncertainty in the ability to quantify and remove gravity sag from the PM surface shape.

2.1.1 PM SFE

General astrophysics and exoplanet science drive the PM surface specification as a function of
spatial frequency. General astrophysics is most sensitive to the shape and stability of the PSF
driven by low-spatial frequency errors. Exoplanet science high-contrast imaging is most sensi-
tive to mid- and high-spatial frequency errors. Mid-spatial frequency errors blur or spread the
core. High-spatial frequency errors and surface roughness scatter light out of the core and over
the entire PSF. Thus, per Table 2, the total PM surface figure specification is further divided into
low-, mid-, and high-spatial frequency bands.

The specification of Table 2 assumes computer-controlled polishing for spatial frequencies of
up to 30 cycles (50 mmminimum tool size) to correct quilting error with a power spectral density
(PSD) slope of −2.5 for high-spatial frequencies. The 100-cycle boundary between mid- and
high-spatial errors assumes that the coronagraph uses a 64 × 64 deformable mirror (DM).
A 64 × 64 DM can theoretically correct spatial frequencies up to 32 cycles (or half the number
of DM elements). This could create a dark hole with an IWA of λ∕D and an outer working angle
(OWA) of 32 λ∕D. The systems-engineering consideration is that PM spatial frequency errors up
to 3× beyond what can be corrected by the DM can scatter energy back into the dark hole.
Therefore, the PM needs to have the smoothest surface figure possible for spatial frequency
errors from 30 to 100 cycles.11,12

Finally, note that if the PM is segmented, then the low-spatial SFE must be subdivided between
segment SFE (N − 30 cycles∕diameter) and segment-to-segment phasing (<N cycles∕diameter

where N ¼ number of segments). A 50∕50 division would be 2.5 nm rms for each.

Fig. 5 PM specification allocation.

Table 2 HabEx PM SFE specification.

Total error

Surface Wavefront

<5.6 nm rms <11.2 nm rms

Low spatial SFE (< 30 cycles∕diameter) <4.3 nm rms <8.6 nm rms

Mid-spatial SFE (30 to 100 cycles∕diameter) <3.3 nm rms <6.6 nm rms

High spatial SFE (>100 cycles∕diameter) <1.4 nm rms <2.8 nm rms

Roughness <0.3 nm rms <0.6 nm rms
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2.1.2 PM CTE error

CTE errors can introduce low- and mid-spatial frequency SFE. CTE errors have two compo-
nents. First is knowledge of the exact temperature at which the mirror’s CTE is zero. Any opera-
tional departure from this temperature will introduce a WFE—primarily power. Fortunately, this
error can be mitigated by adjusting the on-orbit operating temperature for a minimumWFE. The
second, and more important, error is mid-spatial frequency residual cryo-null-polishing error.
Because of CTE inhomogeneity in the mirror substrate, the mirror will have a different shape
at its operating temperature than at its manufacture temperature. This is a problem for cryogenic
telescopes, which can be mitigated via cryo-null-figuring (CNF). For example, the JWST mirror
segments, which operate at 30 K (260 K below their manufacture temperature), had to undergo
CNF for many tens of nanometers of cryodeformation.10 HabEx requires CNF because it has an
extremely smooth SFE specification and it plans to operate at a nominal temperature of 270 K
(i.e., 30 K below its likely fabrication temperature). The exact amount of WFE that must undergo
CNF depends on the mirror substrate’s CTE homogeneity. For example, Fig. 6 shows a 1.2-m
extreme-lightweight ZERODUR® mirror (ELZM) with a 9.8-nm rms cryodeformation over
a 62-K temperature range. Analysis indicates that this mirror has a CTE homogeneity of
�5 ppb∕K (parts per billion/K), and its surface changes by 0.18 nm∕K.13 Thus, the maximum
CTE error shift from its 300-K manufacture temperature to its 270-K operating temperature is
the error budget allocation of 3.6 nm rms. Obviously, this error can be mitigated by CNF or
DM correction.

2.1.3 PM gravity sag figure error

A gravity sag error is primarily low-spatial frequency. It occurs because, during fabrication,
mirrors experience self-weight deflection when attached to their metrology mount. However,
in the 0-G environment of space, there is no self-weight deflection. The change in the mirror’s
shape from 1 to 0 (zero) G is called G-release. To produce a diffraction limited space telescope,
the PM must be fabricated to its required on-orbit 0-G figure. This is accomplished by quantify-
ing and removing gravity sag from the mirror fabrication process. Any uncertainty in this
removal is called G-release error. For HabEx, the desired G-release error is <4 nm rms.

Fig. 6 1.2-m Schott ELZM 62 K thermal deformation.
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Of course, this error could be corrected via a DM, but it is better for the PM to have a good
0-G figure.

Gravity sag consists of two components: self-weight mount deflection and facesheet deflec-
tion. Self-weight mount deflection occurs due to the reaction or bending of the mirror gravity
against its optomechanical support mount in a gravitational field. Facesheet deflection occurs
because space mirrors are typically light-weight—leaving parts of the facesheet without support.
These unsupported parts deflect due to the acceleration of gravity against the vertical core ribs.
For the purposes of this paper, we will ignore facesheet gravity deflection because it is typically a
smaller effect than fabrication quilting. The reason is that force exerted onto the facesheet by
grinding and polishing is typically greater than that of gravity. Also, methods to mitigate face-
sheet deflection and quilting at the scale of HabEx’s 4-m mirror are Technology Readiness Level
9 (TRL-9). One proven approach for mitigating this issue is to optimize the mirror’s facesheet
thickness and core pocket dimensions. Another approach is to pressurize the mirror core cells to
balance gravity during the fabrication process.

2.2 LOS Stability Specification

LOS instability is important for both general astrophysics and coronagraphy because it causes
PSF smearing that degrades spatial resolution and IWA. A typical specification for LOS error is
<1∕10 th the PSF radius. For a 400-nm-diffraction-limited 4-m telescope, the on-sky PSF radius
is ∼20 mas. Thus, the specification should be <2 mas. But coronagraphs require LOS stability
better than 0.3 mas per axis. This is because LOS error causes beam-shear on the SM and TM, as
well as other mirrors in the optical train, which introduces dynamic WFE instability resulting in
contrast leakage (see Sec. 2.3).

LOS instability can be traced to both thermal and mechanical effects. LOS drift occurs when
the telescope is slewed relative to the Sun. Temperature change causes the telescope structure to
expand or contract, resulting in rigid-body motions of the optical components relative to each
other. Fortunately, thermal effects are slow and can be corrected. Because HabEx is baselining a
laser-truss system to sense and correct slow LOS drift, LOS jitter is the more important perfor-
mance specification for which to design. Jitter is produced by mechanical disturbance acceler-
ations (from sources such as reaction wheels, cryo-coolers, etc.), exciting modes in the telescope
structure and causing rigid body motions (RBM) of the PM, SM, and TM. To correct “slow”
jitter (i.e., <10 Hz), HabEx is baselining a low-order Zernike wavefront sensor (ZWFS), similar
to the WFIRST low-order wavefront sensor, that can sense and correct LOS jitter on the order of
2.5 mas to <0.3 mas per axis.14 But, given that the ZWFS cannot correct “fast” jitter at frequen-
cies above 10 Hz, the LOS stability specification has temporal regimes (Table 3). To be
conservative, the telescope design is specified to meet the >10 Hz requirement.

To design the telescope, it is necessary to convert LOS stability specification into an engi-
neering tolerance (i.e., maximum allowed optical component RBMs). Zemax tolerance analysis
of the baseline optical design provides the LOS and WFE sensitivity to RBMs of the PM and
SMs relative to the TM for the baseline F∕2.5 optical design.15 From these sensitivities, an LOS
error budget can be allocated for each rigid body degree of freedom (DOF) to keep the on-sky
LOS jitter <0.3 mas per axis specification. Figure 7 shows one potential error budget allocation.

2.3 WFE Stability Specification

WFE stability specifications are driven by the coronagraph. Any temporal or dynamic change in
WFE can result in dark hole speckles that produce a false exoplanet measurement or mask a true

Table 3 HabEx LOS specification.

Temporal frequency Jitter amplitude per axis

<10 Hz <2 mas

>10 Hz <0.3 mas (only required for coronagraphy)
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signal. The issue is how large of a WFE a coronagraph can tolerate. A leading candidate is the
VVC-N, where N indicates the “charge” or azimuthal shear. Figure 8 summarizes the maximum
amount of each Zernike polynomial that can be tolerated by VVC-4 to VVC-10.16 The higher the
VVC charge, the more low-order error it can reject; however, when the IWA is larger, the
throughput is lower. Also, note that Table 8 is reporting the maximum amount for each term
if that term was the only error source. In practice, it is necessary to distribute the error between all
the terms likely to occur. Currently, HabEx is baselining the VVC-6.

Figure 9 outlines a method for creating a wavefront stability error budget discussed in detail
in Refs. 5 and 6. The method derives the error budget to detect an exoplanet based on the total
allowable coronagraph contrast leakage to enable a detection at a defined signal-to-noise ratio
with specific noise properties. Figure 9 shows the case of an exo-Earth at 10 pc. A different
design case would yield a different error budget. The exoplanet is detectable as long as
WFE instability produces <40 ppt (parts per trillion) of contrast instability. To be conservative,
the HabEx study assumed 30 ppt. The next step is to calculate the sensitivity of the corona-
graph’s contrast leakage to each Zernike polynomial. Then, using this sensitivity, one must allo-
cate the allowable contrast [on a root sum square (rss) basis] between each Zernike term to
produce a wavefront stability error budget.

Figure 10 demonstrates this process for the VVC-6. The first data column shows the VVC-
6’s contrast leakage sensitivity for each Zernike term. As is evident, the VVC-6 is insensitive to

Fig. 8 Wavefront stability required by VVC.

Fig. 7 RBM tolerance allocation to meet <0.3 mas uncorrectable LOS stability specification.
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lower-order error up to spherical and very sensitive to trefoil and higher-order errors. The next
column shows a completely arbitrary allocation of contrast: 1 ppt of contrast is allocated to tilt,
power, astigmatism, coma, and spherical; and the balance is divided evenly between higher-order
Zernike terms. Note that total contrast is an rss of the individual terms. Multiplying these contrast
allocations by the coronagraph sensitivity yields an initial total wavefront stability error budget.
It is then necessary to suballocate these errors to the actual physical mechanisms by which they
arise: LOS jitter, inertial, and thermal deformations. Again, for simplicity, this example assumes
a 33% suballocation to LOS, inertial, and thermal wavefront stability.

WFE instability can arise from both mechanical and thermal sources. Mechanical LOS WFE
instability occurs when LOS drift/jitter causes beam-shear on the SM and TM. Because the
mirrors are conics, beam shear manifests itself as low-order astigmatism and coma (shear of
spherical aberration is coma and subaperture coma appears to be astigmatism). Inertial WFE
instability occurs when the PM is accelerated by mechanical disturbances, causing it to react
(i.e., bend) against its mounts. Consistent with intuition, the shape of this error is similar
to the mirror’s static (X; Y; Z) gravity sag (i.e., bending of the mirror when it is exposed to

Fig. 10 Allocation of WFE stability between LOS, inertial, and thermal sources.

Fig. 9 Wavefront stability error budget development method.
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a 1 G acceleration in the X; Y; Z directions). Therefore, the shape of the inertial WFE instability
can be tailored by adjusting the geometry of the mirror mount design (i.e., 3- versus 6- versus
9-point) mount and location of mounts (i.e., edge versus 70% radius).

There is one mitigation for LOS and inertial instability. Mechanical motions tend to be peri-
odic, and multiple cycles over an integration period will produce a fixed pattern. If this pattern is
100% repeatable, it is possible to remove it through “speckle subtraction.” Yet, if the motion is
not perfectly periodic, there will be a nonrepeatable component that cannot be calibrated and
removed. Thus, it is the instability of the mechanical motion (not the motion itself) that is impor-
tant. Regardless, the best mitigation strategy is to either minimize mechanical disturbances by
minimizing mechanical noise, isolate such noise from the telescope via passive isolation, or
active sense and control.

Thermal WFE instability occurs when the PM’s bulk temperature or temperature gradient
changes. If the mirror’s CTE is completely homogeneous and constant, then the bulk temper-
ature should only result in a defocus error. However, any inhomogeneity in the mirror’s CTE will
result in a temperature-dependent WFE. In addition, because CTE is itself temperature depen-
dent, any change in the mirror’s thermal gradient will also result in a WFE. Unlike a mechanical
WFE, which is mostly low spatial frequency, a thermal WFE can have significant high-spatial-
frequency content. Therefore, the best mitigation strategy is to minimize thermal disturbances.
This can be done either by passive isolation or active sense and control.

While Fig. 10 demonstrates a simple uniform allocation between Zernike terms and a 33%
allocation among LOS, inertial, and thermal wavefront stabilities, a real error budget for a real
telescope/coronagraph architecture must balance the allocation based on the likelihood of each
error source occurring. (This process is discussed in Sec. 5 and illustrated for the Baseline HabEx
telescope in Fig. 61.)

