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Abstract. Future, large-scale, exoplanet direct-imaging missions will be capable of discovering
and characterizing Earth-like exoplanets. These mission designs can be evaluated using com-
pleteness, the fraction of planets from some population that are detectable by a telescope at an
arbitrary observation time. However, the original formulation of completeness uses instrument
visibility limits and ignores additional integration time and planetary motion constraints. Some
of the sampled planets used to calculate completeness may transit in and out of an instrument’s
geometric and photometric visibility limits while they are being observed, thereby causing the
integration time agnostic calculation to overestimate completeness. We present a method for
calculating completeness that accounts for the fraction of planets that leave the visibility limits
of the telescope during the integration time period. We define completeness using the aggregate
fraction of an orbital period during which planets are detectable, calculated using the specific
times that planets enter and leave an instrument’s visibility limits and the integration time. To
perform this calculation, we derive analytical methods for finding the planet-star projected sep-
aration extrema, times past periastron that these extrema occur, and times past periastron that the
planet-star projected separation intersects a specific separation circle. We also provide efficient
numerical methods for calculating the planet-star difference in magnitude extrema and times past
periastron corresponding to specific values Δmag. Our integration time adjusted completeness
shows that, for a planned star observation at 25 pc with 1-day and 5-day integration times, inte-
gration time adjusted completeness of Earth-like planets is reduced by 1% and 5% from the
integration time agnostic completeness, respectively. Integration time adjusted completeness cal-
culated in this manner also provides a computationally inexpensive method for finding dynamic
completeness—the completeness change on subsequent observations. © The Authors. Published by
SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this
work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
.1117/1.JATIS.7.3.037002]
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1 Introduction

Direct imaging blind search mission schedules can be optimized1 by maximizing completeness2—
the fraction of exoplanets from an assumed planet population that are detectable by a par-
ticular instrument at an arbitrary observation time. Completeness is typically parameterized
by a limiting planet-star brightness difference (Δmaglim), the inner working angle (IWA) of the
instrument, and the outer working angle (OWA) of the instrument. The original Monte Carlo
approach developed by Brown2 involved creating a cloud of synthetic planets by sampling the
underlying Keplerian orbital elements (KOE) and physical parameters of a planet population and
determining the fraction of those individually simulated planets within the visible limits of the
instrument. Multiplying completeness by the exoplanet occurrence rate gives the expected exo-
planet yield for observing a given star. Although completeness is a good metric for predicting
instrument performance, the calculation described above only captures an instant in time and
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does not include whether the time that a planet is within the visible region of the telescope is
sufficient to actually make a detection.

The original method of calculating completeness was developed by Brown.2 Our adaptation
of this method in EXOSIMS3 is extensively outlined in Ref. 1 and involves randomly generating
planet KOE, planet geometric albedo (p), and planetary radius (R) sampled from NASA’s
Exoplanet Program Analysis Group Study Analysis Group 13 (SAG13)1,4,5 probability density
functions, generating a finely binned 2D histogram of Δmag versus s (planet-star separation),
and fitting a 2D spline to the histogram bins. In all current methods, completeness is calculated
as the double integral of s and Δmag over the joint probability density function as in Eq. (17) of
Ref. 1 and Eq. (7) in Ref. 6. The limits of integration define a detectable planet as one in which
Δmag < Δmaglim and diIWA < s < diOWA, where di is the distance of the host star from the
spacecraft. While the Δmaglim in this paper is used to describe a general upper limit of inte-
gration for calculating completeness, this Δmaglim can be formulated as a function of integration
time as in Eq. (12) of Ref. 1 by making assumptions about a multitude of instrument parameters
and external noise sources. This approach, as conventionally implemented, is a good estimator
for completeness,1 but it does not take planet motion in time into account.

Searches like the Gemini Planet Imager and Nancy Grace Roman Space Telescope (Roman)
Coronagraphic Instrument (CGI)7 are sensitive to larger planets with larger planet-star separa-
tions and longer orbital periods.1 They make use of Brown completeness to plan blind searches.
However, future telescope concepts like the Habitable Exoplanet Observatory (HabEx)8 and the
Large UV/Optical/IR Surveyor (LUVOIR)9 seek to find smaller Earth-like exoplanets, with
shorter orbital periods around stars farther away. Their search criteria will result in Brown com-
pleteness based yield overestimations due to planet motion out of instrument visibility limits.
Figure 1 shows a schematic of a direct imaging observation; it demonstrates how a planet can be
within the photometric and geometric visibility limits of the instrument and still not be detected.
The red regions of the planet’s orbit indicate where the planet is within the visible limits but not
detectable because the planet will move out of the region in less time than it takes to detect the
planet [case (b) in this figure]. Since there will be some Earth-like exoplanets that are counted
toward the completeness score but are not actually within the visibility constraints of the

(c)

(a)

(b)

Fig. 1 Schematic of a direct imaging observation. The line represents the projection of a planet’s
orbit about its parent star (yellow) into the plane of the sky as seen by a distant observer. The arrow
indicates the planet’s direction of motion. Blue portions of the orbit (a) indicate times when the
planet is detectable. Red portions of the orbit (b) indicate times when the planet is within the visibility
limits of the instrument, but it is not detectable due to integration time constraints. The dashed
portions of the orbit (c) indicate times when the planet is too faint to be observed. The shaded
gray regions represent the projected inner and OWAs of the instrument. The planet is unobservable
on portions of the orbit intersecting these gray regions. Green dots indicate transitions in and out of
instrument visibility limits.

Keithly, Savransky, and Spohn: Integration time adjusted completeness

J. Astron. Telesc. Instrum. Syst. 037002-2 Jul–Sep 2021 • Vol. 7(3)



instrument long enough to be directly imaged, we need a new method that only counts targets
within the instrument visibility long enough to be observed or characterized.

Figure 2 demonstrates this phenomenon in the separation versus Δmag phase space com-
monly used to define instrument contrast curves and completeness. Figure 2(b) shows a short-
period, fast-moving, Mars-like planet that transitions into and out of the assumed instrument’s
visible limits before it can be detected. Figure 2(c) shows the effect for a Uranus-like planet that
crosses through and exits the visible region in less time than it takes for it to be detected. In these
cases, Brown’s completeness calculation would include simulated planets in these regions, thus
overestimating the overall detection yield. Additionally, Fig. 2(d) shows that the last possible
moment a Neptune-like planet could be imaged before it leaves the visible limits of the telescope.
This demonstrates a portion of the orbit where the planet is within the visible limits of the tele-
scope but is not detectable.

This paper presents a method, implemented in the EXOSIMS modeling software,3 for cal-
culating integration time adjusted completeness that allows us to investigate exactly how much
the original completeness definition overestimates planet yields. EXOSIMS is an exoplanet
direct imaging mission modeling software used to simulate the Roman CGI7 and future mission
concepts such as HabEx8 and LUVOIR.9 EXOSIMS simulates populations of planets, observa-
tories, instruments, and underlying dynamics to create full, end-to-end mission simulations. We
derive distributions of potential mission yield from ensembles of these mission simulations.
EXOSIMS utilizes completeness as a heuristic for target selection and observation scheduling,1

(a) (b)

(b)

(c)

(c)

(d)

(d)

Fig. 2 TheΔmag versus s curve for Neptune (blue) andMars (red). The instrument’s visible region
(white) is bounded by 0.066 and 0.517 arc sec, and Δmag ¼ 31 at di ¼ 22.87 pc (we selected
instrument parameters to make a demonstration on solar system planets about a Sun-like star, but
any instrument will have planets with similar effects). Any planet in the grayed region is not visible
by the instrument. Dots indicate calculated intersection points between the planet and the visible
region bounds. The black dashed portions of planet orbits indicate portions of the orbit where the
planet is not detectable. (b) A portion of Mars’s orbit where the planet enters and exits the visible
limits of the instrument in less time than the required integration time.1 (c) A portion of Neptune’s
orbit where the planet enters and exits the visible region of the instrument in less time than the
required integration time. (d) Neptune’s detectable region adjusted for integration time. If the
observation of Neptune in (d) is started when it is left of the blue × and in the visible region, then
it will be detected; if it is started right of the blue ×, the planet will not be detected because the
required integration time is larger than the time the planet will be in the visible region of the
instrument.
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implementing both Brown’s Monte Carlo approach to completeness2 as well as the analytical
completeness formulation from Ref. 6. However, EXOSIMS determines whether actual detec-
tions occur by evaluating the effective signal-to-noise ratio (SNR) of individual simulated obser-
vations on simulated planets. Keithly et al.1 discussed the full optimization process for a single-
visit blind search and showed that the ideal yield from an EXOSIMS simulation ensemble (when
mission constraints are discounted) for a limited blind search mission of Roman is equivalent to
the yield calculated via Brown Completeness.