3 Telescope Optomechanical Design

Telescope design is an iterative process. The current design is a result of multiple iterations over a
3-year period involving numerous trade studies on structure, PM design, PM mounting, where to
locate the science instruments, etc.15,17–19 These trades were accomplished using STOP analysis
to evaluate each iteration’s ability to achieve the required performance specifications (LOS and
WFE stability). A fundamental rule for the design was that every proposed system, subsystem, or
component should be at TRL-6 or higher, except for the primary mirror assembly (PMA)
and science instruments. The results are extremely robust. This paper reports performance
analysis (LOS, mechanical, and thermal wavefront stability) for the Baseline Rev 3 telescope
design.

An ultrastable optomechanical telescope is required to meet the specified WFE and LOS.
The baseline telescope architecture achieves this level of performance because of the mass and
volume capacities of the planned SLS. SLS mass capacity enables the design of an extremely
stiff optomechanical structure that can align the PM, SM, and TM to each other and maintain that
alignment. Moreover, SLS volume capacity enables the use of a monolithic-aperture, off-axis
PM with no deployments.

3.1 Baseline HabEx Optical Telescope

The “baseline” telescope (Fig. 11) consists of the PMA, secondary mirror assembly (SMA), SM
tower with integrated science instrument module (ISIM), and stray-light tube with forward scarf.
The scarf angle (currently set at 40 deg) determines the closest angle of observation to the Sun.
The tower and baffle tube are the optical bench that maintains alignment between the PMA,
SMA, and TMA. The OTA is physically separate from the spacecraft, which includes the solar
array sunshield. The size of the solar arrays on the bottom is driven by thermal power require-
ments during anti-Sun pointing. Instead of reaction wheels, thrusters are used for slewing the
observatory, and microthrusters are used for fine pointing control during science observations.
The OTA and spacecraft connect only at the interface ring. This ring is also the interface between
the payload and the SLS. The forward door is not shown. It is closed for launch to prevent
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contamination and provide additional stiffness. In addition, launch locks connect the spacecraft
solar panels to the tube for launch.

The baseline observatory is designed for the SLS block 1 B mass and volume capacities and
launch environment.19 The payload fits inside the SLS 8.4-m fairing (Fig. 12) with no deploy-
ments. The projected total mass (with 30% reserve) of 14 metric ton (mt) (Table 4) has significant
margin against the SLS block-2 capacity of 44 mt to the Sun-Earth Second Lagrange orbit
(SE-L2). SE-L2 is the preferred orbit for HabEx because of its thermal and mechanical stability.
The telescope and spacecraft structures are designed to have a first mode higher than 10 Hz and
to survive a 3.5-g axial and 1.5-g lateral launch load. Table 5 lists the current best mass estimate
for each of the telescope’s major elements.

Secondary mirror
tower  structure

Integrated science
instrument module

Baffle tube with
forward scarf

Primary mirror
Assembly

Optical telescope assemblySpacecraft

Solar panels

Microthrusters
in 8 locations

Interface
ring

Fig. 11 Baseline HabEx observatory payload.

Fig. 12 Payload fits in SLS 8.4 m fairing.
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3.2 Optical Telescope Structure

The structure is the foundation for the entire telescope. It is the optical bench to which the optical
components and science instruments are attached. To meet the required performance specifica-
tions, the optical telescope structure has the critical function of placing the PM, SM, and TM at
the locations specified by the optical design and keeping them at those locations with sufficient
stability (see Secs. 2.2 and 2.3). This is accomplished by making the structure as stiff as possible
and by minimizing the disturbances to which the structure is exposed, given that the optical
design is a TMA and three of the four science instruments share a common TM. The TM location
is fixed, and the PM and SM alignments are adjusted relative to the TM. As presented in Sec. 4,
STOP modeling predicts that the baseline structure meets the LOS jitter and WFE stability spec-
ifications for a specified microthruster disturbance profile.

Per Lake and Levine,20 WFE is proportional to rms magnitude of the applied inertial accel-
eration divided by square of the structure’s first mode frequency. Thus, for a given stiffness
structure, a 10× reduction in acceleration results in a 10× WFE reduction. However, for a given
acceleration level, a 10× increase in first mode frequency results in a 100×WFE reduction. Thus,
one should design the structure to be as stiff as possible. As shown in Fig. 13, for a 100-Hz
structure, picometer displacement is achieved by limiting noise acceleration to micro-g levels.

While not designed to meet the requirements of a UV/Optical/Near-IR (UVOIR) exoplanet
science mission, JWST is an example of what is possible. The JWST SM support structure has a
first mode of ∼7.5 Hz at its operating temperature of 50 K. When excited by the reaction wheels,
SM motion can impact JWST’s LOS and WFE specifications (Fig. 14).21 However, because of

Table 4 HabEx observatory payload mass estimate.

Element Current best estimate (kg) Reserve (kg) Total (kg)

Telescope 3431 1029 4460

Science instruments 1164 499 1663

Spacecraft 4500 1350 5850

Interface ring 210 63 273

Payload adapter feature TBD — —

Payload dry mass 9305 2941 12,246

Propellant 1700 — 1700

Payload wet mass 11,005 — 13,946

Table 5 HabEx optical telescope mass estimate.

Component Current Best Estimate (kg)

PM (with launch locks) 1453

PM support 865

SMA 11

TM assembly 65

Tower and baffle tube 982

Forward door 55

Total OTA mass 3431
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dampening, a warm JWST may have LOS stability consistent with the HabEx specification of
<0.5 mas per axis.22 To provide design margin, the HabEx goal was to design a secondary sup-
port structure with a first mode frequency of ∼28 Hz (i.e., 4× stiffer than JWST). But the PM’s
2.5 F∕# makes this challenging. HabEx’s PM-to-SM separation is ∼9 m (compared to ∼7 m

for JWST).
The baseline structure is the result of multiple design iterations.23 An initial standalone truss

tower concept had an unacceptably low first-mode frequency of ∼2 Hz. Connecting it to the
stray-light baffle tube yielded modes of 11 to 30 Hz. In addition to straylight suppression, the
internal baffles provide stiffness. However, because the optical design is off-axis, the baffle rings
are not continuous, thus gussets were added to the tower structure, which span the baffle gaps.
These gussets eliminated the need for a truss structure, reducing mass and opening the space
for instruments (Fig. 15). The SMA attaches to the top of the tower and the bottom contains the
ISIM. The tower and tube use TRL-9 composite material M46J with quasi-isotopic laminate
properties of 25% 0 deg, 50% 45 deg, and 25% 90 deg, as well as a density of 1.58 g∕cm3.

As shown in Fig. 11, the telescope is a standalone structure separate from the spacecraft. The
spacecraft surrounds the telescope without physically touching it, except at the interface ring
(which also connects to the launch vehicle payload adapter fixture). This configuration mini-
mizes the propagation of mechanical disturbances from the spacecraft into the telescope and
provides thermal shielding of the telescope while minimizing heat leaks. In fact, STOP modeling
predicts that thermal isolation is too good. To increase the PM cold bias, it was necessary to
remove portions of the spacecraft anti-Sun structure. While the PM and SM have active thermal
control, the structure does not (although it could be added). The structure is not actively heated
because the telescope includes a laser truss system that maintains alignment between the PM,
SM, and TM. The laser truss bandwidth is sufficient to sense and correct slow thermal drifts, and
its noise uncertainty is sufficient to meet the LOS Jitter and LOS WFE stability specifications.
Finally, while STOP modeling predicts that the integrated telescope/spacecraft payload’s
mechanical performance meets the LOS Jitter and LOS WFE stability specifications (Sec. 4),

Fig. 13 Error versus load.

Fig. 14 JWST cryogenic LOS and WFE performance predictions.
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margin can be obtained by adding passive damping (such as Northrop’s JWST passive struts) or
active vibration isolation (such as Lockheed’s disturbance free payload technology) to the inter-
face ring.

3.3 PMA

A PMA is an integrated optomechanical system consisting of a mirror substrate (its mount, sup-
port structure, and launch lock system) and an active thermal control system. A PMA must be
designed as a whole element because interactions among PMA elements determine the tele-
scope’s ability to meet its performance specifications (Table 1). In designing the PM, the
HabEx design team followed proven design practices and assumed it would be fabricated using
processes proven on previous 1- to 2.4-m TRL-9 mirrors (e.g., Kepler, WFIRST, and Hubble).
Furthermore, the design team improved the Astrophysics Division’s funded technology develop-
ment to design and fabricate a 4-m-class ultrastable UVOIR PM (e.g., Advanced Mirror
Technology Development, AMTD, project and Predictive Thermal Control Study, PTCS).24–28

The baseline HabEx design is a monolithic 4-m ZERODUR® open-back iso-grid mirror. An
alternative design is a ULE© closed-back hex-core mirror. ZERODUR® was selected for the
baseline design because at 4 m it has a higher TRL than ULE©.

3.3.1 Monolithic versus segmented

The single most important design decision is whether to make the PM monolithic or segmented.
The current largest space mirror is the 2.4-mmonolith on Hubble; however, onceWebb flies, it will
carry a 6.5-m segmented mirror. It is much easier to achieve the ultrastable wavefront required for
coronagraphy with a monolithic mirror than with a segmented mirror. As discussed in Sec. 2.3 and
shown in Fig. 10, habitable-zone coronagraphy requires a wavefront with picometer-level stability
in the mid-spatial frequency regime (i.e., 2 to 10 cycles per aperture). To meet this specification,
a segmented aperture mirror must align and phase its segments to each other and maintain that
phasing with a stability of a few pm.5,25,29–32 A monolith has no such requirement.

With its 2.0-μm diffraction limit, JWSTwas obviously not designed to meet the requirements
of a UVOIR exoplanet science mission. But JWST defines the current state of the art. As shown
in Fig. 14, JWST’s primary mirror segment assemblies (PMSA) are predicted to have ∼20-nm-
rms rocking modes in the 40- to 50-Hz range, which impact WFE. In addition, the JWST PMA is
predicted to have an ∼40-nm-rms “wing flap” mode at ∼17 Hz (Fig. 14), driven entirely by

Fig. 15 Gussets stiffen tower/tube structure.
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back-plane stiffness.21 While JWST was not designed for coronagraphy, its design can be
improved. Increasing the backplane stiffness from 17 to 170 Hz could potentially reduce the
wing flap amplitude to ∼400 pm rms. And an ∼10× improvement in WFE might be achieved
by operating JWST while warm (because of dampening). But to get into the 1 to 2 pm stability
requires increasing its vibration isolation from 70 to 140 dB.22 All of this complexity and
engineering difficulty is avoided with a monolithic mirror. Two other examples of segmented
aperture telescopes are the Large Aperture Mirror Program (LAMP) and Segmented Mirror
Telescope (SMT). LAMP (Fig. 16) was a ground demonstration of a 4-m, actively controlled,
segmented mirror. Each of its seven 2-m segments were ∼17-mm thick and attached to surface
control actuators mounted in a stiff, lightweight, graphite-epoxy, and back-up structure. A total
of 312 surface control and 42 segment position actuators enabled the LAMP mirror to be con-
trolled to a wavefront accuracy of <100 nm rms (i.e., diffraction limit of 1.3 μm).33 SMT
(Fig. 17) is a 3-m telescope with six hexagonal petals. Each segment has more than 100 actuators
for surface control, as well as three fine and six coarse actuators to bring the segments into
alignment after deployment.34 SMT was designed to be diffraction limited at 0.5 μm but only
achieved 5 μm because of structural and thermal instability.

Another important design trade is aperture diameter, because size drives science yield. While
the SLS 8.4-m fairing can accommodate an aperture larger than 6 m, 4 m was selected for
programmatic reasons. A 4-m PM can be affordably manufactured using existing infrastructure
available at multiple potential suppliers. Schott has existing infrastructure to melt, cast, and
lightweight-machine 4.2-m ZERODUR® mirror substrates (Fig. 18).35 Similarly, Corning has

Fig. 16 4-m LAMP telescope.

Fig. 17 3-m SMT telescope.
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infrastructure to assemble 4-m “class” ULE® mirror substrates via either frit bond or low temper-
ature-fusion (LTF). And multiple organizations have existing infrastructure to grind and polish
4-m class substrates into space mirrors, including: Collins Aerospace in Danbury, Connecticut;
L3/Brashears in Pittsburgh, Pennsylvania; Harris Corporation in Rochester, New York; Arizona
Optical Systems and the University of Arizona in Tucson, Arizona; and RESOC outside of Paris,
France. Figure 19 shows the 4.2-m Southern Astrophysical Research Telescope (SOAR)
PM being polished via computer control at Collins Aerospace.36 In addition, several organiza-
tions are considering, planning, or implementing the ability to coat 4- to 6-m class mirrors by
scaling up the proven process demonstrated on 2.5-m class mirrors, including: Collins
Aerospace,36 ZeCoat Corporation,37 and Harris Corporation. Because 4-m mirrors can be manu-
factured by multiple organizations using existing infrastructure and processes, they are relatively
affordable and low risk.

3.3.2 PM material

Selecting the mirror material involves thermal, mechanical, and programmatic considerations.
For HabEx, a key metric is CTE. CTE and CTE homogeneity are important because they deter-
mine how the mirror’s shape deforms as a function of bulk temperature or thermal gradient
changes. Such deformations impact the telescope’s ability to meet its diffraction-limited perfor-
mance and wavefront-stability specifications. The typical approach for mitigating this risk is to

Fig. 18 Schott Glass 5-m, 5-axis CNC machine center-loaded with a 4.5-m glassy ZERODUR®

blank.