Comparisons between Brown completeness-based exoplanet yield estimations and Monte
Carlo of full mission simulations have been done in Ref. 10 and the Standard Definitions and
Evaluation Team Final Report.11 The yields calculated by completeness are higher than the aver-
age yield from a Monte Carlo of full missions simulated in EXOSIMS as noted in Table 6 of
Ref. 11. These works attribute the difference in yields to the additional mission constraints cap-
tured by the full mission simulation approach, inefficiencies in the optimization algorithms, and
inefficiencies in the scheduling algorithms implemented in EXOSIMS.12 The unmentioned
assumption is that Brown completeness-based yield estimates are accurate, but this paper dem-
onstrates how the omission of planet motion and integration time reduces the resulting complete-
ness yield estimates.

To know the amount of time that an individual planet spends within the observable limits of
an instrument, we need to calculate the times in a planet’s orbit when a planet enters or exits
these limits. This means that we need methods for calculating when a planet has a given planet-
star separation and Δmag. Once we know all of the times when a planet enters or exits an instru-
ment’s visibility limits, we know the fraction of time that the planet is able to be detected with
that instrument. Averaging over these visibility fractions for a large number of samples evaluates
completeness in a fundamentally different way from its original formulation. These same meth-
ods also allow for the evaluation of integration time adjusted completeness as well as a new
method of calculating dynamic completeness.13

Section 2 presents the derivation of this chain of calculations and discusses practical aspects
of their implementation. Section 3 provides detailed validation of the methods and presents
results of the various calculations enabled by them. Finally, in Section 4, we discuss various
aspects of the algorithms and results, and we lay out future applications for this methodology.

2 Methods

In this section, we present our detailed process for calculating integration time adjusted com-
pleteness. We do this by finding the time windows in which a planet is within the separation and
Δmag visibility limits of an instrument, discounting each time window by the integration time.
The general overview of this process is as follows.

1. Calculate locations of apparent intersections between the projection of the 3D orbit into
the plane of the sky and the sWA circle about the star.

(a) Parameterize the 3D orbit as an ellipse in the plane of the sky.
(b) Formulate the planet-star separation equation and its derivative.
(c) Solve for the magnitude and locations of planet-star separation extrema.
(d) Identify and assign the subset of algebraic solutions that are separation extrema.
(e) Classify the expected number of intersections between the projected ellipse and the

sWA circle.
(f) Solve for intersections between the projection of the orbital ellipse and the sWA circle.
(g) Identify and assign the subset of algebraic solutions that form intersections.

2. Calculate locations and magnitudes of Δmag intersections.

(h) Formulate an expression isolating the Δmag and ν terms and its derivative.
(i) Express this formulation as a polynomial and solve for the algebraic solutions.
(j) Identify and assign the subset of algebraic solutions that are Δmag extrema.
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(k) Classify the expected number of Δmag and Δmaglim intersections.
(l) Solve for Δmag and Δmaglim intersections.

(m) Identify and assign the subset of algebraic solutions that form the intersections.

3. Calculate ν from X and Y for each intersection and extrema.
4. Calculate t from ν of each intersection and extrema.
5. Combine times of sWA and Δmaglim intersections to create time windows between

intersections.
6. Identify time windows in which the planet is visible or not visible.
7. Calculate integration time adjusted completeness averaging the orbital fraction of time that

a planet is visible discounted by the integration time.

The general equations for Δmag and s used in these derivations are

EQ-TARGET;temp:intralink-;e001;116;575Δmag ¼ −2.5 log10

�
p

�
R

j̱rk∕ij
�

2

ΦðβÞ
�
; (1)

and

EQ-TARGET;temp:intralink-;e002;116;517s ¼ krk∕i − ðrk∕i · ̱r̂i∕SCÞ̱r̂i∕SCk: (2)

Here R is the planet radius, p is the geometric albedo of the planet, and ΦðβÞ is the planet phase
function. The other variables are defined in Fig. 3, where β is the star-planet-observer angle (also
called the phase angle), rk∕i is the vector from star i to planet k, and ̱r̂i∕SC is the unit vector from
the spacecraft (SC) to the star (̱r̂ is the unit vector of r). The plane of the sky for a given obser-
vation lies in the ̱x̂ and ̱ŷ plane, where ̱r̂i∕SC defines ̱ẑ of the target system. For our purposes, the
direction of ̱x̂ is arbitrary, but is typically taken to be a well-defined, inertially fixed direction,
such as the ICRS mean equinox or pole direction. Here and throughout this paper, i in a subscript
refers to the i’th target star and i (not subscripted) refers to the orbit inclination.

2.1 Projected Orbit and Separation Intersection

In this section, we derive an analytical expression for the true anomaly (ν) of s-orbit intersection
points between a circle in the plane of the sky and the projection of a 3D Keplerian orbit on the
plane of the sky. A practical example of a circle in the plane of the sky is the projected inner or

Fig. 3 The orbital path of planet k (black) in a general XYZ Cartesian coordinate system. r k∕i
(straight blue arrow) describes the location of the planet k (blue circle) relative to star i (yellow
circle). The plane of the sky is noted by the translucent red parallelogram entirely in the x̂− and
ŷ
−
plane. The dashed ellipse (red) is the projection of the planet orbit (black) onto the plane of

the sky. ĥ− is the orbit angular momentum vector. ê− is the orbit eccentricity vector. n̂− is the line
of nodes. The star � is generally referred to in subscripts as � and often referred to in subscripts
as the i ’th star. This is not to be confused with the variable i , which is the inclination of the planet
orbit. ν is the true anomaly of the planet. ω is the argument of periapsis of the planet. Ω is the
longitude of the ascending node of the planet.
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OWA of the instrument, equal to IWAdi (or OWAdi) for target star distance di. An orbit defined
by KOE takes the shape of an ellipse in the orbital plane. The perpendicular projection of a 3D
elliptical orbit onto the plane of the sky is given by the ̱x̂ and ̱ŷ components of the 3D orbit.
However, the resulting expression is not easily solvable for the true anomalies at intersection
points. Instead, we can express the orbit projection in the plane of the sky as another ellipse. This
simplifies the difficult intersection problem into analytically solvable subproblems and yields a
relatively simple solution to the intersection between a circle in the plane of the sky and the
projected orbit in the plane of the sky. Here we include the brief outline of this process, with
the full procedure detailed in Appendix B.

1. Project the 3D orbital ellipse into a 2D projected ellipse and formulate the separation
equation.

2. Find the expected number of s intersection points.
3. Calculate s intersection point coordinates.

2.1.1 Projection of the elliptical orbit

Given the KOE of a 3D orbit and a plane to project it on, we calculate the semimajor and semi-
minor axes of the projected orbit (ap and bp, respectively) as well as the angle between the
projected semimajor axis and ̱x̂, which we call (θ). We first convert the KOE into orbital radius
components in the Cartesian XYZ coordinate system as in Fig. 3:

EQ-TARGET;temp:intralink-;e003;116;480

X ¼ rðcosðΩÞ cosðωþ νÞ − sinðΩÞ sinðωþ νÞ cosðiÞÞ
Y ¼ rðsinðΩÞ cosðωþ νÞ þ cosðΩÞ sinðωþ νÞ cosðiÞÞ
Z ¼ r sinðiÞ sinðωþ νÞ; (3)

where r is the orbital radius (magnitude of rk∕i) given by

EQ-TARGET;temp:intralink-;e004;116;400r ¼ að1 − e2Þ
1þ e cosðνÞ : (4)

Ω is the longitude of the ascending node, ω is the argument of periapsis, ν is the true anomaly,
and e is the eccentricity of the planet’s orbit.

Figure 4 shows a schematic view of the projection of the orbit onto the plane of the sky. There
are two particularly important points associated with the projected orbit ellipse. First, F is the
filled focus (star location) of the orbit and retains the same coordinates in the plane of the sky.
When observing a star, F is the center of all working angle circles and the origin of the XYZ
coordinate system. Note that in Fig. 4 the projected ellipse is located well below the original 3D
ellipse for clarity, but the points F indicated by the orange circle and F indicated by the orange ×
are in fact coincident.

Second, O is the geometric center of the 3D orbit and is found most efficiently by averaging
the XYZ locations of the planet at apoapsis and periapsis:

EQ-TARGET;temp:intralink-;e005;116;223FO ¼ 1

2
ðrk∕iðν ¼ 0Þ þ rk∕iðν ¼ πÞÞ; (5)

where FO is the line segment (equivalently Euclidean vector) from F to O and rk∕iðνÞ is the
evaluation of Eq. (3) for the given value of ν. As ̱x̂ and ̱ŷ define the plane of the sky, the XYZ
coordinates of the geometric center of the projected ellipse (O 0) are given by

EQ-TARGET;temp:intralink-;e006;116;143O 0 ¼ hFO · ̱x̂; FO · ̱ŷ; 0i: (6)

Appendix J provides a proof that any generic 3D ellipse projects to a 2D ellipse, as shown
graphically in Fig. 4. The projection of the semimajor axis and semiminor axis from the 3D orbit
onto the 2D plane of the sky form conjugate diameters of the projected ellipse. Any two diam-
eters of an ellipse are conjugate diameters if and only if the tangent line to the ellipse at an
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endpoint of one diameter is parallel to the other diameter.14 Each pair of conjugate diameters of
an ellipse has a corresponding tangent parallelogram, sometimes called a bounding parallelo-

gram. In Fig. 4, the pair of blue lines (A 0B 0 and C 0D 0) are specific examples of conjugate diam-
eters. The pair of purple lines (IR and ST) are also examples of conjugate diameters, and they
form the semimajor and semiminor axes of the projected ellipse.

The semimajor and semiminor axes of the projected ellipse may be found from any conjugate

diameters. We take the conjugate diameters A 0B 0 and D 0C 0 and draw line QQ 0 through B 0,
perpendicular to D 0C 0 as shown by the gray line in Fig. 5. Points Q and Q 0 are chosen such

that B 0Q ¼ B 0Q 0 ¼ O 0D 0. The principal axes IR and ST lie on the bisectors of the angles

formed by lines O 0Q and O 0Q 0. From this construction, we calculate the projected ellipse semi-
major axis, semiminor axis, and angular offset of the semimajor axis from ̱x̂.16 IR and ST are
given by

EQ-TARGET;temp:intralink-;e007;116;208IR ¼ O 0Q 0 þO 0Q; (7)

EQ-TARGET;temp:intralink-;e008;116;167TS ¼ O 0Q 0 −O 0Q: (8)

Defining the angle between O 0B 0 and O 0D 0 as ϕ, the cosine rule applied to triangles O 0B 0Q
and O 0B 0Q 0 yielding

EQ-TARGET;temp:intralink-;e009;116;129jO 0Qj2 ¼ jO 0B 0j2 þ jO 0D 0j2 − 2jO 0B 0jjO 0D 0j sin ϕ; (9)

EQ-TARGET;temp:intralink-;e010;116;86jO 0Q 0j2 ¼ jO 0B 0j2 þ jO 0D 0j2 þ 2jO 0B 0jjO 0D 0j sin ϕ; (10)

where jO 0B 0j denotes the length of O 0B 0. Inserting these into Eq. (7), we obtain

Fig. 4 The original 3D elliptical orbit of a planet (black line) containing points A, B, C, and D; the
gray endpoints of the purple semimajor axis AB and semiminor axis CD. The planet orbits about
the star, which is located at focus F (orange circle). The orange dot and orange × denoted as F are
the same point in space, but the red projection is shown as offset from the original orbit for clarity.
The projection of the original 3D elliptical orbit onto the XY plane is given by the red ellipse con-
taining points A 0, B 0, C 0, and D 0 (blue diamonds; perpendicular projections of A, B, C, and D).
Point O is the geometric center of the 3D elliptical orbit and projects to O 0 in the plane of the sky.
Point P (green circle) is any arbitrary point along the original 3D ellipse and maps to the semimajor
axis and semiminor axis components H and K , respectively (green ×). P 0 (pink circle) is the
perpendicular projection of P , and H 0 and K 0 (pink ×) are projections of H and K , respectively.
The components of these perpendicular projections preserve the ratios of their values to the semi-
major and semiminor axes, which, given the equation for an ellipse, can be used to prove the
projection of an ellipse is itself an ellipse. The blue lines A 0B 0 and C 0D 0 form conjugate diameters
of the red ellipse and are the projection of the semimajor axis and semiminor axis of the original 3D
ellipse onto the plane of the sky. These conjugate diameters can then be used to find the semi-
major axis and semiminor axis of the red projected ellipse IR and ST , respectively. xdr , ydr

, zdr

are the components of the derotated reference frame (dr ) as defined in the text.

Keithly, Savransky, and Spohn: Integration time adjusted completeness

J. Astron. Telesc. Instrum. Syst. 037002-7 Jul–Sep 2021 • Vol. 7(3)



EQ-TARGET;temp:intralink-;e011;116;515O 0R · O 0S ¼ jO 0B 0jjO 0D 0j sin ϕ; (11)

EQ-TARGET;temp:intralink-;e012;116;479jO 0Rj2 þ jO 0Sj2 ¼ jO 0B 0j2 þ jO 0D 0j2: (12)

jIRj must be twice the semimajor axis of the projected ellipse (ap), so

EQ-TARGET;temp:intralink-;e013;116;453ap ¼ jIRj
2

¼ jO 0Rj; (13)

and jTSj must be twice the semiminor axis of the projected ellipse, so

EQ-TARGET;temp:intralink-;e014;116;397bp ¼ jTSj
2

¼ jO 0Sj: (14)

The angle of the semimajor axis of the projected ellipse from ̱x̂ is calculated using the average of
the angles between O 0Q and ̱x̂ and O 0Q 0 and ̱x̂:

EQ-TARGET;temp:intralink-;e015;116;328θ ¼ 1

2

�
tan−1

�
O 0Q · ̱ŷ
O 0Q · ̱x̂

�
þ tan−1

�
O 0Q 0 · ̱ŷ
O 0Q 0 · ̱x̂

��
: (15)

Appendix E provides the full expressions for ap, bp, and θ via full expansions of Eqs. (13)–(15),
respectively.

Now that we know all of the parameters necessary to describe the projected ellipse, we can
standardize this ellipse into a simpler form to simplify subsequent calculations. We define a new
frame (dr as in Fig. 4) as the derotation and geometric centering of the projected orbit such that

the semimajor axis of the projected ellipse (O 0I) is aligned with ̱x̂dr, the semiminor axis of the

projected ellipse (O 0S) is aligned with ̱ŷdr, and O 0 is the origin of the dr coordinate system. The
dr coordinates of the star location F (x�, y�) are given by a simple rotation of the projection of

O 0F onto the ̱x; ̱y plane by angle θ:

EQ-TARGET;temp:intralink-;e016;116;166

�
x�
y�

�
dr

¼ −
�

cosðθÞ sinðθÞ
− sinðθÞ cosðθÞ

��
O 0F · ̱x̂
O 0F · ̱ŷ

�
XYZ

: (16)

2.1.2 Global and local extrema of planet-star separation

Before solving for the true anomalies where the orbit’s projected separation s is equal to sWA

(general working angle separation WAdi), we first need to know how many of these sWA-orbit

Fig. 5 The projected ellipse (red) has semimajor axis IR and semiminor axis TS (purple). Both
are calculable from the conjugate diameters that are the projections of the semimajor and semi-
minor axes of the original 3D ellipse (A 0B 0, C 0D 0, blue). The line QQ 0 is drawn such that it is
perpendicular to the smaller conjugate diameter (C 0D 0) and is bisected by B 0: jB 0Qj ¼ jB 0Q 0j ¼
jO 0C 0j. The semimajor axis of the projected ellipse is the angular bisector of O 0Q and O 0Q 0.15

Finally, the semiminor axis TS of the projected ellipse is perpendicular to the semimajor axis.
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intersections we are looking for. We find the expected number of solutions by finding the s
extrema throughout the orbit. We do so by solving for the roots of the derivative of the projected
planet-star separation.

We start with the general equation for an ellipse:

EQ-TARGET;temp:intralink-;e017;116;687

�
xe
ap

�
2

þ
�
ye
bp

�
2

¼ 1; (17)

where xe and ye are the coordinates of any point on the ellipse and ap, bp are the semimajor and
semiminor axes, respectively. We rewrite this in terms of xe, giving

EQ-TARGET;temp:intralink-;e018;116;617ye ¼ bp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

x2e
a2p

s
: (18)

The projected separation is given by

EQ-TARGET;temp:intralink-;e019;116;554s2 ¼ ð−x� þ xeÞ2 þ ð−y� þ yeÞ2: (19)

Taking the derivative of Eq. (19) with respect to xe, substituting Eq. (18) (and its derivative), and
setting it equal to zero, we have

EQ-TARGET;temp:intralink-;e020;116;4980 ¼ δs2

δxe
¼ −2x� þ 2xe þ

2bpxey�

ap
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2p − x2e

q −
2b2pxe
a2p

: (20)

Isolating the square root term to one side and squaring both sides of the equation gives

EQ-TARGET;temp:intralink-;e021;116;432

�
−2x� þ 2xe −

2b2pxe
a2p

�
2

¼
�

2bpxey�

ap
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2p − x2e

q �
2

; (21)

which is expanded with coefficients of xe, to get the polynomial expression
EQ-TARGET;temp:intralink-;e022;116;367

0 ¼ x4e þ
−8a2px� þ 8b2px�

ð4a4p − 8a2pb2p þ 4b4pÞ∕a2p
x3e þ

−4a4p þ 8a2pb2p þ 4a2px2� − 4b4p þ 4b2y2�
ð4a4p − 8a2pb2p þ 4b4pÞ∕a2p

x2e

þ 8a4px� − 8a2pb2px�
ð4a4p − 8a2pb2p þ 4b4pÞ∕a2p

xe þ
−4a4px2�

ð4a4p − 8a2pb2p þ 4b4pÞ∕a2p
: (22)

This expression is a fourth-order polynomial, which we write in standard quartic form as

EQ-TARGET;temp:intralink-;e023;116;2770 ¼ x4e þ A0x3e þ B0x2e þ C0xe þD0; (23)

where A0, B0, C0, and D0 are the constants and functions of ap, bp, x�, and y�, defined in
Appendix F. We now apply the analytical solutions of the general quartic expression in standard
form given in Appendix K.