Fig. 19 Collins Aerospace computer-controlled manufacture of 4.2-m SOAR PM.

Stahl et al.: Habitable-Zone Exoplanet Observatory baseline 4-m telescope. . .

J. Astron. Telesc. Instrum. Syst. 034004-16 Jul–Sep 2020 • Vol. 6(3)



select a material with zero CTE and extreme homogeneity. A second approach is to measure the
mirror’s shape change between its manufacture and operational temperatures and then “cryo-null
figure” the mirror to have the desired surface shape at the operational temperature. This is
the approach taken for the JWST beryllium mirrors. A final approach is to actively control the
mirror’s on-orbit shape.

The HabEx telescope design team evaluated ZERODUR® and ULE®. Both materials are
TRL-9 with multiple mirrors currently flying in space. Both Schott and Corning can tailor their
respective material’s zero CTE temperature (Figs. 20 and 21) and both claim similar CTE homo-
geneity (i.e.,�5 ppb). Therefore, a mirror manufactured from either material should have similar
thermal performance. But the real impact of this design decision is architectural—whether the
mirror is open-backed or closed-back. Because ZERODUR® is a ceramic, it must be machined
from a single boule, resulting in an open-back architecture. By comparison, ULE® is a glass and
can be assembled via frit bonding or LTF processes into a closed-back architecture. The advan-
tage is that closed-back mirrors have significantly higher stiffness. Yet, at the same time, because
a ZERODUR® mirror is machined from a single boule, their CTE distribution can be smoother
and more homogeneous.

3.3.3 Primary mirror substrate design

The most important design criterion is mirror stiffness. Stiffness enables performance and sim-
plifies manufacture. When the mirror’s stiffness is higher, it is easier to produce the smooth
surface needed to achieve 400-nm diffraction limited performance. The higher the mirror’s stiff-
ness, the smaller its gravity sag or self-weight deflection, which results in a smaller inertial error
and lowers the potential of a significant G-release error. Also, a stiffer mirror is easier to handle
(i.e., mounting to machinery or simply turning over), which reduces fabrication risk.

(a) (b)

Fig. 20 Schott can tailor its Zerodur® ceramic to have (a) a zero slope dL∕L or (b) zero CTE at
temperatures ranging from ∼ − 20°C to þ40°C with an uncertainty of �4°C.38

Fig. 21 Corning can tailor its ULE® glass to have a zero CTE at temperatures ranging from ∼5°C
to 40°C based on the amount of titanium dopant with an uncertainty of �4°C. Less titanium shifts
the zero-CTE to lower temperatures. More titanium shifts zero-CTE to higher temperatures.39
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Inertial WFE is the deformation that a mirror experiences when it is accelerated against its
mount. To first order, it is a scaled vector-superposition of the mirror’s (X; Y; Z) 1 G gravity sag.
For example, if a mirror has 25 μm of 1 G gravity sag, it will have 25 pm of deformation when
accelerated by 1 micro-G. Note that inertial WFE is not the same as resonant WFE. Resonant
WFE typically has a large amplitude and occurs only at specific temporal frequencies. Inertial
WFE, on the other hand, occurs at all nonresonant temporal frequencies. Again, JWST provides
a definitive example of inertial error. JWST’s 220-Hz open-back beryllium PM segments on a
three-point mount have a horizontal gravity sag of ∼200 nm. When driven (in a horizontal con-
figuration) at 87.3 Hz, they have an inertial astigmatic WFE of∼220 nm per G of driving force.40

There are two approaches for minimizing inertial WFE: make the mirror as stiff as possible to
minimize its gravity sag and/or minimize the mirror’s exposure to acceleration by minimizing
thruster noise or isolating the mirror from such noise.

G-release error, as discussed in Sec. 2.1.3, is the error between a mirror’s 1-G shape and its
on-orbit 0-G shape. The risk that a mirror will have significant G-release error is correlated with
the mirror’s stiffness. The lower the mirror’s stiffness, the greater will be its 1-G gravity sag—
and the greater will be the uncertainty in the fabrication process’s ability to characterize and
compensate for or back-out that gravity sag. Thus, it is best to make the mirror as stiff as possible.

For a 400-nm diffraction-limited telescope, G-release error should be <4 nm rms. While
TRL-9 techniques exist to characterize self-weight deflection to <10 nm rms, it is also possible
to mitigate the risk of G-release error via an active mirror (e.g., PM, SM, or deformable flat
mirrors). An active PM can easily correct 50 to 200 nm rms of error using TRL-9 technology.
While they were never used, the Hubble PM had 24 actuators to mitigate the risk of astigmatic
G-release error.41 The Webb PM has 18 actuators to mitigate the risk of segment-radius matching
error and segment-level astigmatism.

Two TRL-9 methods for characterizing and removing self-weight deflection to <10 nm rms
are a metrology mount that compensates for or off-loads the effect of gravity during testing and
testing the mirror under multiorientation to mathematically solve for gravity deformation sep-
arate from surface shape. Regarding gravity off-loading, two implementations are multipoint
mount and air bag. For mid-quality mirrors, air bags are adequate. For high-precision mirrors,
multipoint mounts are preferred. Multipoint metrology mount technology was developed with
NASA funding in the 1970s for the Large Space Telescope Program (Hubble).41–43 The Hubble
PM’s 7.6-μm self-weight deflection was characterized to an accuracy of 1.4 nm rms using a 135-
point metrology mount.41,44,45 Regarding gravity orientation testing, two methods are the vertical
face-up/face-down test46 and the horizontal rotation testing.36,47,48 Typically, a multipoint mount
or air bag is used for in-process metrology, and a multiorientation test is used for final metrology.
The Kepler PM was tested using an air bag, a 108-point metrology mount, and a face-up/face-
down gravity orientation test.46 The air bag was estimated to off-load gravity sag with an uncer-
tainty of 5.6 nm rms. The difference between the air bag test and multipoint mount test was
16.4 nm rms. The difference between the air bag and face-up/face-down test was 18.4 nm rms.
In both cases, the largest component of this difference was spherical aberration. By inference,
the difference between the multipoint mount and the up/down test was 8.3 nm rms.

Whether the PM is active or passive, it is important to make it as stiff as possible to minimize
its gravity sag (because when the amplitude is smaller, it is easier to characterize and remove the
amplitude from the 1 G metrology data). For any given mirror material, mirror gravity sag is
proportional to geometry, mass density, and mount interface:

EQ-TARGET;temp:intralink-;sec3.3.3;116;1961GGravity Sag ∼ CSP

�
D4

t3

�
ρAD ∼ 1∕ð2 πfÞ2;

whereCSP is the mount support configuration constant,D is the mirror substrate diameter, t is the
mirror substrate thickness, ρAD is the mirror substrate mass areal density, and f is the mirror
substrate first mode frequency.

To minimize gravity sag for a 4-m mirror, one must make the mirror as thick as possible and
with the lowest areal density possible. For ULE®, the state-of-art thickness is ∼30 cm.
Specialized abrasivewaterjet machines can cut core elements as thick as 28 cm.49 These elements
can be frit bonded or low-temperature fused to form a mirror substrate. To make thicker mirrors,
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the AMTD project successfully demonstrated a stack and seal process by manufacturing a
40-cm-thick test mirror.27,28,49 For ZERODUR®, Schott has demonstrated 42-cm-thick substrates
and they are working to produce 45-cm-thick mirrors.35 Other design elements that impact stiff-
ness include: face-sheet thickness; whether not the back of the mirror is open, closed, or partially
closed and thickness of the back-sheet; and geometry of the core structure (i.e., iso-grid,
rectilinear-grid, or hex-grid), pocket size, core wall thickness, etc. For example, hex-grid is more
mass efficient but less stiff than iso-grid. Thus, hex-grid is typically used for closed-back mirrors
(because the back sheet adds stiffness), and iso-grid is typically used for open-back mirrors.
Also, the mirror mount geometry is important. A complete discussion of mirror design meth-
odology can be found in Yoder and Vukobratovich.41

The HabEx design team conducted multiple trade studies with literally hundreds of variations
to optimize the stiffness, mass, and gravity sag of candidate open-back ZERODUR® and
closed-back ULE® PMs. Design parameters traded included facesheet thickness, mirror thick-
ness, core wall thickness, core pocket size, core geometry, and mount geometry (i.e., edge mount
R ¼ 100% versus R ¼ 80% or 67%).50–54 Early in the design process, the goal was to achieve the
highest first-mode frequency possible. The reason was to minimize inertial WFE stability caused
by reaction wheels. However, once microthrusters with their significantly lower noise properties
were baselined, the emphasis shifted to optimizing thermal WFE stability, inertial WFE stability,
and demonstrated manufacturability. ZERODUR® was selected as the baseline material because
Schott had demonstrated a routine ability to fabricate 4.2-m diameter ZERODUR® substrates
and turn them into lightweight structures via their ELZM machining process. Furthermore,
a 1.2-m ELZM owned by Schott and tested at NASA Marshall Space Flight Center (MSFC)
showed better thermal stability than a 1.5-m ULE® mirror manufactured as part of the AMTD
project.55 Part of ZERODUR® CTE advantage over ULE is that the mirror is fabricated from a
single boule of material. Thus, a ZERODUR® mirror has a more homogeneous CTE distribution
than a mirror assembled from multiple ULE® components.

The baseline ZERODUR® mirror assembly provides an excellent balance between mass and
stiffness. The substrate has a flat-back geometry with a 42-cm edge thickness and mass of
∼1400 kg (Fig. 22). The mirror’s free first mode frequency is 88 Hz. Its mounted first-mode
frequency is 70 Hz. Mass is important because it provides thermal capacity for a thermally
stable mirror. In addition, mass allows for local stiffening of the substrate to minimize gravity
sag.50 The mirror substrate geometry and hexapod mount designs were optimized to produce the
most uniform X; Y; Z gravity sag deformation possible. The mirror is attached at three edge
locations to a hexapod-mount system. This geometry was selected to allow defocus and
minimize spherical gravity sag based on VVC aberration sensitivity (Fig. 8). Figure 23 shows
the baseline mirror’s predicted 1-G surface gravity sag in global telescope X; Y; Z coordinate
system.

As a matter of completeness, other substrate designs considered include an MSFC 45-cm-
thick closed-back ULE® mirror with total mass of 1388 kg and first mode frequency of 180 Hz,52

a Harris Corporation 40-cm-thick closed-back ULE® mirror with total mass of 440 kg and first
mode frequency of 137 Hz, developed under the AMTD project,56 a Schott AG ELZM on-axis
34-cm-thick design with 718 kg and ∼80 Hz first mode,57 and a Collins Corp ZERODUR®

shaped-back mirror with mass of 1200 kg and first mode frequency of 120 Hz.36

Substrate mass
1408 kg

Truss mass
865 kg

Hexapod and
launch lock mass

45 kg

Fig. 22 PMA.
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3.3.4 PM support structure

The PM support structure is a simple truss. It is specified to be manufactured from TRL-9 M46J
with quasi-isotopic laminate properties of 25% 0 deg, 50% 45 deg, and 25% 90 deg, as well as a
density of 1.58 g∕cm3 with a total mass of ∼865 kg (Fig. 22). As discussed earlier in this sec-
tion, JWST’s PMA is predicted to have a flapping mode at 17 Hz, which, as discussed in
Sec. 2.2, is above the anticipated ZWFS 10-Hz control frequency. Therefore, to minimize
WFE stability, the HabEx PM hexapod supports and truss structure are designed for its rigid
body and bending modes to be above 40 Hz. For example, Figs. 24 and 25 show a 43.5-Hz
rocking mode and a 50-Hz bouncing mode.

Finally, the PM truss structure is designed to accommodate a launch constraint system con-
sisting of 18 axial and 12 radial launch locks (Fig. 26). While ZERODUR® is suitable for appli-
cations with mechanical loads from 4.3 to 14.5 psi and when manufactured using Schott’s
standard surface etch protocol can withstand up to 17.4 K psi for short durations,58 standard
engineering practice is to limit the maximum launch load to 600 psi. The HabEx design team
modeled stress experienced by the baseline PM when exposed to different launch acceleration
loads with and without a launch lock system (Table 6). Without a constraint system, launch stress

Fig. 24 43.5-Hz rocking mode.

Fig. 25 50-Hz bouncing mode.

Fig. 23 PM gravity sag (surface).
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of as much as 1000 psi is concentrated at the three hexapod attachment locations (Fig. 27). And,
while according to Schott a Zerodur® mirror can tolerate this level of stress, we designed a launch
constraint system that is predicted to expose no point on the mirror to greater than 300 psi
(Fig. 27). Also, if necessary, the launch constraint support structure could be used as a reaction
structure for an active figure control system to mitigate G-release error.

3.3.5 PM actuators

The PM is attached to six hexapod actuators and 30 launch lock mechanisms (18 axial and
12 radial). The SM is also attached to six hexapod actuators and launch lock mechanisms.

Fig. 26 PM launch constraint system has 18 axial and 12 radial launch locks.

Table 6 Baseline HabEx 4-m PM launch stress.