Solving this quartic gives us a set of four xe solutions (xe) corresponding to two global
extrema and two local extrema (if the latter exist for a particular orbit). Figure 6 shows a sche-
matic representation of an orbit with four extrema. We use the imaginary components of the
solutions, geometry of the ellipse, and magnitude of the higher order terms in the quartic sol-
utions to identify which solutions belong to which extrema. We first use the magnitude of the
imaginary components of solutions to determine how many extrema there are and filter out sol-
utions that are not extrema. The algebraic solutions of the quartic polynomial all give values in
the first quadrant (quadrants 1 to 4 are numbered counter-clockwise such that quadrant 1 has
strictly positive coordinates, see the four quadrants of Fig. 6), so we must use geometry of the
problem to determine the proper sign of each extremum’s true coordinates xe;g and ye;g [g refer-
ences solutions 0 to 3 Eq. (91)–Eq. (94)].
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All numerical solutions to the quartic have some degree of imaginary component due to
accumulation of numerical errors. Quartic solution sets with only two extrema will have two
real solutions (solutions with small imaginary components only due to numerical error) and two
solutions with large imaginary components (algebraic solutions that are artifacts to be thrown
away). The majority of KOE have only two s extrema. The only case in which no extrema exist
is in a circular face-on orbit. In this specific case, all solutions to the quartic will be nearly
identical and have large imaginary components, and the resulting s extrema will be identical
(smin ¼ smax). We assume that all solutions are real if jIðxe;gÞj < 10−5 ∀ g ∈ f0;1; 2;3g. We
assume only two solutions are real if jIðxeÞj < 10−5 for only two solutions. We define a new
ordered set containing either two or four elements depending on magnitude of the imaginary
components as

EQ-TARGET;temp:intralink-;e024;116;272xR ¼ fjRðxe;gÞj∶jIðxe;gÞj < 10−5 ∀ g ∈ 0..3g; (24)

where the absolute value is due to the algebraic solutions of the quartic being only defined in the
first quadrant.

We now know the number of expected solutions from the dimension of xR but need to lev-
erage the quartic algebraic solution and geometry to determine which components belong to
which quadrant. For orbits with xR containing only two solutions, the first two solutions to the
quartic (xR;0 and xR;1) produce the largest and smallest xR;g − x�, respectively. Due to the shape
of an ellipse, these must necessarily produce smin and smax. We define the set yR as the appli-
cation of Eq. (18) to each element of xR. We define four separation quantities from the possible
sign combinations of the coordinate magnitudes in xR and yR as

EQ-TARGET;temp:intralink-;e025;116;130s−�0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxR;0 − x�Þ2 þ ðyR;0 � y�Þ2

q
; (25)

EQ-TARGET;temp:intralink-;e026;116;79sþ�0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxR;0 þ x�Þ2 þ ðyR;0 � y�Þ2

q
; (26)

Fig. 6 Planet orbit (black) in the dr frame and planet-star separation extrema. The minimum sep-
aration (cyan) always occurs in the same quadrant as the star in the dr frame (orange ×). The
maximum separation (red) always occurs in the quadrants opposite the star. The local minimum
separation (magenta) and local maximum separation (gold) occur in the same half-plane about the
y axis as the star, but in opposite half-planes about the x axis as the star (fourth quadrant). This
configuration applies to the vast majority of orbits. A small number of edge cases exist, including
circular orbits and some edge on orbits. The blue dots represent the foci of the projected ellipse in
the dr frame, the orange dot is the ellipse center, and the purple dashed lines are the semimajor
and semiminor axes.
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EQ-TARGET;temp:intralink-;e027;116;723s−�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxR;1 − x�Þ2 þ ðyR;1 � y�Þ2

q
; (27)

EQ-TARGET;temp:intralink-;e028;116;693sþ�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxR;1 þ x�Þ2 þ ðyR;1 � y�Þ2

q
: (28)

Typically, s��1 is smaller than s��0, but in ≪0.01% of cases, s��0 can be the smallest sep-
aration due to numerical error. (In this case, we ensure js��1 − s��0j < 10−8 and swap values.)
In addition to s��1 < s��0, we also know that s−þ0 < s−þ1, sþ−1 < sþ−0, and sþþ1 < sþþ0 for all
cases. Using this knowledge, we reduce the number of comparisons that we need to find the
minimum planet-star separation to

EQ-TARGET;temp:intralink-;e029;116;613smin ¼

8>>><
>>>:

s��1 where ðs��1 < s−þ0Þ and ðs��1 < sþ−1Þ and ðs��1 < sþþ1Þ;
s−þ0 where ðs−þ0 < s��1Þ and ðs−þ0 < sþ−1Þ and ðs−þ0 < sþþ1Þ;
sþ−1 where ðsþ−1 < s−þ0Þ and ðsþ−1 < s��1Þ and ðsþ−1 < sþþ1Þ;
sþþ1 where ðsþþ1 < s−þ0Þ and ðsþþ1 < sþ−1Þ and ðsþþ1 < s��1Þ:

(29)

The maximum separation similarly is found as

EQ-TARGET;temp:intralink-;e030;116;527smax ¼

8>>><
>>>:

s��0; where ðs��0 > s−þ0Þ and ðs��0 > sþ−1Þ and ðs��0 > sþþ0Þ;
s−þ0; where ðs−þ0 > s��0Þ and ðs−þ0 > sþ−1Þ and ðs−þ0 > sþþ0Þ;
sþ−1; where ðsþ−1 > s−þ0Þ and ðsþ−1 > s��0Þ and ðsþ−1 > sþþ0Þ;
sþþ0; where ðsþþ0 > s−þ0Þ and ðsþþ0 > sþ−1Þ and ðsþþ0 > s��0Þ:

(30)

We are able to find xe and ye of the minimum and maximum separation diamonds drawn in Fig. 6
using the same logic as for finding smin and smax.

For the orbits with four solutions in xR, the first two elements will always be the global
extrema, and the last two elements will be the local extrema, which are given by

EQ-TARGET;temp:intralink-;e031;116;405smin ¼ s��1; (31)

EQ-TARGET;temp:intralink-;e032;116;362smax ¼ sþþ0; (32)

EQ-TARGET;temp:intralink-;e033;116;340slmin ¼
�
s−þ3; s−þ2 > s−þ3

s−þ2; else
; (33)

EQ-TARGET;temp:intralink-;e034;116;304slmax ¼
�
s−þ2; s−þ2 > s−þ3

s−þ3; else
; (34)

where s−þ2 and s−þ3 are calculated in the same manner as s−þ0 and s−þ0. We are able to find the
coordinates of all four using the same logic as for finding smin, smax, slmin, and slmax. This pro-
cedure yields the coordinates of all existing extrema in the dr frame. To find their locations on
the projection of orbit in the plane of the sky, we apply the inverse of Eq. (16).

2.1.3 Intersections between a circle and an ellipse

We find sWA-orbit intersections by formulating the circle-ellipse intersections as another quartic,
solving this, and assigning the algebraic solutions to intersections. We assign solutions using the
number of s extrema, the size of the sWA intersecting circle relative to these s extrema, and the
ellipse geometry. To formulate the sWA-orbit intersections as a quartic, we start with Eq. (19) and
substitute in Eq. (18). This gives us a separation equation solely as a function of xe and star
location. We expand and transform this into a general polynomial of xe with a general s
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EQ-TARGET;temp:intralink-;e035;116;735

0 ¼
�
a4p − 2a2pb2p þ b4p

a4p

�
x4e þ

�
−4a2pxþ 4b2px�

a2p

�
x3e

þ
�
2a2pb2p − 2a2ps2 þ 6a2px2� þ 2a2py2� − 2b4p þ 2b2ps2 − 2b2px2� þ 2b2py2�

a2p

�
x2e

þ ð−4b2pxþ 4 s2x − 4x3� − 4x�y2�Þxe
þ ðb4p − 2b2ps2 þ 2b2px2� − 2b2py2� þ s4 − 2 s2x2� − 2 s2y2� þ x4� þ 2x2�y2� þ y4�Þ: (35)

As in Sec. 2.1.2, we divide by the leading coefficient to convert this to the general quartic form:

EQ-TARGET;temp:intralink-;e036;116;6210 ¼ x4e þ A1x3e þ B1x2e þ C1xe þD1; (36)

with A1, B1, C1, andD1 given in Appendix G. We solve this using the general quartic solution as
given in Appendix K. This results in a solution for the xe of intersections in the first quadrant of
the dr frame.

We always have four algebraic xe solutions that may or may not correspond to actual sWA-
orbit intersections. The number of s extrema (either two or four) and projected separation relative
to these extrema determine how many intersections will occur. (If we expect two intersections,
then two of the four algebraic solutions must be real solutions, and the other two are some com-
bination of repeated roots or non-physical imaginary solutions.) In each of these cases, we must
handle the assignment of xe and ye solutions to the correct quadrants. Figure 7 shows a schematic
representation of two cases corresponding to four total intersections.