Acceleration loads (G)

No-lock stress (psi) Locked stress (psi)X Y Z

0.5 0.0 6.0 995 197

0.0 0.5 6.0 959 160

2.0 0.0 3.5 702 297

0.0 2.0 3.5 657 233

Fig. 27 Launch locks redistribute launch stress from the three hexapod attachment locations to
the entire mirror.
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These actuators and mechanisms are assumed TRL-9 components given that similar actuators
and mechanisms are currently flying on Hubble and Kepler and will fly on JWST and WFIRST.
For example, JWST uses a two-stage stepper-motor actuator for both launch restraint and align-
ment. Its coarse stage has a range of 20 mm (12.5 mm of which is used to deploy from the launch
restraints). The fine stage uses a mechanical gear to drive an eccentric cam shaft with a step size
of 7.7 nm.59 Given that the fine stage is mechanical, smaller step sizes required for HabEx or
Large UV/Optical/IR Surveyor (LUVOIR) can be achieved with a different gear ratio. In addi-
tion, the AMTD project designed, built, and characterized a fine-stage actuator with a range of
15 μm, step size of 0.8 nm, mass of 0.313 kg, and axial-stiffness of 41 N∕μm (Fig. 28).27

Figure 2 (0.8 nm step 8: AMTD fine stage) actuator.27

3.3.6 PM reflective coating

The baseline reflectance coating for the PM, SM, and TM is a Hubble-like aluminum coating
with a magnesium-fluoride protective overcoat. The coating and its deposition processes are
TRL-9 and have been used in flight programs since the 1970s. HabEx has the same spectral
range science requirement as Hubble.

3.3.7 PM thermal control system

The PM thermal control system is critical to the HabEx telescope’s ability to achieve science-
required diffraction-limited performance and wavefront stability. The function of the thermal
control system is to uniformly set the PM’s front surface to the desired operating temperature
and keep it at that temperature regardless of where the telescope points on the sky relative to the
Sun. Control system accuracy impacts diffraction limit performance, signal-to-noise ratio, and
spectral throughput. The precision with which the system can maintain temperature determines
wavefront stability. Any gradient or bias error in the mirror’s bulk temperature will introduce a
static “cryo-deformation” WFE. And any temporal variation in the mirror’s temperature will
introduce instability.

Similar to Hubble, HabEx is cold biasing the PM and SM and heating them to the desired
operating temperature. The desired operating temperature is constrained by two competing
requirements. Near-IR science needs the mirrors to be cold to minimize in-field thermal noise.
However, UV science requires the mirrors to be free of any contamination, such as a monolayer
of water ice or other out-gassed molecules, to maximize spectral throughput. HabEx has selected
an operating temperature of 260 to 270 K for its mirrors because it is above the sublimation
temperature for water ice. The amount of cold bias is also constrained by competing require-
ments. When the bias is larger, it is easier to control the mirror temperature; however, the system

Fig. 28 AMTD fine stage (0.8-nm step) actuator.
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will require more electrical power to achieve that control. The minimum amount of bias is one
where the mirrors are cold biased for all potential Sun orientation angles. Cold bias is produced
by thermal isolation around the telescope. Preliminary analysis required the removal of some
spacecraft panels on the anti-Sun side to increase the cold bias.

Making the temperature of the PM’s front surface uniform anywhere it points on the sky
relative to the Sun is a bit more difficult. Because of the radiative transfer solid-angle view factor
of the PM through the straylight tube to deep space, the middle of the mirror will be colder than
the edge. Also, depending on the pointing angle to the Sun, the thermal load into the Sun-side of
the telescope will change as a function of the angle cosine—thus changing the lateral gradient
experienced by the PM. To compensate, the HabEx plans to use a thermal control system with
radial and azimuthal heater zones behind and around the perimeter of the PM. The radial heater
zones compensate for the view factor radial gradient to create a uniform front surface temper-
ature. The azimuthal heater zones compensate for changes in the lateral thermal gradient as a
function of pointing angle.

The baseline HabEx active radial thermal control concept is an engineering scale-up of sys-
tems built by the Harris Corporation. Zonal active thermal control of PMs is currently TRL-9
with systems currently flying on the Harris Corporation commercial 0.7- and 1.1-m Spaceview™
telescopes. These systems enable on-orbit focus adjustment for optimal image quality.60,61

In addition, under the NASA Astrophysics Division-funded PTCS, Harris Corporation has built
and delivered to NASA for testing with candidate mirror assemblies a 1.5-m system with
37 thermal control zones (Fig. 29).62 This system has six azimuthal heater zones in each of
five radial and circumferential zones. In addition, there are heater zones on each mirror strut
and the support structure. The test article is fully instrumented to quantify radiative and con-
ductive heat flow.

The ability to achieve the wavefront stability required for coronagraphy depends on the PM’s
thermal sensitivity and the thermal control system’s controllability. Regarding thermal sensitiv-
ity, the rate at which the PM’s SFE changes (i.e., stability) depends on its CTE, mass, and ther-
mal capacity63

EQ-TARGET;temp:intralink-;sec3.3.7;116;400

δSFE

δt
∼
CTE

Mcp
;

where CTE is the coefficient of thermal expansion, M is the mass, and cp is the specific heat.
Other properties that influence response time are radiative emissivity and conduction to struc-
tural mass. But, to first order, when the mirror’s mass is larger and its CTE is smaller, the mirror’s
response to thermal stimuli is smaller and slower. These are the reasons why monolithic mirrors
fabricated from zero CTE materials such as ZERODUR® and ULE® glass are preferred.

The key to achieving an ultrastable thermal wavefront is to sense and correct fluctuations in
the mirror’s thermal environment faster than the mirror’s response time to those changes. For any
given mirror design, stability is achieved by a combination of two engineering specifications:
control period and thermal fluctuation (sensor noise). For a generic mirror design, shown in
Fig. 30, if the thermal sensors are uncertain to 50 mK, the control period needs to be about

Fig. 29 Predictive thermal control study zonal thermal control system technology demonstrator.
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50 s. But, if the sensors are uncertain to 5 mK, the control period can be 500 s. And a factor of
10× improvement is accomplished if the thermal system is controlled at 50 s with a 5-mK noise
sensor. The relationship is linear. As long as the thermal control system (period × fluctuation)
product is below the mirror architecture tolerance line, the thermal control system will provide
the specified wavefront stability.64

Given that thermal sensing system control periods can be on the order of a few seconds, the
technical design parameter that determines wavefront stability performance is sensing noise. The
WFE will be more stable when the sensing noise is lower. The current TRL-9 capability is
defined by the Harris Corporation Spaceview™ telescope’s thermal control systems sensors,
which have a noise of ∼50 mK and control their 1.1-m telescope to a temperature of 100 to
200 mK.65 It is important to note that these are Earth-viewing systems in low-Earth orbit.
These same systems would be much more thermally stable if they were doing astrophysics sci-
ence at SE-L2. STOP analysis presented in Sec. 4.3.2 shows that the more massive HabEx PM
can be controlled to a temperature of ∼1 mK with a system of 50 mK noise and 30-s control
period. Performance margin can be obtained using sensors with lower noise. The PTCS thermal
enclosure system is using commercial platinum resistance thermometers with �5 mK reproduc-
ibility and �10 mK long-term stability.66 Currently, for WFIRST, Harris Corporation is design-
ing a thermal control system that uses 4-wire bridge-circuit thermistors with <4 mK noise.65

Finally, it is necessary to “tune” the thermal enclosure to “set” temperatures. Schott
Corporation has the ability to “tailor” ZERODUR® to have 0 CTE at a specific temperature.
However, the exact CTE at a specific temperature is uncertain by �10 ppb∕K.67 As shown
in Fig. 20, the CTE/K slope at ∼270 K is ∼2.5 ppb∕K; thus, a�10 ppb∕K uncertainty translates
into the actual 0 CTE temperature being uncertain by �4 K. Therefore, it may be necessary to
adjust the on-orbit temperature of the PM and SM thermal enclosures a few K to optimize
wavefront stability. In addition, zonal temperature tuning can be accomplished to compensate
for CTE inhomogeneity.

3.4 SM Assembly

The SMA is an integrated optomechanical system consisting of a mirror substrate, mount, sup-
port structure, launch lock system, and thermal control system. The mirror substrate is a 0.45-m
diameter, off-axis ZERODUR® mirror. ZERODUR® was selected based on its expected CTE
homogeneity. The SMA mount, support structure, launch locks, and thermal control system are
similar to those of the PMA. Because the TM is fixed, the SMA is actuated via a hexapod to
maintain its optical alignment with the PM and TM. The SMA and supporting laser-truss system
(not shown) are mounted to the top of the tower structure (Fig. 31).

Per Sec. 2.1, to achieve 400-nm diffraction-limited performance, the SMA is assigned a WFE
of 15 nm rms (surface error of 7.5 nm rms). For a 0.45-m size mirror, a <7-nm rms SFE is easily
achievable. The AMTD study demonstrated 5.4 nm rms on a 0.43-m mirror with a 10-mm
facesheet.28 Furthermore, because the SLS has significant mass margin, the SM can have a

Fig. 30 Thermal wavefront stability is achieved by balancing thermal sensing noise and control
period.
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thicker facesheet to minimize mid-spatial frequency error (which is important for coronagraphy).
It is very likely that the SM total surface error could be <5 nm rms. The design, manufacture, and
verification of the SMA and its constituent components are considered to be well within the state
of practice for space telescopes.

3.5 Integrated Science Instrument Module

The ISIM is an optomechanical structure whose function is to maintain optical alignment of the
science instruments relative to the TM, including the coronagraph, starshade instrument, UV
spectrograph, workhorse camera, and fine guidance system. This is particularly important
because each science instrument uses a different portion of the main toroidal TM (the ultraviolet
spectrograph uses a separate on-axis TM). In the HabEx TMA design, the TM’s location is fixed,
and the PM and SM are aligned to the TM. The ISIM structure is also a key component of the
overall tower structure. The ISIM is a true integrated module. It is designed to be removed from
the observatory on precision Hubble Space Telescope (HST) style optical rails as a whole mod-
ule for servicing (Fig. 32). Or, once removed, individual science instruments can be replaced—
again using precision HST style optical rails.

4 Telescope Structural Thermal Optomechanical Performance

As discussed in Sec. 2, to accomplish the HabEx science goals requires a 400-nm diffraction-
limited telescope with an ultrastable wavefront. And, as discussed in Sec. 3, an iterative process
was used to design a mechanically stiff and thermally stable telescope architecture. This iterative
design process was guided by STOP modeling. The result is a baseline telescope that meets its
required performance specifications.

4.1 Integrated Model

To evaluate whether the baseline HabEx telescope meets its performance requirements, inte-
grated thermal and finite element models (FEM) of the telescope and spacecraft bus were con-
structed and then merged into an observatory model. An observatory-level model was required

Fig. 31 SMA mounted to top of tower structure.

Fig. 32 Serviceable ISIM.

Stahl et al.: Habitable-Zone Exoplanet Observatory baseline 4-m telescope. . .

J. Astron. Telesc. Instrum. Syst. 034004-25 Jul–Sep 2020 • Vol. 6(3)



because the telescope’s thermal and mechanical performance is strongly influenced by the space-
craft. These models were used to perform STOP analyses.

NASTRAN solution sequences were used for static and dynamic mechanical analysis of the
integrated observatory: solution 101 (linear statics) for strength checks, solution 103 for normal
modes analysis, solution 105 for buckling/stability analysis, solution 111 for LOS stability
analysis, and solution 112 for transient ring-down analysis. Thermal Desktop and SigFit were
used for thermal analysis. Thermal mapping to the FEMwas calculated via Thermal Desktop and
applied as loads to the NASTRAN model using solution 101 to predict thermal deformations.

4.1.1 Mechanical model

The integrated observatory FEM was created using the MSC Patran, preprocessor, and geometry
created in ProEngineer computer aided design (CAD). The PM and SM FEMs were created
independently using the NASA MSFC-developed Arnold Mirror Modeler. Using the integrated
NASTRAN model, analyses were performed to ensure strength/stability and stiffness require-
ments were satisfied in accordance with NASA-STD5001B and the launch vehicle payload users
guide (United Launch Alliance, ULA-Delta IV Heavy). In addition, the integrated FEM was
used to perform dynamic response and thermal analysis. Table 7 summarizes the models.

Structural elements utilize composite construction where possible to provide a rigid and
lightweight design. Where possible, M55J carbon composite material is used due to its excellent
strength/stiffness and low mass-density (1.58 g∕cm3) specifications. Telescope structure skins,
circumferential ribs, axial webs, and the forward contamination door utilize Honeycomb
Sandwich Construction with M55J facesheets with Hexcel honeycomb core. Mirror support truss
members assume M55J circular tube construction with titanium end fittings. The M55J unidi-
rectional composite layup orientations were tailored for maximum performance and minimum
mass. Structural damping is specified to be 0.0005 (0.05%).

4.1.2 Thermal model

The integrated observatory thermal model was created in Thermal Desktop using the geometry
created in Pro-Engineer CAD. The Thermal Desktop model has 20 K elements and calculates the
telescope’s structure and mirror temperature distribution at 10 K nodes. The temperature dis-
tribution for each node is mapped onto the NASTRAN FEM, and the deflections created by each
node’s CTE are calculated using NASTRAN solution 101. RBM and mirror surface deforma-
tions are calculated from the NASTRAN deflections using SigFit. During the analysis stage, the
calculated RBMs were replaced by a residual error to simulate correction via the laser metrology
system. The PM and SM’s mesh grids were sized to enable SigFit to fit thermally induced SFE to
higher-order Zernike polynomials.

The model assumes multilayer insulation (MLI) to control heat loss and to isolate thermal
disturbances (i.e., the Sun). Radiators pull heat from the science instruments and spacecraft elec-
tronics. Between the MLI and radiators, the payload is passively cold biased. Active thermal
enclosures are used to maintain the operating temperature of the PM and SM at ∼270 K

Table 7 Integrated model details.

Element Telescope FEM Spacecraft FEM

Degrees of freedom 221,658 282,390

Number of elements 42,953 57,813

Element types CQUAD4, CTRIA3, CBAR,
CBUSH, CONM2

CQUAD4, CTRIA3, CBAR,
CBUSH, CONM2

Multipoint constraints 426 64

Number of grids 36,928 47,065

Stahl et al.: Habitable-Zone Exoplanet Observatory baseline 4-m telescope. . .

J. Astron. Telesc. Instrum. Syst. 034004-26 Jul–Sep 2020 • Vol. 6(3)



(see Sec. 3.3.7). Without these heaters, the model predicts a PM temperature of 206 K and an SM
temperature of 196 K. The model assumes TRL-9 capabilities for the enclosure specifications:
thermal sensors with 50-mK measurement uncertainty and proportional controller systems
(proportional integral derivative, PID) operating with 30-s periods. The model has a total of
133 control zones. Of these, 36 are bangbang survival heaters set at 212 K and 97 are PID control
zones (Table 8). They are set to keep the PM and SM front face temperatures at ∼270 K.
The model predicts that the PM front surface will have ∼200-mK “trefoil” gradient (Fig. 33).
The source of this gradient is thermal conduction into the hexapod struts. The mirror will have
∼3 K front to back gradient caused by radiative coupling to deep space as well.

The PM and SM CTE are modeled as consisting of a uniform “bulk” CTE and a CTE homo-
geneity distribution. The uniform CTE value determines the mirror’s low-order shape response
to bulk temperature changes and/or gradient temperature changes (i.e., axial, radial, or lateral).
Such temperature changes can produce low-order errors such as power and astigmatism. The
homogeneity distribution determines the mirror’s mid-spatial response. The model calculates
mirror shape changes from two effects: response of mirror with uniform CTE to changes in

Table 8 Thermal model details.

Proportional control zones

PM thermal enclosure 82

PM truss hexapod legs 6

SM thermal enclosure 9

Bang-bang survival heater zones

Telescope baffle tube 18

Telescope secondary tower 7

Spacecraft bus structure 3

Spacecraft fuel tanks 8

Fig. 33 Predicted 200-mK trefoil thermal distribution of PM front surface.
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temperature at each of the 10-K nodes and response of a mirror with a CTE inhomogeneity
distribution to a uniform bulk temperature change.

Per Fig. 20, Schott Corp. has the ability to tailor ZERODUR® to have a 0 CTE at 275 K
(−18°C). The uncertainty of Schott’s ability to achieve 0 CTE at 275 K is �10 ppb∕K.67

Therefore, the model assumes a uniform bulk CTE of 20 ppb∕K. One method to estimate
CTE inhomogeneity is to measure the thermal deformation of the mirror and assume that
CTE is linear with temperature. As part of the AMTD project, a 1.2-m ELZM was measured
to have an ∼11-nm-rms deformation over a 62-K thermal range (from 292 to 230 K). Figure 6
shows the measured error and its decomposition into Zernike polynomials.13 The model assumes
this measured thermal signature for its CTE inhomogeneity distribution. Obviously, the final
flight mirror substrate must be selected based on measured CTE homogeneity. To first order,
CTE homogeneity data can provide an initial estimate of the required mirror thermal stability.
For example, if a 60 K thermal change produces 5 nm rms of trefoil wavefront and the error
budget tolerance is 0.5 pm rms, then the mirror needs to be kept thermally stable to 6 mK.

The primary weakness of the current thermal design is the structure, which is very simple. It
assumes that the PM support truss structure, telescope tower, and tube are uniformly composed
of TRL-9 composite material M46J with −334.2 ppb∕K. There are no elements to represent
adhesive joints, and there has been no effort to athermalize the structure by application of pos-
itive/negative CTE materials. As a result, the telescope model does not accurately model struc-
tural thermoelastic effects. In addition, the current design does not actively control the structure
temperature. Consequently, the model is highly sensitive to thermal changes. The justification
for this design/analysis decision is that the telescope will have a laser truss system to track slow
moving thermal structural changes. As shown in Fig. 34, the thermal model predicts that, without
any heaters, the tube will have a gradient of over 100 K, and the PM truss will have an ∼20-K
gradient. As discussed in Sec. 4.2.1, these gradients will produce <0.5 mm of mechanical dis-
placement—which can be easily corrected by the actuators, discussed above in Sec. 3.3.5.

4.1.3 Mechanical analysis input

Dynamic mechanical errors (LOS jitter, LOS WFE stability, inertial WFE stability, and impulse
ring-down) are caused by structural response to mechanical stimuli. To minimize the source of
such stimuli, the baseline HabEx observatory architecture does not use reaction wheels for

Fig. 34 On-orbit temperature of (a) baseline telescope structure baffle tube and (b) PMA.
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slewing or pointing. Instead, it uses thrusters and microthrusters. Thrusters, located at the base of
the telescope, slew and point the telescope. They are then turned off and microthrusters maintain
pointing for the duration of a science exposure. The microthruster noise is the only source of
mechanical stimuli. Both thrusters are attached to the spacecraft, and their transmission path to
the telescope is via the interface ring. If necessary, this ring can be isolated from the telescope. As
shown in Fig. 35, there are four microthruster modules located at the base of the observatory (aft)
and another four modules located above the center of solar pressure (forward). Each forward
module consists of four heads, each with nine emitters, covering a 90-deg cone. Each aft module
consists of four heads, each with 18 emitters.

Microthrusters run continuously with thrust proportional to applied current. Figure 36 shows
a measured noise PSD for a single colloidal microthruster emitter. The data indicate that micro-
thruster emitters have a maximum noise of 0.03 μN∕

ffiffiffiffiffiffi
Hz

p
with a roll-off after about 2 Hz.68

To be conservative, because the data are noisy and have not been measured beyond 5 Hz,

Microthrusters
in 8 locations

Fig. 35 Microthruster locations.

Fig. 36 PSD noise plot for colloidal micro-thrusters.
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the HabEx STOP analysis assumed that each microthruster emitter has a flat or “white” noise
spectrum of 0.1 μN—providing at least a 3× specification margin. Note that this noise profile is
identical to the specification used by LISA and ST-7.68 Finally, because the aft modules have
twice as many emitter heads as the forward modules, each forward module is specified to have
a flat noise spectrum of 0.4 μN∕

ffiffiffiffiffiffi
Hz

p
and each aft module is specified to have 0.8 μN∕

ffiffiffiffiffiffi
Hz

p
.

Finally, because the noise “forcing-function” amplitudes are extremely small, values reported
by the analysis could have significant uncertainty. While the FEM’s predicted performance is
linear as a function of input, the physical system being modeled may not be linear. To mitigate
this risk, a model uncertainty factor (MUF) is used in some analyses, while in others an MUF is
not applied. For each analysis, the MUF status is made explicit.

4.1.4 Thermal analysis input

Dynamic thermal errors (LOS drift, LOS WFE, and thermal WFE stability) are caused by struc-
tural and optical component response to thermal stimuli. To predict the telescope’s thermal per-
formance at SE-L2, DRMs were analyzed in Thermal Desktop. The calculated temperature
distribution is mapped onto the NASTRAN FEM and the deflections of each node calculated.
RBMs and SFE of the PM and SM were calculated from the NASTRAN deflections using
SigFit.

The DRM starts by pointing the telescope at a reference star to dig the dark hole. The analysis
assumes that the telescope reaches a steady-state thermal condition at this Sun orientation. Next,
the telescope is pointed at the science star. To make the analysis worst-case, it is assumed that
this requires a þθ- deg pitch away from the Sun (Fig. 37). To facilitate speckle subtraction, the
telescope is rolled �Φ deg about the science star vector (Fig. 38).

view from the sun

Sun

“After ° pitch”
view from the sun

“Reference star”

Fig. 37 Nominal observing scenario slews for thermal analysis.

Fig. 38 Telescope motions as viewed from the Sun.
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The specified DRM analyzed is (Fig. 39):

• T ¼ 0-h drop into SEL2 with observatory pointing 100 deg to Sun

• T ¼ 90-h pitch þ10 deg away from Sun to Reference Star & ‘Dig’ Dark Hole

• T ¼ 100-h pitch þ10 deg to Science Star

• T ¼ 150-h roll −15 deg

• T ¼ 200-h roll þ30 deg

• T ¼ 250-h end science observation

The STOP Analysis calculates as a function of DRM (time):

• Temperature of PM and SM

• WFE produced by PM and SM temp changes

• RBM between PM and SM

• WFE produced by noncorrectable RBM (i.e., after laser truss)

• Total telescope WFE stability

Figure 40 shows how well the modeled active zonal thermal enclosure controls the temper-
ature of the PM. Once the science observation begins, the PM temperature only changes by
�0.15 mK. The main reason for this stability is the PM’s thermal mass. The thermal time con-
stant of the PM is ∼20 h. Note that roll maneuvers produce negligible thermal error. Also note
that, if the science star and reference stars were located such that the Sun angle remained
unchanged during the slew (i.e., rotate around the sun vector), then there would be no change
to the telescope’s thermal environment.

4.2 Diffraction-Limited Performance

Diffraction-limited performance is important for both general astrophysics and coronagraphy
because it (along with aperture diameter) determines the observatory’s PSF. The wavelength

Fig. 39 Analyzed DRM.

Fig. 40 250-hour DRM average PM temperature with PID control for 270 K.
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of diffraction limited performance (WDLP) is determined by the observatory’s rms transmitted
WFE. Typically, WDLP is ∼13 times rms WFE. Thus, for a 400-nm WDLP telescope, trans-
mitted WFE must be ∼30 nm rms. Figure 4 presents a potential flow-down error budget of the
observatory level WFE to the telescope. Assuming that the telescope mirrors are made to their
optical prescription, the biggest potential WFE source is the ability to align the mirrors and
maintain that alignment on-orbit. Table 2 illustrates a potential flow-down of the telescope error
budget to the PM. Potentially, the biggest error source in achieving this specification is the ability
to quantify and back-out gravity effects (i.e., a G-release error).

4.2.1 On-orbit optical alignment

Space telescopes are not launched in their final optical alignment. To survive launch, mirrors are
retracted against launch restraints. They are then deployed and aligned on-orbit. For example, the
JWST PMSAs are deployed 12.5 mm from their launch restraints to their operational position.59

In addition, space telescopes are not launched in their thermal state. Space telescopes are
launched “warm,” nominally 300 K, and then cooled to their operational temperature. This ther-
mal shift can change the shape of both the mirrors and the structure. For example, because the
baseline HabEx structure design has not been athermalized, the integrated thermal model pre-
dicts that structure changes will result in rigid body displacements for the PM of 250 to 500 μm,
25 to 50 μm for the SM, and rotations on the order of 20 to 50 μ-radian for both.

Thus, an on-orbit system is required to establish and maintain alignment between the PM,
SM, and TM. To sense these thermodeformation errors, the baseline telescope architecture has a
laser metrology system. And, to correct these errors, the baseline telescope architecture has hexa-
pod actuator systems for the PM and SM with a 20-mm range and subnanometer resolution
(Sec. 3.3.5). Assuming that the individual laser gauges have a 0.1-nm rms measurement uncer-
tainty, the alignment system is predicted to have a positional uncertainty (Table 9) sufficient to
align the telescope to an LOS accuracy of <0.2 mas (on-sky) with a wavefront residual error of
<10 pm rms.

4.2.2 PM G-release error

As discussed in Sec. 2.1.3, G-release error is a significant risk to achieving a 400-nm diffraction-
limited telescope. Section 3.3.3 discusses how the HabEx PM is specifically designed to min-
imize the risk of G-release error by making the mirror stiff. Figure 23 shows that the baseline
ZERODUR® mirror has a predicted 1 G X; Y; Z gravity sag of (18.6, 18.4, and 12.6 μm) RMS.
And, as also discussed in Sec. 3.3.3, while methods exist to characterize self-weight deflection
and produce 0-G space mirrors, it is also possible to mitigate G-release error risk via an active
mirror (PM, SM, or DM). For example, analysis of the alternative ULE® HabEx PM indicates
that 15 actuators can reduce G-release error by 20×, 25 can reduce G-release error by 40×, and
50 actuators can reduce G-release error by 100× (Fig. 41).70

4.3 Predicted LOS Stability Performance

LOS instability is important because it causes WFE and PSF smearing that degrades spatial
resolution and IWA. LOS instability is caused by RBM of the optical components relative
to each other. RBM can occur at the component level or can be caused by flexible-body effects
of the structure. They are traceable to two sources: thermal and mechanical. Thermal LOS drift

Table 9 Laser metrology system positional uncertainty relative to the TM.69

DOF Δx (nm) Δy (nm) Δz (nm) Θx (nrad) Θy (nrad) Θz (nrad)

Primary 2.117 2.129 0.278 0.240 0.272 1.068

Secondary 0.997 0.989 0.130 0.189 0.523 3.823

Tertiary 0 0 0 0 0 0
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occurs when the telescope is slewed relative to the Sun. Temperature change causes the telescope
structure to expand or contract. Mechanical LOS jitter is produced by mechanical disturbance
accelerations (from sources such as reaction wheels, cryo-coolers, etc.) exciting modes in the
telescope structure. Typically, thermal LOS drift is slow and mechanical LOS jitter is fast. Per
Sec. 2.2, the HabEx is baselining a ZWFS that can sense and correct LOS instability on the order
of 2.5 mas at frequencies below 10 Hz. In addition, HabEx is baselining a laser truss system to
correct for slow thermal drift. Thus, per Table 3, the HabEx telescope LOS is specified to be
stable to <2 mas for frequencies slower than 10 Hz and <0.3 mas for frequencies faster than
10 Hz. Figure 7 provides one realization of the 0.3 mas specification.