For KOE with four extrema and smin < sWA < slmin, we know that there will be two inter-
sections on the same y side of the ellipse as the star (quadrants 1 or 2 in the dr frame). Of the four
quartic solutions to Eq. (36) that we have to choose from, we know that x0 is one of them. The
other solution could either be x1 if Iðx1Þ < 10−9 or x3 if Iðx1Þ > 10−9.

For KOE with four extrema and slmax < sWA < smax, we know that there will be two inter-
sections on the opposite x side of the ellipse as the star (quadrants 2 and 3 in the dr frame). In all
cases, x0 and x1 are the intersection solutions. This is because the first two solutions have the
largest term in the quartic solution [Eqs. (91) and (92)]. x1 is slightly smaller than x0 because it
subtracts the second largest term. The relative magnitudes of x0 and x1 determine that y0 occurs
in the same side of the ellipse as the star and y1 must occur on the opposite side of the ellipse as
the star. Therefore, (x0, y0) occurs in quadrant 2, and (x1, y1) occurs in quadrant 3.

For KOE with four extrema and slmin < sWA < slmax, we know that there will be four inter-
sections. Unlike in Sec. 2.1.2 and the rest of this paper where x0 through x3 are ordered as in
Appendix K, we order xh based off Δxh ¼ jxh − x�j. We order the quartic solutions from x0 to
x3 such that x0 is where minðfΔxh ∀ h ∈ f0;1; 2;3ggÞ and x3 is where maxðfΔxh ∀ h ∈
f0;1; 2;3ggÞ. These newly ordered Δxh correspond to those shown in Fig. 7. The (x2; y2) inter-
section occurs in either quadrant 1 or 2, but it is always above and to the left of the star in the dr
frame and has the second largest Δxh component. The (x3, y3) intersection occurs in either quad-
rant 1 or 4, but it always has the largest Δxh component. We resolve the sign of y3 by testing it in
both quadrants. In >99.992% of cases, we assign y3 to quadrant 1 as in Fig. 7(a), but for a
minority of cases, its correct assignment is quadrant 4 as in Fig. 7(b). The (x1; y1) intersection
always occurs in quadrant 4. The (x0; y0) intersection occurs in either quadrant 3 or quadrant 4,
but it is always below and to the left of the star in the dr frame and has the smallest Δxh
component.

For KOE with two extrema and smin < sWA < smax, we know that there will be two circle-
ellipse intersections. The KOE determine where the star is located in the dr frame. The location
of the star in the dr frame relative to the vertices of the projected ellipse [ð0; bpÞ, ð0;−bpÞ,
ð−ap; 0Þ, and ðap; 0Þ] determines the star-vertex separation ordering and subsequently to which
quadrants the two intersection solutions belong. Instead of calculating the star-vertex separation
for each orbit, we divide the first quadrant into four regions that specify the star location type
[types 0 to 3 as indicated in Fig. 8(a)]. This means that any KOE with the star in location type 2
has the associated star-vertex separation ordering.

Using the equidistant lines between ellipse vertices, we divide the first quadrant into four
regions (types 0 to 3) as shown in Fig. 8(a). Regions 0 and 2 are divided by the line defined by
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EQ-TARGET;temp:intralink-;e037;116;245yap−x;bp−y ¼
ap
bp

xþ a2p
2bp

−
bp
2
; (37)

where a projected ellipse and star is of type 0 if y� > yap−x;bp−yðx�Þ and one of types 1, 2, or 3
otherwise depending on the other equidistant lines. Similarly, regions 1 and 2 are divided by the
line defined by

EQ-TARGET;temp:intralink-;e038;116;171yapþx;bp−y ¼ −
ap
bp

xþ a2p
2bp

−
bp
2
; (38)

regions 2 and 3 are divided by the line defined by

EQ-TARGET;temp:intralink-;e039;116;117yapþx;bpþy ¼
ap
bp

x −
a2p
2bp

þ bp
2
; (39)

and the star-ellipse classification type is calculated similar to type 0.

(a)

(b)

Fig. 7 Diagrams of orbits where the projected ellipse in the dr frame produces four intersections
(green dots) with the sWA separation circle (green circle). The general orbit’s projected ellipse
(black) is centered at the origin, and the projected ellipse axes (purple) define the x̂ dr and ŷ dr

axes. (Note that the projected ellipse semimajor axis has been derotated such that the star is
always located in the first quadrant.) The separation circle center (orange dot) is the star’s location
relative to the orbit’s projected ellipse. The xh points are the quartic solutions, where subscripts are
reordered in ascending distance from the star’s x position. This ordering means that x2 must
always occur in the fourth quadrant, x0 may occur in either the first or second quadrants, and
x1 may occur in either the third or fourth quadrants. For 99.992% of KOE sampled from the
SAG13 population that produce four intersections, the x3 intersection occurs in the first quadrant
(a). The other 0.008% of KOE result in the x3 intersection occurring in the fourth quadrant (b).
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An example star is shown in Fig. 8(a). This star location is type 2 because it is in the region
bounded by the three dashed lines (gray, pink, and teal). This type 2 star has the separation
ordering indicated in Fig. 8(a) and Table 1. Let us consider a sWA separation circle such that
sap−x�;y� < sWA < sx�;bpþy� . We, therefore, know that the two intersections must occur in quadrant

2 and quadrant 4 of the dr frame.
The distances sx�;bpþy� , sx�;bp−y� , sapþx�;y� , and sap−x�;y� in Fig. 8(a) are the distances of the

star to each of the ellipse vertices and are calculated by

EQ-TARGET;temp:intralink-;e040;116;156sx�;bp�y� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2� þ ðbp � y�Þ2

q
; (40)

EQ-TARGET;temp:intralink-;e041;116;104sap�x�;y� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðap � x�Þ2 þ y2�

q
: (41)

Figure 8(a) and Table 1 define orbit types sorted by vertex distances from smallest to largest
based on star location type in the first quadrant of the dr frame.

(a)

(b) (c)

(d) (e)

Fig. 8 The regions identifying the star type and which vertices are closest to the host star. (a) The
first quadrant of a projected ellipse (black curve) with the semimajor and semiminor axes (purple)
and three dashed lines dividing the quadrant into four regions defining the separation ordering.
The pink dashed line represents the line of points equidistant from ð0; bpÞ and ðap; 0Þ. The gray
dashed line represents the line of points equidistant from ð−ap; 0Þ and ð0;−bpÞ. The turquoise
dashed line represents the line of points equidistant from ð0;−bpÞ and ðap; 0Þ. The yellow dashed
line represents the line of points equidistant from ð−ap; 0Þ and ð0; bpÞ. We say that the star in (a) is
a type 2 star and has the associated separation ordering. (b)–(e) Color each region of the ellipse,
identifying which vertex is closest, second closest, third closest, and fourth closest. The star in
(a) is type 2 and has the top vertex as the closest as seen in (b). These plots are based off the
projected ellipse of a planet with a ¼ 0.40 AU, e ¼ 0.23, i ¼ 0.69 rad, Ω ¼ 3.49 rad, and
ω ¼ 5.64 rad.
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Finally, after determining the correct number of intersection solutions and the proper quad-
rants to which these solutions belong, we rerotate and translate the intersection solution locations
back into the 2D projection of the 3D orbit.

2.2 Δmag Intersections

In this section, we present our method for calculating the values of ν on a planet’s orbit where the
planet has a specific value of Δmaglim, called Δmag intersections. As in Sec. 2.1, to compute
these solutions, we first need to calculate all Δmag extrema (Δmagmin, Δmagmax, Δmaglmin, and
Δmaglmax). The process for calculating Δmag extrema is detailed in Appendix C, but briefly
included as follows:

1. express Δmag as a polynomial in cosðνÞ;
2. find the values of ν and Δmag for all polynomial roots; and
3. remove invalid and duplicate solutions.

The general process for calculating the true anomalies where a planet has Δmaglim is similar
to the extrema-finding process but with some minor modifications. After calculating the Δmag

extrema, we determine how many Δmag intersections a given orbit should have with a particular
Δmaglim value. If Δmaglim < Δmagmin or Δmaglim > Δmagmax, there are no intersections. If
Δmagmin < Δmaglim < Δmaglmin or Δmaglmax < Δmaglim < Δmagmax, then there are exactly two
intersections. If Δmaglmin < Δmaglim < Δmaglmax, then there are exactly four intersections.
When the orbit does not contain local Δmag extrema, there are just two Δmag intersections
if Δmagmin < Δmaglim < Δmagmax.

Knowing the number of solutions to expect, we follow the same steps as above: finding a
governing polynomial equation, solving for its roots (represented by the ordered set x), and
filtering out the relevant solutions. We additionally throw out any solutions with large errors
from the input Δmaglim. The full process outline is included in Appendix D and discussed
in depth below.