To calculate whether the baseline telescope meets the specification, NASTRAN multipoint
constraint equations created by SigFit were used to determine rigid body displacements of the
PM and SM, relative to the TM (Fig. 42). STOP analysis was performed with the integrated FEM
and thermal models to calculate the RBMs of the PM, SM, and TM caused by mechanical
disturbance (Sec. 4.2.1) and thermal drift (Sec. 4.2.2).

4.3.1 Predicted mechanical LOS stability performance

To predict mechanical LOS jitter, the rigid-body motion of each mirror was calculated as a result
of the structure’s response from 0 to 350 Hz to the microthruster noise specification applied to
the structure from 0 to 10 Hz. Per Fig. 36, the microthruster specification provides at least

Fig. 41 Correctability of alternative ULE® 4-m PM design as a function of actuators.

Fig. 42 Mirror displacements are relative to TM.
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a 3× margin at low frequencies and more margin at higher frequencies—because the flat speci-
fication ignores mass damping—relative to the anticipated microthruster performance. In addi-
tion, an MUF of 2 was applied for a total margin of ∼4×. Figure 43 shows the predicted
displacement for the PM relative to the SM as a function of frequency. This presentation format
is typical for an observatory that uses reaction wheels, because the wheels excite each mode as
their speed changes. But microthrusters excite all modes simultaneously. Therefore, it is neces-
sary to rss the individual components into a running sum. Figures 44 and 45 show the cumulative
rigid body displacement and rotations for the PM and SM.

Table 10 lists the maximum predicted amplitude for each RBM. These motions predict an on-
sky LOS jitter of 0.03 mas, which provides a ∼10× margin against the 0.3-mas specification.
This stability implies that the baseline telescope does not need a low-order, ZWFS-controlled,
fast-steering mirror.

Fig. 43 PM-to-SM rigid body amplitudes for microthruster noise specification.

Fig. 44 Cumulative PM and SM rigid body displacement for microthruster noise specification.

Fig. 45 Cumulative PM and SM rigid body rotations for microthruster noise specification.
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Figures 44 and 45 show information regarding frequencies of various structural modes and
the coupling of those modes with optical components. For example, the displacements that occur
at 11 Hz are associated with a twisting mode between the spacecraft and telescope (Fig. 46).
There is a tube-bending mode at 12.8 Hz and a flexing mode at 24.7 Hz. The 30-Hz mode is
bending between the SM tower and PM truss structure. Moreover, the displacements in the 45- to
50-Hz range are caused by motions of the PM on its mount (Figs. 24 and 25).

4.3.2 Predicted thermal LOS stability

To predict thermal LOS drift, the rigid-body motions of each mirror were calculated as a result of
the 250-h DRM discussed in Sec. 4.1.4. Figures 47 and 48 show the X; Y; Z rigid body residual
displacements of the PM and SM (i.e., the amount of thermal RBM that is not corrected by
the laser metrology system that senses and controls optical alignment of the PM and SM).

Table 10 Predicted maximum “jitter” motion of PM and SM from microthruster noise.

DOF Δx (nm) Δy (nm) Δz (nm) Θx (nrad) Θy (nrad) Θz (nrad)

Primary 0.2 0.08 0.16 0.04 0.04 0.03

Secondary 0.67 0.58 0.03 0.05 0.06 0.15

11 HZ twist mode 12.8 HZ bend mode 24.7 HZ flex mode

Fig. 46 Tube modes.

Fig. 47 Displacements of PM due to thermal DRM.
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Table 11 lists the maximum amplitude of the uncorrectable motion for each rigid-body DOF
of the PM and SM. These motions predict an on-sky LOS jitter of <0.2 mas (i.e., ∼1.5×margin).
In this case, no MUF is applied.

4.3.3 Predicted LOS stability performance

rss’ing the rigid-body motions of the PM and SM from the mechanical and thermal model STOP
analysis (Tables 11 and 12) predicts their maximum rigid-body motions (Table 12). These
motions predict an on-sky LOS stability of <0.2 mas for a 1.5× margin.

4.4 Predicted WFE Stability

WFE stability specification is driven by the coronagraph. Any temporal or dynamic change in
WFE can result in dark hole speckles that produce a false exoplanet measurement or mask a true
signal. Figure 10 presents a simple VVC-6 error budget that allocates WFE stability between
LOS, inertial, and thermal instability.

One potential mitigation for LOS vibration and inertial instability is that mechanical motions
tend to be periodic, and multiple cycles over an integration period will produce a fixed pattern.
If this pattern is 100% repeatable, it is possible to remove it through speckle subtraction. But,
if the motion is not periodic, there will be a nonrepeatable component that cannot be calibrated
and removed. Thus, it is the instability of the mechanical motion (not the motion itself) that is
important. Regardless, the best mitigation strategy is to minimize WFE instability.

Fig. 48 Displacements of SM due to thermal DRM.

Table 11 Predicted maximum uncorrectable “drift” motion of PM and SM for DRM.

DOF Δx (nm) Δy (nm) Δz (nm) Θx (nrad) Θy (nrad) Θz (nrad)

Primary 0.71 0.48 0.05 0.25 0.38 0.39

Secondary 0.07 0.04 0.01 0.01 0.04 0.29

Table 12 Predicted maximum RBM of PM and SM for a DRM.

DOF Δx (nm) Δy (nm) Δz (nm) Θx (nrad) Θy (nrad) Θz (nrad)

Primary 0.74 0.49 0.17 0.25 0.38 0.39

Secondary 0.67 0.58 0.03 0.05 0.07 0.33
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4.4.1 Predicted LOS WFE stability

LOS WFE instability is produced by LOS drift and jitter. Thermal LOS drift and mechanical
LOS jitter causes beam shear on the SM and TM. Also, because these mirrors are conics, beam
shear manifests itself as low-order astigmatism and coma. Conic mirrors correct spherical aber-
ration, and the shear of full aperture spherical aberration is coma. When viewed over an off-axis
subaperture, coma appears as astigmatism. As shown in Fig. 49, each mirror’s RBM produces its
own WFE “signature” that can decompose into a set of Zernike polynomial coefficients. As
expected, there are no significant higher-order errors. The input for the analysis in Fig. 49 is
the rss’d rigid body displacements in Table 12.

Figure 50 compares the predicted LOSWFE calculated in Fig. 49 to the LOSWFE allocation
in the simple VVC-6 error budget of Fig. 10. As expected, the largest LOS errors are tilt, power,
and astigmatism. However, these errors are not significant to the VVC-6. The most significant
are trefoil and secondary astigmatism. But, because the LOS jitter is so small, the predicted
amplitudes for these errors have >100× margin relative to their error budget allocation.

4.4.2 Predicted inertial WFE stability

Inertial WFE instability occurs when the PM is accelerated by mechanical disturbances causing
it to react (i.e., bend) against its mounts. Figures 24 and 25 show two such mechanical

Fig. 49 WFE decomposed into Zernike polynomial coefficients for PM and SM rigid-body motions.

Fig. 50 LOS WFE stability predicted to have >100× margin relative to error budget allocation.
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disturbances—43.5-Hz rocking and 50-Hz bouncing. Figures 51 and 52 show how the mirror
bends as it reacts against the hexapod mount for the rocking and bouncing modes. Note that
inertial WFE is not the same as modal resonant motion. Two methods were used to predict
inertial WFE instability: linear scaling of gravity sag deformation and predicted deformation
using NASTRAN decomposed into Zernike polynomials using SigFit.

Linear scaling of gravity sag deformation. To first order, inertial WFE should be sim-
ilar to the mirror’s static (X; Y; Z) gravity sag (i.e., bending of the mirror when it is exposed to a
1-G acceleration in the X; Y; Z directions) (Fig. 23), scaled by the on-orbit acceleration to which
it is exposed. To estimate on-orbit acceleration, the observatory FEM was used to calculate
X; Y; Z-accelerate from the microthrusters at each PM hexapod interface. Figure 53 shows the
maximum calculated X; Y; Z-acceleration into the mirror at each frequency. Nevertheless,

Fig. 51 Mirror bending from 49.5-Hz rocking mode.

Fig. 52 Mirror bending from 50-Hz bouncing mode.
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because microthrusters are always on, it is necessary to rss over all frequencies to determine the
maximum acceleration into the mirror (Fig. 54). The absolute maximum X; Y; Z acceleration
imparted into the mirror is (170, 240, and 390 nG). Scaling the RMS gravity sag WFE of
(37.3, 36.8, and 25.2 μm) yields an X; Y; Z RMS inertial WFE of (6.3, 8.8, and 9.8 pm).
Assuming that X and Y gravity sags are entirely astigmatism and the Z-sag is trefoil, this
first-order linear analysis indicates that the PM will have ∼11 pm of astigmatism and
∼10 pm of trefoil. Obviously, the trefoil is about 10× higher than allowed by the simple error
budget.

Fortunately, this analysis is conservative. The maximum acceleration amplitudes at each fre-
quency are ∼10× larger than the RMS acceleration at each frequency. In addition, the analysis
does not assume mass dampening. The analysis assumes that the PM responds to all acceleration
frequencies equally. In practice, this is not real. In a real system, the PM’s inertia prevents
responding to high frequency acceleration.

Predicted inertial surface deformation. To obtain a more accurate estimate of inertial
WFE, NASTRAN calculated the displacement of PM surface nodes from 0 to 350 Hz as a func-
tion of the microthruster noise specification applied to the structure from 0 to 10 HZ (multiplied
times 2 for wavefront). To eliminate rigid body displacements, the node displacements were
calculated relative to a fixed surface reference point. The WFE produced by these displacements
were fit to Zernike polynomials using SigFig. Because the microthrusters excite all modes simul-
taneously, the individual frequencies were rss’d to yield a total accumulated WFE for each
Zernike term (Fig. 55). Consistent with mass dampening (i.e., where the mirror has a smaller
response to higher frequency accelerations), the nonlinear analysis predicts an astigmatism WFE
that is 3× smaller, a focus error that is 4× smaller, and a trefoil WFE that is 5× smaller than the
simple linear gravity sag scaling approach. Figure 56 shows how the calculated inertial WFE of
the PM compares with its simple error budget allocation of Fig. 10. As expected, trefoil is the
dominant term, but still has 1.6× margin.

Fig. 53 Maximum PM (X;Y ; Z ) acceleration at each frequency.

Fig. 54 Maximum PM (X;Y ; Z ) acceleration at each frequency.
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4.4.3 Predicted thermal WFE stability

Thermal WFE instability occurs when the PM’s bulk temperature or temperature gradient
changes. If the mirror’s CTE is completely homogeneous and constant, then a bulk temperature
should only result in a defocus error. But any inhomogeneity in the mirror’s CTE will result in a
temperature-dependent WFE. In addition, because CTE is itself temperature dependent, any
change in the mirror’s thermal gradient will also result in a WFE. Unlike mechanical WFE,
which is mostly low-spatial-frequency, thermal WFE can have significant high-spatial-frequency
content. Therefore, the best mitigation strategy is to minimize thermal disturbances. This can be
done either by passive isolation or active sense and control.

Thermal WFE instability was predicted by applying the DRM discussed in Sec. 4.1.4 to the
integrated model. Thermal Desktop calculated the temperature distribution as a function of time.
With this distribution, NASTRAN calculated surface deformations, which were then used by
SigFit to decompose the temporal WFE into Zernike polynomials as a function of time.

Fig. 55 Total PM inertial deformation of select Zernikes: astig ¼ 3.6 pm rms; focus ¼ 1.5 pm rms;
trefoil ¼ 1.1 pm rms.

Fig. 56 Estimated inertial WFE.
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Figure 57 shows the predicted change in PM SFE decomposed into Zernike polynomials.
As symmetric errors, power and trefoil’s changes are caused by the DRM pitch angle, which
changes the total solar load on the telescope. Moreover, as an asymmetric error, astigmatism’s
change is caused by the DRM roll that shifts thermal load from one side to the other. Figure 58
shows predicted change for the SM. Because of its location, it is relatively insensitive to roll.

Total DRM WFE was calculated by rss’ing the PM and SM Zernike terms as a function of
time and selecting the maximum amplitude for each. This analysis has a 3 × X MUF. Figure 59
shows each Zernike compared to the simple error budget of Fig. 10. Obviously, trefoil is
a problem. Fortunately, there is a solution: reallocate the error budget.

The thermal STOP analysis pipeline does not evaluate as many of the higher-order Zernike
terms as the optomechanical STOP analysis pipeline. Therefore, there are some “holes” in
Fig. 59 data analysis. However, it is reasonable to assume that these terms will be similar in
amplitude to those reported and the 3× MUF is an analysis artifact. The thermal STOP model
used PV CTE homogeneity measured WFE instead of RMS. But, because there is an interaction
between bulk CTE and CTE homogeneity, the results were not “scaled.”

5 Performance Error Budget

The initial error budget defined in Sec. 2.3 and shown in Fig. 10 assumed a simple uniform
distribution of contrast leakage. However, because some Zernike terms are more likely to occur
than other terms, it is permissible to reallocate contrast leakage from the less-likely terms to the
more-likely terms. Figure 60 shows an optimized error budget for the VVC-6 where the majority
of the contrast leakage is allocated to trefoil. The first set of columns lists the Zernike polynomial

Fig. 57 DRM PM SFE changes.

Fig. 58 DRM SM SFE changes.
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indices and common names. The first three data columns input the predicted STOP performance
for each error source with its MUF (4× MUF on LOS Jitter and LOS wavefront stability,
2× MUF on inertial WFE stability, and 3× MUF on thermal WFE stability). These are rss’d
to yield a total RMS WFE for each Zernike term. The VVC-6 sensitivity column shows how
much ppt of raw contrast error leaks through the VVC-6 coronagraph for a picometer of Zernike
WFE. The raw contrast column shows the predicted leakage for the STOP predicted Zernike
WFE. The allocation column normalizes and redistributes the 30 ppt of allowed raw contrast
to maximize the amount allocated to trefoil. The WFE tolerance column is the new error budget.
This error budget provides a margin of 4.1× for all Zernike. Note that this error budget is ONLY
for the baseline ZERODUR® PM. A different mirror substrate or mount design will require a
different error budget. And the error budget will need to be adjusted for the “as-built” mirror.

Fig. 59 Estimated PM/SM thermal WFE.

Fig. 60 Optimized error budget for VVC-6.
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6 Predicted Impulse Response

Ring-down time or impulse response is how long it takes for the telescope to stabilize its LOS
and WFE after a slew maneuver. Transient dynamic analysis was performed to predict slew ring
down time via finite element analysis using MSC Patran as the pre/postprocessor and MSC
NASTRAN as the solver.71 To simulate a nominal pitch maneuver, an 8.8-N thrust was applied
as a 20.5-s step function at the Y axis thrusters. After 368 s, another was applied in the opposite
direction to stop the slew (Fig. 61).

The relative motion between the PM and SM was calculated for 300 s beyond the termination
of the second thrust (Fig. 62). Note that no MUF was applied to this analysis.

Fig. 61 Slew impulses applied to Y -axis by thruster.

Fig. 62 Relative motion between PM and SM caused by thruster impulses.

Fig. 63 After 300 s, relative motion between PM and SM caused by thruster impulses is <1 pm.
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Because the baseline telescope structure is very stiff, after 300 s of ring-down, the largest
predicted relative motion between the PM and SM is <1 pm (Fig. 63). Thus, telescope slews will
have negligible impact on the settle time before performing science observations.

7 Conclusion

HabEx is under study for the 2020 Astrophysics Decadal Survey. Its goal is to image and spectro-
scopically characterize planetary systems around nearby Sun-like stars. A large, ultrastable
UVOIR telescope is critical to achieving the HabEx science goals. The desired telescope is
a 4-m off-axis, unobscured TMA configuration with diffraction-limited performance at 400 nm
and wavefront stability on the order of a few tens of pm. The baseline HabEx telescope is
designed using standard engineering practices and its design closes. The telescope’s predicted
STOP meets with its specified performance error budget allocations for LOS jitter, LOS WFE,
inertial WFE, and thermal WFE (Fig. 61). The choice to use microthrusters for pointing control
instead of reaction wheels is key to meeting its LOS and inertial specifications. The baseline
observatory design fits with margin within the mass and volume constraints of the SLS Block-2
8.4-m fairing.

Acknowledgments

This paper was the work of the NASA MSFC HabEx Team and our JPL Collaborators. MSFC
Team: Thomas Brooks, Jacqueline Davis, Michael Effinger, Brent Knight, Scott Smith, Mark
Stahl; Willian Arnold (AI Solution); Mike Baysinger (ESSCA), Jay Garcia (ESSCA), Mary
Caldwell Ron Hunt, Andrew Singleton, and Melissa Therrell (ESSA); Bijan Nemati
(University of Alabama in Huntsville); and interns Jonathan Gaskin (University of North
Carolina in Charlotte), Jonathan McCready (North Carolina State University), and Hao Tang
(University of Michigan). JPL Team: Keith Warfield, Gary Kuan, Velibor Cormarkovic,
Scott Howe, Stefan Martin, Navtej Saini, Stuart Shaklan, Juan Villalvazo, and Team X. The
authors would also like to thank Nicholas Reich, technical editor through ASRC Federal’s
communications contract with NASA MSFC.

References

1. The National Academies of Sciences, Engineering, and Medicine, New Worlds, New
Horizons in Astronomy and Astrophysics, The National Academies Press, Washington,
D.C. (2010).

2. NASA, NASA Space Technology Roadmaps and Priorities: Restoring NASA’s
Technological Edge and Paving the Way for a New Era in Space, The National Academies
Press, Washington, D.C. (2012).

3. NASA, Habitable Exoplanet Observatory: Exploring New Worlds, Understanding Our
Universe, NASA, Washington, D.C. (2019). https://www.jpl.nasa.gov/habex/pdf/HabEx-
Final-Report-Public-Release.pdf.

4. J. E. Harvey and F. Christ, “Diffraction effects of telescope secondary mirror spiders on
various image-quality criteria,” Appl. Opt. 34(28), 6337–6349 (1995).

5. B. Nemati et al., “HabEx Telescope WFE stability specification derived from coronagraph
starlight leakage,” Proc. SPIE 10743, 107430G (2018).

6. B. Nemati et al., “Method for deriving optical telescope performance specifications for
Earth-detecting coronagraphs,” J. Astron. Telesc. Instrum. Syst. (2020).

7. R. H. Morgan et al., “HabEx yield modeling with for systems engineering (Conference
Presentation),” Proc. SPIE 10398, 1039804 (2017).

8. NASA: Exoplanet Program, Exo-C: Imaging Nearby Worlds, NASA, Washington, D.C.
(2015). https://exep.jpl.nasa.gov/stdt/Exo-C_Final_Report_for_Unlimited_Release_150323
.pdf.

9. J. Krist, Researcher at the Jet Propulsion Laboratory, private communication (2019).

Stahl et al.: Habitable-Zone Exoplanet Observatory baseline 4-m telescope. . .

J. Astron. Telesc. Instrum. Syst. 034004-44 Jul–Sep 2020 • Vol. 6(3)

https://www.jpl.nasa.gov/habex/pdf/HabEx-Final-Report-Public-Release.pdf
https://www.jpl.nasa.gov/habex/pdf/HabEx-Final-Report-Public-Release.pdf
https://www.jpl.nasa.gov/habex/pdf/HabEx-Final-Report-Public-Release.pdf
https://www.jpl.nasa.gov/habex/pdf/HabEx-Final-Report-Public-Release.pdf
https://www.jpl.nasa.gov/habex/pdf/HabEx-Final-Report-Public-Release.pdf
https://www.jpl.nasa.gov/habex/pdf/HabEx-Final-Report-Public-Release.pdf
https://doi.org/10.1364/AO.34.006337
https://doi.org/10.1117/12.2312662
https://doi.org/10.1117/12.2274678
https://exep.jpl.nasa.gov/stdt/Exo-C_Final_Report_for_Unlimited_Release_150323.pdf
https://exep.jpl.nasa.gov/stdt/Exo-C_Final_Report_for_Unlimited_Release_150323.pdf
https://exep.jpl.nasa.gov/stdt/Exo-C_Final_Report_for_Unlimited_Release_150323.pdf
https://exep.jpl.nasa.gov/stdt/Exo-C_Final_Report_for_Unlimited_Release_150323.pdf
https://exep.jpl.nasa.gov/stdt/Exo-C_Final_Report_for_Unlimited_Release_150323.pdf


10. P. H. Stahl et al., “Survey of interferometric techniques used to test JWST optical compo-
nents,” Proc. SPIE 7790, 779002 (2010).

11. S. B. Shaklan, J. J. Green, and D. M. Palacios, “The Terrestrial Planet Finder Coronagraph
optical surface requirements,” Proc. SPIE 6265, 62651I (2006).

12. S. B. Shaklan and J. J. Green, “Reflectivity and optical surface height requirements in
a broadband coronagraph.1.Contrast floor due to controllable spatial frequencies,” Appl.
Opt. 45(21), 5143–5153 (2006).

13. T. E. Brooks et al., “Modeling the Extremely Lightweight Zerodur Mirror (ELZM) thermal
soak test,” Proc. SPIE 10374, 103740E (2017).

14. S. Shaklan, Researcher at the Jet Propulsion Laboratory, private communication (2017).
15. H. P. Stahl, “Habitable exoplanet imager optical telescope concept design,” Proc. SPIE

10398, 1039806 (2017).
16. G. J. Ruane, NASA Jet Propulsion Laboratory with the California Institute of Technology,

private communication (2017).
17. H. P. Stahl, “Overview and performance prediction of the baseline 4-meter telescope con-

cept design for the habitable-zone exoplanet observatory,” Proc. SPIE 10698, 106980W
(2018).

18. H. P. Stahl et al., “Designing astrophysics missions for NASA’s Space Launch System,”
J. Astronom. Telesc. Instrum. Syst. 2(4), 041213 (2016).

19. H. P. Stahl et al., “Habitable-zone exoplanet observatory (HabEx) baseline 4-m telescope
design and predicted performance,” Proc. SPIE 11115, 111150U (2019).

20. M. S. Lake, L. D. Peterson, and M. B. Levine, “Rationale for defining structural require-
ments for Large Space Telescopes,” J. Spacecr. Rockets 39(5) (2002).

21. G. Mosier, “Isolation requirement,” NASA, AMTD Report (an internal document) (2014).
22. L. D. Feinberg et al., “A cost-effective and serviceable ATLAST 9.2m telescope architec-

ture,” Proc. SPIE 9143, 914316 (2014).
23. J. B. Knight et al., “Dynamic/jitter assessment of multiple potential HabEx structural

designs,” Proc. SPIE 10374, 1037402 (2017).
24. H. P. Stahl, “Advanced Mirror Technology Development (AMTD): year five status,” Proc.

SPIE 10401, 104010O (2017).
25. H. P. Stahl, “Advanced Mirror Technology Development (AMTD) project: overview and

year four accomplishments,” Proc. SPIE 9912, 99120S (2016).
26. H. P. Stahl, “Overview and accomplishments of Advanced Mirror Technology Development

Phase 2 (AMTD-2) project,” Proc. SPIE 9602, 960208 (2015).
27. H. P. Stahl et al., “Advanced Mirror Technology Development (AMTD) project: 2.5 year

status,” Proc. SPIE 9143, 91431S (2014).
28. H. P. Stahl et al., “Overview and recent accomplishments of the Advanced Mirror

Technology Development (AMTD) for large aperture UVOIR space telescopes project,”
Proc. SPIE 8860, 88600Q (2013).

29. J. E. Krist et al., “End-to-end coronagraphic modeling including a low-order wavefront
sensor,” Proc. SPIE 8422, 844253 (2012).

30. L. Leboulleux et al., “Pair-based analytical model for segmented telescopes imaging
from space for sensitivity analysis,” J. Astron. Telesc. Instrum. Syst. 4(3), 035002 (2018).

31. B. Nemati et al., “Effects of space telescope primary mirror segment errors on coronagraph
instrument performance,” Proc. SPIE 10398, 103980G (2017).

32. M. T. Stahl, S. B. Shaklan, and H. P. Stahl, “Preliminary analysis of effect of random
segment errors on coronagraph performance,” Proc. SPIE 9605, 96050P (2015).

33. National Research Council, A Scientific Assessment of a New Technology Orbital
Telescope, The National Academies Press, Washington, D.C. (1995).

34. B. Honneger, “NPS new home for Giant Segmented-Mirror Space Telescope,” Naval
Postgraduate School, 2010, https://web.nps.edu/About/News/NPS-New-Home-for-Giant-
Segmented-Mirror-Space-Telescope-html.

35. T. Westerhoff and T. Hull, “Production of 4 m diameter Zerodur® mirror substrates,” HabEx
White Paper Contribution, Schott AG, Mainz, Germany (2018).

36. C. Cox, “Collins Aerospace inputs and assessment for the HabEx primary mirror assembly,”
Document PA-2227 (2018).

Stahl et al.: Habitable-Zone Exoplanet Observatory baseline 4-m telescope. . .