We start with the definition of Δmag given in Eq. (1). Although this expression contains
multiple terms that are fully defined by an orbit’s KOE, it is also a function of other planet
properties, including the planet’s radius, geometric albedo, and phase function. To make the
mathematical development presented below tractable, we assume that the quasi-Lambert phase
function17 is a sufficient approximation of any planet’s phase function. In general, the quasi-
Lambert phase function is a better representation of the Earth’s phase function than the
Lambert phase function.

This quasi-Lambert phase function is given by

EQ-TARGET;temp:intralink-;e042;116;115ΦLðβÞ ¼ cos4
�
β

2

�
: (42)

We take advantage of this function’s form by substituting the half-angle formula:

Table 1 Separation order from smallest to largest by star location type.

Type Condition

Separation order from smallest to largest

First Second Third Fourth

0 sapþx� ;y� < sx� ;bpþy � sx� ;bp−y� sap−x� ;y� sapþx� ;bp
sx� ;bpþy�

1 sx� ;bpþy� < sap−x� ;y� sx� ;bp−y� sx �;bpþy � sap−x� ;y� sapþx� ;y�

2 sap−x� ;y� < sx� ;bpþy�
sx � ;bpþy � < sapþx� ;y�
sx� ;bp−y � < sap−x� ;y�

sx� ;bp−y� sap−x� ;y� sx � ;bpþy � sapþx� ;y�

3 sap−x� ;y� < sx� ;bp−y � sap−x� ;y� sx� ;bp−y� sx � ;bpþy � sapþx� ;y�
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EQ-TARGET;temp:intralink-;e043;116;735 cos

�
β

2

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cosðβÞ

2

r
: (43)

At the same time, from the orbital geometry defined in Fig. 3 and Eq. (3), we write

EQ-TARGET;temp:intralink-;e044;116;685β ¼ cos−1ðsinðiÞ sinðνþ ωÞÞ; (44)

where the final term is expanded by the angle addition formula as

EQ-TARGET;temp:intralink-;e045;116;641 sinðνþ ωÞ ¼ sinðνÞ cosðωÞ þ cosðνÞ sinðωÞ: (45)

Substituting in β from Eq. (44) expanded with Eq. (45) into Eq. (43) allows us to reduce the order
of the fully substituted Eq. (42). Note that this expression for β depends on making the approxi-
mation that the observer-star and observer-planet vectors are parallel, which introduces minor
error given the large distances to even the nearest stars.18

After making these substitutions, as well as taking Eq. (4) for the planet-star distance term
j̱rk∕ij, simplifying, and collecting all of the non-orbital planet parameters on the left side, we find

EQ-TARGET;temp:intralink-;e046;116;537

a2ð1 − e2Þ2
pR2

10−2.5Δmag ¼ 1

4
ðe cosðνÞ þ 1Þ2ð1þ sinðiÞ cosðωÞ sinðνÞ þ sinðiÞ sinðωÞ cosðνÞÞ2:

(46)

We now have an expression that isolates terms containing ν and can be decomposed into a
numerically solvable polynomial. To improve solving efficiency and determine which subset
of planets should have ν solutions for a givenΔmag, we need to first calculate the Δmag extrema
over the full orbit. The outline of the process for calculating these Δmag extrema is included in
Appendix C.

To calculate these Δmag extrema, we first find the derivative of Eq. (46) and multiply by two
(for simplification purposes) to get

EQ-TARGET;temp:intralink-;e047;116;395

0 ¼ − e2 sin2ðiÞ sin3ðνÞ cosðνÞ cos2ðωÞ − 3e2 sin2ðiÞ sin2ðνÞ sinðωÞ cos2ðνÞ cosðωÞ
− 2e2 sin2ðiÞ sinðνÞ sin2ðωÞ cos3ðνÞ þ e2 sin2ðiÞ sinðνÞ cos3ðνÞ cos2ðωÞ
þ e2 sin2ðiÞ sinðωÞ cos4ðνÞ cosðωÞ − 2e2 sinðiÞ sin2ðνÞ cosðνÞ cosðωÞ
− 3e2 sinðiÞ sinðνÞ sinðωÞcos2ðνÞ þ e2 sinðiÞcos3ðνÞ cosðωÞ − e2 sinðνÞ cosðνÞ
− e sin2ðiÞsin3ðνÞcos2ðωÞ − 4e sin2ðiÞ sin2ðνÞ sinðωÞ cosðνÞ cosðωÞ
− 3e sin2ðiÞ sinðνÞsin2ðωÞcos2ðνÞ þ 2e sin2ðiÞ sinðνÞ cos2ðνÞ cos2ðωÞ
þ 2e sin2ðiÞ sinðωÞ cos3ðνÞ cosðωÞ − 2e sinðiÞ sin2ðνÞ cosðωÞ
− 4e sinðiÞ sinðνÞ sinðωÞ cosðνÞ þ 2e sinðiÞ cos2ðνÞ cosðωÞ − e sinðνÞ
− sin2ðiÞ sin2ðνÞ sinðωÞ cosðωÞ − sin2ðiÞ sinðνÞ sin2ðωÞ cosðνÞ
þ sin2ðiÞ sinðνÞ cosðνÞ cos2ðωÞ þ sin2ðiÞ sinðωÞ cos2ðνÞ cosðωÞ
− sinðiÞ sinðνÞ sinðωÞ þ sinðiÞ cosðνÞ cosðωÞ; (47)

which is a function of the sinðνÞ and cosðνÞ terms. We now fully expand this expression and
substitute in

EQ-TARGET;temp:intralink-;e048;116;168 sinðνÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos2ðνÞ

q
(48)

to get an expression in cosðνÞ only. We define x ¼ cosðνÞ, isolate the
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
term, square both

sides, and expand to get an eighth degree polynomial in x of the form

EQ-TARGET;temp:intralink-;e049;116;1020 ¼ A2x8 þ B2x7 þ C2x6 þD2x5 þ E2x4 þ F2x3 þ G2x2 þH2xþ I2: (49)

The coefficients of this expression are included in Eq. (75) in Appendix H.
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Although eighth degree polynomials do not have analytical solutions, a numerical root solver
can determine the eight roots of this function denoted as the ordered set x. We discard any
xp > 1 ∀ p ∈ f0: : : 8g, xp < −1 ∀ p ∈ f0: : : 8g, or solutions with large imaginary compo-
nents. We then calculate the remaining true anomaly solutions by ν0 ¼ cos−1ðxÞ and ν1 ¼
2π − ν0. Of the remaining valid solutions, we identify whether each solution is an extremum
by evaluating whether Δmagðν0 � δνÞ are both larger or both smaller than Δmagðν0Þ. If iden-
tified as a potential extremum, the smallest and largest extrema are assigned to Δmagmin and
Δmagmax. The remaining extrema are checked for duplicates, which are identified by solutions
with (ν, Δmag) values close to existing extrema. If any solutions are remaining, an additional
check and assignment is then made for the local extrema. Through this process, a solution iden-
tified in ν0 has the associated solution in ν1 removed.

To calculate the Δmag intersections, we apply the same process for turning Eq. (46) into a
polynomial as in the Δmag extrema calculation. The full outline for calculating the Δmag inter-
sections is given in Appendix D. By following this process, we arrive at

EQ-TARGET;temp:intralink-;e050;116;566ξ ¼ A3x8 þ B3x7 þ C3x6 þD3x5 þ E3x4 þ F3x3 þG3x2 þH3xþ I3; (50)

where ξ is the collection of constants on the left side of Eq. (46). The coefficients of this poly-
nomial are given in Eq. (76) of Appendix I.

We again use a numerical root solver to find the roots of this function x and again discard all
xp > 1 ∀ p ∈ f0: : : 8g, xp < −1 ∀ p ∈ f0: : : 8g, and solutions with large imaginary compo-
nents. We then calculate the true anomalies of all remaining solutions by ν0 ¼ cos−1ðxÞ and
ν1 ¼ 2π − ν0. We then evaluate Δmag0 ¼ Δmagðν0Þ and Δmag1 ¼ Δmagðν1Þ and remove
solutions where jΔmag0 − Δmaglimj > 0.01 and jΔmag1 − Δmaglimj > 0.01. (Note that 0.01 is
<� 0.08% error on Δmag.) We do an iterative process of selecting (ν, Δmag), which are unique
(not duplicate solutions) and are closest to the expected Δmaglim, until we have the expected
number of solutions. In the majority of cases in which solutions exist, there are generally only
two viable solutions, the assignment of which is simple. In some cases, the solution selection is
more ambiguous as double roots are possible.

2.3 ν from X and Y

Sections 2.1.2, 2.1.3, and 2.2 give locations of extrema at intersections in the plane of the sky of
the form ðx; yÞ, but we need to know the true anomalies of the orbit where these intersec-
tions occur.

We start with X and Y in Eq. (3) and solve for ð1þ e cosðνÞÞ∕ðað1 − e2ÞÞ, resulting in

EQ-TARGET;temp:intralink-;e051;116;303

1þ e cosðνÞ
að1 − e2Þ ¼ 1

Y
½sin Ω cosðωþ νÞ þ cos Ω sinðωþ νÞ cos i�; (51)

and

EQ-TARGET;temp:intralink-;e052;116;246

1þ e cosðνÞ
að1 − e2Þ ¼ 1

X
½cosðΩÞ cosðωþ νÞ − sinðΩÞ sinðωþ νÞ cosðiÞ�: (52)

In both of these expressions, we substitute angle addition formulas of sinðωþ νÞ and cosðωþ νÞ
and subsequently set the two equations equal to each other.