J. Astron. Telesc. Instrum. Syst. 034004-45 Jul–Sep 2020 • Vol. 6(3)

https://doi.org/10.1117/12.862234
https://doi.org/10.1117/12.670124
https://doi.org/10.1364/AO.45.005143
https://doi.org/10.1364/AO.45.005143
https://doi.org/10.1117/12.2274084
https://doi.org/10.1117/12.2275192
https://doi.org/10.1117/12.2315291
https://doi.org/10.1117/1.JATIS.2.4.041213
https://doi.org/10.1117/12.2528331
https://doi.org/10.2514/2.3889
https://doi.org/10.1117/12.2054915
https://doi.org/10.1117/12.2274325
https://doi.org/10.1117/12.2275190
https://doi.org/10.1117/12.2275190
https://doi.org/10.1117/12.2234082
https://doi.org/10.1117/12.2186195
https://doi.org/10.1117/12.2054765
https://doi.org/10.1117/12.2022362
https://doi.org/10.1117/12.927143
https://doi.org/10.1117/1.JATIS.4.3.035002
https://doi.org/10.1117/12.2273072
https://doi.org/10.1117/12.2190160
https://web.nps.edu/About/News/NPS-New-Home-for-Giant-Segmented-Mirror-Space-Telescope-html
https://web.nps.edu/About/News/NPS-New-Home-for-Giant-Segmented-Mirror-Space-Telescope-html
https://web.nps.edu/About/News/NPS-New-Home-for-Giant-Segmented-Mirror-Space-Telescope-html
https://web.nps.edu/About/News/NPS-New-Home-for-Giant-Segmented-Mirror-Space-Telescope-html


37. D. Sheikh, Mirror Coating Technology for HabEx, ZeCoat Corporation (2018).
38. T. Hull, Professor of physics and astronomy at the University of New Mexico, private

communication (2018).
39. M. Edwards, Researcher at Corning Inc., private communication (2018).
40. B. Saif et al., “Nanometer level characterization of the James Webb Space Telescope opto-

mechanical systems using high-speed interferometry,” Appl. Opt. 54(13), 4285–4298 (2015).
41. P. Yoder and D. Vukobratovich,Opto-Mechanical Systems Design, Two Volume Set, 4th ed.,

CRC Press, Boca Raton, Florida (2015).
42. H. D. Hall, “Problems in adapting small mirror fabrication techniques to large mirrors,” in

Opt. Telesc. Technol. (A Workshop), NASA-SP-233, NASA Headquarters, Washington,
D.C., pp. 149–152 (1970). https://ntrs.nasa.gov/search.jsp?R=19700027360.

43. L. Montagnino et al., “Test and evaluation of a 60-inch test mirror,” Proc. SPIE 0183
(1979).

44. M. H. Krim, “Metrology mount development and verification for a large spaceborne mirror,”
Proc. SPIE 0332, 440–445 (1982).

45. L. A. Montagnino, “Test and evaluation of the Hubble Space Telescope 2.4-meter primary
mirror,” Proc. SPIE 0571, 182 (1986).

46. J. W. Zinn and G. W. Jones, “Kepler primary mirror assembly: FEA surface figure analyses
and comparison to metrology,” Proc. SPIE 6671, 667105 (2007).

47. C. J. Evans and R. N. Kestner, “Test optics error removal,” Appl. Opt. 35(7), 1015–1021
(1996).

48. M. Zolcinski-Couet, J. A. Magner, and David A. Zweig, “Absolute calibration of flats for
densely sampled data,” Proc. SPIE 2536, 1–8 (1995).

49. R. Egerman et al., “Status of the Advanced Mirror Technology Development (AMTD) phase
2 1.5m ULE mirror,” Proc. SPIE 9575, 95750L (2015).

50. W. H. Arnold and H. P. Stahl, “Influence of core and hexapod geometry, and local reinforce-
ment on the performance of ultra lightweight ULE mirror,” Proc. SPIE 10743, 107430B
(2018).

51. W. R. Arnold and H. P. Stahl, “Design trade study for a 4-meter off-axis primary mirror
substrate and mount for the Habitable-zone Exoplanet Direct Imaging Mission,” Proc.
SPIE 10398, 1039808 (2017).

52. J. M. Davis et al., “HabEx primary mirror trade studies,” Proc. SPIE 10371, 103710B
(2017).

53. W. R. Arnold, R. M. Bevan, and H. P. Stahl, “Integration of mirror design with suspension
system using NASA’s new mirror modeling software,” Proc. SPIE 8836, 88360J (2013).

54. W. R. Arnold, “Evolving design criteria for very large aperture space-based telescopes and
their influence on the need for integrated tools in the optimization process,” Proc. SPIE
9573, 95730G (2015).

55. T. E. Brooks et al., “Optothermal stability of large ULE and Zerodur mirrors,” Proc. SPIE
10743, 107430A (2018).

56. G. W. Matthews et al., “The development of stacked core technology for the fabrication of
deep lightweight UV-quality space mirrors,” Proc. SPIE 8838, 88380L (2013).

57. T. Hull et al., “Practical aspects of specification of extreme lightweight ZERODUR mirrors
for spaceborne missions,” Proc. SPIE 8836, 883607 (2013).

58. P. Hartmann, “Minimum lifetime of ZERODUR® structures based on the breakage stress
threshold model: a review,” Opt. Eng. 58(2), 020902 (2019).

59. T. S. Chonis et al., “Characterization and calibration of the James Webb space telescope
mirror actuators fine stage motion,” Proc. SPIE 10698, 106983S (2018).

60. L3Harris, “SpaceviewTM 50/65/70 small satellite imaging solutions,” Specification Data
Sheet, Harris Corporation, 2019, https://www.harris.com/.

61. L3Harris, “SpaceviewTM 110 satellite imaging solution,” Specification Data Sheet, Harris
Corporation, 2019. https://www.harris.com/.

62. Harris Corporation, “PTC thermal system design review,” NASA Marshall Space Flight
Center Contract NNM15AA01C, AMTD II (an internal document) (2018).

63. T. Brooks, H. P. Stahl, and W. R. Arnold, “Advanced Mirror Technology Development
(AMTD) thermal trade studies,” Proc. SPIE 9577, 957703 (2015).

Stahl et al.: Habitable-Zone Exoplanet Observatory baseline 4-m telescope. . .

J. Astron. Telesc. Instrum. Syst. 034004-46 Jul–Sep 2020 • Vol. 6(3)

https://doi.org/10.1364/AO.54.004285
https://ntrs.nasa.gov/search.jsp?R=19700027360
https://ntrs.nasa.gov/search.jsp?R=19700027360
https://ntrs.nasa.gov/search.jsp?R=19700027360
https://ntrs.nasa.gov/search.jsp?R=19700027360
https://doi.org/10.1117/12.957402
https://doi.org/10.1117/12.933552
https://doi.org/10.1117/12.950408
https://doi.org/10.1117/12.732667
https://doi.org/10.1364/AO.35.001015
https://doi.org/10.1117/12.218463
https://doi.org/10.1117/12.2188566
https://doi.org/10.1117/12.2326017
https://doi.org/10.1117/12.2275193
https://doi.org/10.1117/12.2275193
https://doi.org/10.1117/12.2274476
https://doi.org/10.1117/12.2023512
https://doi.org/10.1117/12.2188570
https://doi.org/10.1117/12.2321275
https://doi.org/10.1117/12.2055284
https://doi.org/10.1117/12.2026589
https://doi.org/10.1117/1.OE.58.2.020902
https://doi.org/10.1117/12.2311815
https://www.harris.com/
https://www.harris.com/
https://www.harris.com/
https://www.harris.com/
https://www.harris.com/
https://www.harris.com/
https://doi.org/10.1117/12.2188371


64. T. E. Brooks, “Predictive thermal control applied to HabEx,” Proc. SPIE 10398, 1039814
(2017).

65. K. Havey, Harris Corporation, private communication (2019).
66. Lake Shore Cryotonics, Inc., “PT-100 series platinum RTDs,” https://www.lakeshore.com/

docs/default-source/product-downloads/lstc_platinum_l.pdf?sfvrsn=9157869c_5 (2019).
67. T. Westerhoff, Schott Corporation, private communication (2019).
68. J. Ziemer et al., “Colloid micro-Newton thrusters for precision attitude control,” CL#17-

2067 (2017).
69. J. Nissin, JPL Thermal Engineer, private communication (2017).
70. A. Kissil, “SFE correction for HabEx primary mirror 4m monolithic/lightweighted ULE

status update,” an internal analysis performed for HabEx (2018).
71. J. B. Knight, H. P. Stahl, and T. Brooks, “Dynamic analyses of the proposed habitable

exoplanet astrophysics facility,” Proc. SPIE 11103, 111030F (2019).

H. Philip Stahl is a senior optical physicist at NASA Marshall Space Flight Center currently
leading the telescope design study for the potential Habitable Exoplanet Observer mission and is
principle investigator developing advanced technology to manufacture, test, and thermally con-
trol large mirror systems. Previous NASA assignments include principle investigator for the
Advanced Mirror Technology Development project; mirror technology lead for the James
Webb Space Telescope, including development of JWST mirror fabrication and testing technol-
ogy and providing insight/oversight of JWST optical components; and various technology road-
map studies. Additionally, he was responsible for fabrication and test of the Spitzer secondary
mirror, alignment, and operation of the Air Force 4-meter 7-segment LAMP mirror, absolute
calibration of an LIGO test flat, testing of the Keck primary mirror segments, and designing
human-operated optical systems for Shuttle microgravity experiments. He is a leading authority
in optical metrology, optical engineering, and phase-measuring interferometry. Many of the
world’s largest telescopes have been fabricated with the aid of high-speed and infrared phase-
measuring Interferometers developed by him, including the Keck, VLT, and Gemini telescopes.
He is a fellow of SPIE, fellow of OSA, and member of AAS and IAU. He was the 2014 SPIE
President and an ICO Vice-President, in 2005 to 2011. He received his PhD in 1985 and his
MS degree in 1983 in optical science at the University of Arizona Optical Sciences Center.
He received his BA degree in physics and mathematics from Wittenberg University in 1979.

Gary Kuan is a senior optical engineer at the NASA Jet Propulsion Laboratory/California
Institute of Technology, where he has worked since 2000. He is the design lead for the
Habitable Exoplanet Observatory (HabEx) decadal study and the optical system engineer for the
WFIRST Coronagraph Instrument. Previously, he was the deputy manager of the WFIRST tele-
scope at JPL. He received his PhD in 2001 in electrical engineering: applied physics from the
University of California, San Diego, and his BS degree in 1992 in electrical engineering from
the University of California, Los Angeles.

William R. Arnold is a subject matter expert in optical-mechanics at Marshall Space Flight
Center, where he is currently developing large lightweight mirror design software. He has
50+ years of engineering experience with expertise in structural dynamic, shock and vibration,
and fracture mechanics. He designed the primary mirror and suspension system for the
Kepler Space Telescope, the turret optics for airborne laser, and numerous large ground-based
telescopes.

Thomas Brooks is an aerospace engineer at Marshall Space Flight Center. He is coinvestigator
on Predictive Thermal Control (a Strategic Astrophysics Technology grant from NASA HQ). He
has a background in numerical modeling with a focus in thermal and structural analysis, and he
writes machine learning and artificial intelligence code in Python to perform optimization and
model correlation, as well as to write control system algorithms. He has bachelor’s and master’s
degrees in aerospace engineering.

J. Brent Knight is a senior dynamics analyst at NASA Marshall Space Flight Center.
Experience includes stability analyses for ISS microgravity and space optical systems, dynamic

Stahl et al.: Habitable-Zone Exoplanet Observatory baseline 4-m telescope. . .

J. Astron. Telesc. Instrum. Syst. 034004-47 Jul–Sep 2020 • Vol. 6(3)

https://doi.org/10.1117/12.2274338
https://www.lakeshore.com/docs/default-source/product-downloads/lstc_platinum_l.pdf?sfvrsn=9157869c_5
https://www.lakeshore.com/docs/default-source/product-downloads/lstc_platinum_l.pdf?sfvrsn=9157869c_5
https://www.lakeshore.com/docs/default-source/product-downloads/lstc_platinum_l.pdf?sfvrsn=9157869c_5
https://www.lakeshore.com/docs/default-source/product-downloads/lstc_platinum_l.pdf?sfvrsn=9157869c_5
https://www.lakeshore.com/docs/default-source/product-downloads/lstc_platinum_l.pdf?sfvrsn=9157869c_5
https://doi.org/10.1117/12.2530385


structural design load development, and development of new methods to mitigate unnecessary
mass in structural designs. Projects supported include ISS, SPACEHAB, Ares, SLS, HabEx,
Lynx, IXPE, EUSO, and others. He received his BS and MS degrees in mechanical engineering,
Mississippi State University, 1986/1988, as well as an MS degree in bioengineering, Clemson
University, 1999.

Stefan Martin is a senior optical engineer at the Jet Propulsion Laboratory. He received his BSc
degree in physics from the University of Bristol, United Kingdom, and his PhD in engineering
from the University of Wales. At JPL, he has been leader of the TPF-I Flight Instrument
Engineering Team, testbed lead for the TPFI Planet Detection Testbed, and payload lead for
the HabEx telescope design study. He is currently involved in starshade accommodation on
future space telescopes, such as WFIRST.

Stahl et al.: Habitable-Zone Exoplanet Observatory baseline 4-m telescope. . .

J. Astron. Telesc. Instrum. Syst. 034004-48 Jul–Sep 2020 • Vol. 6(3)