We set Eqs. (51) and (52) equal to each other, expand, isolate a cosðνÞ term and sinðνÞ term,
solve for ν, and rearrange to get

EQ-TARGET;temp:intralink-;e053;116;153ν ¼ tan−1

"
− X

Y sin Ω cos ω − X
Y cos Ω cos i sin ωþ cos Ω cos ω − sin Ω cos i cos ω

− X
Y sin Ω sin ωþ X

Y cos Ω cos i cos ωþ cos Ω sin ωþ sin Ω cos i cos ω

#
:

(53)

We now have an analytical expression for ν solely as a function of the KOE, X, and Y of a
particular point on the orbital ellipse.
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By combining the original X and Y equations to solve for ν analytically, we have created two
potential solutions at ν and ν� π. One of these is the correct ν value and the other is not. To
calculate the correct intersection point, we calculate the separations at both ν and ν� π to find
absolute error in s and use the smaller error of the two.

2.4 Calculate t from ν

We have ν for the locations where s extrema, Δmag extrema, sWA-orbit intersections, and Δmag

intersections occur, but we need them in terms of time. We calculate eccentric anomaly E of
these events directly from ν as

EQ-TARGET;temp:intralink-;e054;116;618E ¼ tan−1
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e2
p

sin ν

eþ cos ν

�
; (54)

which gives the corresponding time

EQ-TARGET;temp:intralink-;e055;116;560t ¼ E − e sinðEÞT
2π

; (55)

where T is the orbital period of a general planet.

2.5 Converting from Star to Star

The planet-star intersection points and visibility ranges can be saved as either true anomalies
or as specific times for a reference star. It makes the most sense to store the values as times and
use 1M⊙ as the reference time. The times are scaled to any star mass M by

EQ-TARGET;temp:intralink-;e056;116;437T ¼ T⊙

ffiffiffiffiffiffiffiffi
M⊙

M

r
: (56)

2.6 Calculating Completeness

We calculate integration time adjusted completeness using the aggregated fraction of time that
planets are detectable. Using the methods described in Sec. 2 on the instrument’s photometric
visibility limit (Δmaglim) and astrometric visibility limits (IWA and OWA), we calculate the
specific times that the planet enters or exists the instruments visibility limits. By collecting these
times and inspecting intermediate test points, we identify the time windows in which any planet
is detectable by the instrument. Given an integration time (tmax) required to reach some SNR
consistent with a clear detection (typically a value > 5), we throw out all visibility time windows
less than tmax and discount all other visibility windows by tmax. Dividing the sum of all inte-
gration time discounted visibility windows for a planet by its orbital period gives us the fraction
of time that a planet is detectable by the instrument. Aggregating the fractions of time that planets
are detectable by the instrument gives us integration time adjusted completeness. In mathemati-
cal form, this is given as

EQ-TARGET;temp:intralink-;e057;116;222Ctmax
¼ 1

N

�X
∀ k

P
∀ jðδtj;k − tmaxUkÞ

Tk

�
: (57)

Here δtj;k is the j’th time window larger than tmax in which the k’th planet is visible, Uk is a
boolean that indicates that the planet is always visible 0 or at least sometimes visible 1, N is the
total number of planets, and Tk is the orbital period for the k’th planet.

We also calculate the completeness for an Earth-like exoplanet of the Earth-like exoplanets
subpopulation:

EQ-TARGET;temp:intralink-;e058;116;117C�;tmax
¼ 1

N�

�X
∀ k∈�

P
∀ jðδtj;k − tmaxUkÞ

Tk

�
; (58)

where N� is the total number of Earth-like planets simulated.

Keithly, Savransky, and Spohn: Integration time adjusted completeness

J. Astron. Telesc. Instrum. Syst. 037002-18 Jul–Sep 2021 • Vol. 7(3)



Similarly, this capability can be extended to the entirety of the Kopparapu classification
scheme.4 Our method uses orders of magnitude fewer exoplanets and an equivalent memory
but fills in the Δmag space using an order of magnitude better accounting with strategically
calculated true anomalies.

2.7 Calculating Dynamic Completeness

The methods presented in this paper can also be used to calculate dynamic completeness.13

Dynamic completeness extends the original concept of completeness by considering the fraction
of planets observable on subsequent observations of the same target. For the original formulation
of completeness, which relies on simulating a cloud of planets, this requires propagating every
simulated planet along its orbits. Dynamic completeness is frequently used to compute the frac-
tion of planets in a population that are initially undetectable but become detectable upon a second
observation some time later.

We define P as the unordered set of all planets, Pdetected;1 as the set of planets detected at
observation time one, and Pundetected;1 as the set of planets not detected at observation time one.
To find the sets of detected planets at the first observation, we start by generating a random
observation time for the k’th planet (tstart;k) between 0 and Tk. We then determine which planets
are within the instrument’s visibility limits at tstart;k to create Pdetected;1 and its complement
Pundetected;1.

For a subsequent observation some time later (twait), we find the time past periastron at which
the observation occurs by [modðtstart þ twait; TkÞ] and determine which planets are within the
instrument’s visibility limits at that time. This defines the unordered set of planets detected
at observation time two as Pdetected;2. Its complement is Pundetected;2, the set of planets not detected
at observation time two.

Dynamic completeness for the second observation of a target star is given by the fraction of
planets undetected in the initial observation but detected on the second one:

EQ-TARGET;temp:intralink-;e059;116;408C2 ¼
1

N
nðPundetected;1 ∩ Pdetected;2Þ; (59)

where nðPÞ is a function giving the number of elements in set P and N is the total number of
planets.

Dynamic completeness of them’th visit is similarly given by the fraction of previously unde-
tected planets that are detected on that visit:

EQ-TARGET;temp:intralink-;e060;116;318Cm ¼ 1

N
n

��
⋂
m−1

j¼0

Pundetected;j

�
∩ Pdetected;m

�
: (60)

3 Results

3.1 ν from s

We apply the methods developed Sec. 2 to calculate the planet-star separation extrema, the true
anomalies at which they occur, the times past periastron at which the extrema occur, the true
anomalies where the separation circle intersects with the projected orbital ellipse, and the times at
which these intersections occur for a planet orbit. Figure 9 shows the projected separation of a
sample orbit with global and local extrema calculated via Sec. 2 methods. This figure also dem-
onstrates the ability of our methods to find all true anomalies (and times) when the projected
separation takes a specific value (in this case sWA ¼ 1 AU).

We now determine the accuracy of the methods implemented. To do this, we calculate the
true anomalies of sWA-orbit intersections for 105 orbits using the method in Sec. 2.1.3 and sWA ¼
1 AU:We then calculate the planet-star separation by substituting these true anomalies back into
Eq. (2) and plot the error between these separations and the input sWA in Fig. 10. Of the 105

planets orbits simulated, ∼25; 000 orbits produced two or more intersections. The largest
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intersection error observed is <10−6. Machine precision error is ∼10−16, and the square root of
this is 10−8, which indicates that we have approached machine precision in our method.

3.2 ν from Δmag

We apply the methods developed Sec. 2 to calculate the Δmag extrema, the true anomalies at
which they occur, the times past periastron at which the extrema occur, the true anomalies where
the Δmag intersections occur, and the times at which these Δmag intersections occur for a planet
orbit. Figure 11 shows the Δmag of a sample orbit with global and local extrema calculated via
Sec. 2 methods. This figure also demonstrates the ability to find all true anomalies (and times)
when the Δmag takes a specific value (in this case Δmaglim ¼ 25.0).

To check the error in true anomaly produced by the Δmag intersection method in this paper,
we compare the ν of Δmag intersections calculated with alternative numerical solving methods.
The method presented in this paper finds Δmag intersections of 106 planets within ∼6.3 s. The
first error checking method uses a cubic spline fit to 300 (ν, Δmag) points along each planet’s
orbit. We then subtract Δmaglim ¼ 29 (our test point) from the spline and find the roots. This
univariate spline root solving method is capable of executing in 419 s on the 510,120 planets in
the population that produced two intersections, a rate of 8.1 × 10−4 s per planet. The univariate
spline root solving method is 100× slower than the Δmag intersection method in Sec. 2.2. The
separation error between the univariate spline method and the Δmag intersection method is
<6 × 10−5 for >99.98% of planets and <10−4 for the other 0.02%. These high-error targets are
planets with low variation in ΔmagðνÞ orbits. The second-error checking method solves for the
(ν, Δmag) intersections using a numerical minimization method on a random subset of 104 plan-
ets. This method is far more inefficient, taking 1646 s on 104 planets with two intersections at a
rate of 0.1646 s per planet. Using a minimization function allows us to determine the error in
Δmag of an intersection point to within 10−8. This numerical minimization method independently
confirms the accuracy of solutions to the univariate spline roots method on the limited number of
targets tested. We plotted the normalized frequency of true anomaly error of both the numerical
minimization method and univariate spline root solving method compared against theΔmag inter-
section method in Fig. 12. Note that the total number of incidences of a given error is normalized
by the bin width and total number of targets, so the non-normalized frequency of the 3 × 10−11 bin
is incredibly large compared with the 5 × 10−4 bin. Both methods indicate that the resulting true
anomalies of the Δmag intersections are within 10−4 rad of each other.

Although the Δmag intersection method featured in this paper is orders of magnitude faster
than the univariate-spline-roots method and just as accurate, the quasi-Lambert phase function
required for its use is not the best phase function for all planets; however, it does fit Earth-like
planet phase function quite well. At a substantial time cost, the univariate-spline-roots method
can be used for planets with any phase function.

3.3 Convergence and Validation

We test convergence of our method for calculating completeness by repeatedly calculating com-
pleteness on 105 planets. We test convergence of Brown’s method by repeatedly calculating com-
pleteness over a set of a logarithmically increasing number of planets. We use the same SAG13
planet population parameters from Ref. 1 but make the substitution of a quasi-Lambert phase
function to define the underlying planet population. Since this technique will be most relevant
to future highly capable telescopes, we are using the HabEx IWA of 0.045 arc sec, OWA of 6 arc
sec, and upper Δmag limit of 25 on a star that is 10 pc away.8 This resulting instrument visibility
limits and planet population cover a well populated region of the Δmag versus s joint probability
density function [see Fig. 1 in Ref. 1 for a comparable example of the joint probability density
function]. Convergence of the two completeness methods is demonstrated in Fig. 13.

Both methods presented in Fig. 13 demonstrate similar percent convergence to their own
converged means. Completeness repeatedly calculated using the method in Sec. 2.6 with 105

planets has a mean of 0.25785 with a standard deviation of 0.0010 for 4.28 × 108 planets. In
comparison, the Brown completeness method converges to 0.25783. This error in the converged
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mean of the two methods is consistent with the completeness error identified in Fig. 14. We
expect that completeness calculated using the method in this paper will have comparatively bet-
ter convergence in sparsely populated regions of the Δmag versus s joint probability density
function (see Fig. 1 in Ref. 1).

Since completeness for an individual planet is the fraction of time that a planet is visible to the
instrument, we validate individual planet visibility windows using test points. To calculate a ground
truth fraction of time that a planet is visible, we create 105 test points, evenly spaced in time, and
calculate both the planet-star separation and planet-starΔmag at each of theose test points. We then
determine whether each point is within the visibility limits of the instrument. The fraction of visible
points is the fraction of time that a planet is visible. We repeated this for 25,000 planets due to
computational cost of the test point method. The histogram of error in completeness for individual
planets calculated using the test point method and method in this paper is shown in Fig. 14. The
maximum error in completeness is observed to be near 5 × 10−5, which is consistent with the
converged error between Brown completeness and integration time adjusted completeness.

The test point method that we used to validate integration time adjusted completeness cal-
culations took over 52 h on only 25,000 planets (less than a quarter of the planets needed to
compute completeness using integration time adjusted completeness). The computation time for
the integration time adjusted completeness calculation on 105 planets is 21.34 s with a standard
deviation of 0.4 s over 1000 calculations. Brown completeness, including the joint probability
density function generation, has a mean execution time of 3.19 s and standard deviation of 0.13 s
over 1000 calculations. This execution time of all of these methods scales linearly with the num-
ber of planets. Some room for optimization exists in integration time adjusted completeness.

3.4 Completeness Versus Integration Time

To evaluate the effects of integration time on completeness, we calculate integration time
adjusted completeness for various integration times, star distances, and planet populations
(SAG13 and Earth-like planet population). Figure 15 shows the integration time adjusted com-
pleteness for the SAG13 planet population1 and the Earth-like planet subpopulation defined in
Appendix L. The decrease in completeness for longer integration times is most prominent for
nearby stars for both populations. As expected, longer integration times decrease completeness.

For the assumed observatory parameters, the Brown completeness of an Earth-like popula-
tion for a target 5 pc away is 0.583. As we increase integration time to 1, 2, and 5 days, the
associated integration time adjusted completeness decreases by 0.63%, 1.27%, and 3.15%,
respectively. Recalculating Brown completeness for a target at 25 pc in Fig. 15(b) gives
0.583. As we increase integration time to 1, 2, and 5 days on this 25 pc target, the associated
integration time adjusted completeness decreases by 0.989%, 1.97%, and 4.92%, respectively.
Our integration time adjustment of completeness shows Brown completeness overestimates exo-
planet yields for any observation. Brown completeness applied to stars farther away results in a
substantial overestimation of exoplanet yield.

Technically, the Δmaglim used as the upper limit for calculating completeness is a function of
integration time and will approach a theoretical upper limit as the noise floor is reached. By
calculating Δmaglim using Eq. (12) of Ref. 1, we can calculate completeness at each integration
time to get the completeness versus integration time curve. We created a 4-m telescope as in
Appendix M and evaluated completeness at each integration time to create an example demon-
strating how Brown completeness and integration time adjusted completeness vary with integra-
tion time in Fig. 16. We can see that the completeness of both methods tracks very closely until
they diverge. Brown completeness approaches its asymptotic limit as expected, whereas integra-
tion time adjusted completeness approaches a maximum and begins decreasing past ∼0.2 day.

3.5 Dynamic Completeness

We compute dynamic completeness for the example test case in Fig. 1 of Ref. 13 using the
method described in this paper and replicating the approach of the original work. This compu-
tation is only for a second epoch. We replicated the original work by sampling a large number of
planets, finding the planets initially visible, propagating these planets to some time past initial
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observation, and determining what fraction of these planets were not detected the first time but
were detected the second time. We replicated Brown’s work using both the Lambert phase func-
tion (orange line in Fig. 17) to match the original work as well as the quasi-Lambert phase
function (red line in Fig. 17).

We compared the dynamic completeness computation time for 1000 dynamic completeness
calculations testing 1000 individual points in time past the initial observation. Brown’s dynamic
completeness had an average execution time of 34.62 s with a standard deviation of 0.99 s.
Calculating dynamic completeness using the method presented in this work resulted in an aver-
age execution time of 4.757 s with a standard deviation of 0.036 s. The dynamic completeness
calculation presented in this paper is ≈7× faster than the traditional Brown completeness
method, enabling its use in optimization.

4 Discussion

4.1 Convergence

Both methods of calculating completeness suffer from sparse sampling of the exoplanet pop-
ulation parameter space. Brown completeness is most affected as it needs planets sampled over
Ω, ω, a, e, i, ν, p, and R. The current implementation of our method needs the same parameters
except for ν. We are therefore surprised that Brown’s method and our method share such similar
completeness convergence. We hypothesize that the similar convergence results are because the
integration bounds used for calculating completeness are over a dense region of the joint prob-
ability density function. If we examined a more sparse region of the joint probability density
function such as high Δmag or larger separation (where the larger, lower occurrence rate planets
occur), we expect our completeness methods to have marginally better convergence for low
numbers of planets. Regardless, integration time adjusted completeness easily reaches complete-
ness errors below 10−3 (translates to ≈0.8% where C ¼ 0.12, the largest completeness of an
observation in Ref. 1), which is a sufficient error for use in optimization.

4.2 Reducing Parameter Spaces

The integration time adjusted completeness method implemented in EXOSIMS is not cached for
computational efficiency like the Brown completeness is. Although we are able to store the joint
probability density function of Δmag versus s with Brown’s method, integration time complete-
ness requires the KOE of each simulated planet to be stored. The curse of dimensionality pro-
hibits us from finely sampling the entire subspace of exoplanets, making the caching of
integration time adjusted completeness prohibitive, but not all our methods require all 6 KOE,
p, and R. So, in the future, it may be possible to create a representative subsampling of planets
weighted by occurrence rate based on the parameters needed for different calculations. For
example, s extrema, sWA-orbit intersections, and Δmag extrema calculations only require ω,
a, e, and i (Note that the ν locations of the Δmag extrema are independent of p and R, but
the magnitude of Δmag extrema are dependent upon them). The photometric property p × R
could then be sampled and independently combined with individual (ω, a, e, i) combinations.
The primary benefit is that, given some instrument parameters and star properties, we could
determine the subset of parameters that can physically be observed prior to calculating com-
pleteness, thus making the per-star completeness calculations more efficient.

4.3 Limitations

The approach we implemented in this paper did not vary theΔmaglim as we varied the integration
time. If properly executed, Δmaglim should increase with increased integration time. However,
calculating the planet true anomaly intersections with a given Δmaglim is the most expensive
calculation, so repeatedly calculating this to convergence is not desirable.

The Δmaglim of coronagraph designs are working angle dependent and therefore separation
dependent, but we assume that this limit is a fixed quantity. If there is substantial variation in the
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limiting Δmag, it is better to use the conservative value with this method. If a higher level of
predictive accuracy is desired, these methods could be used to ascertain if any intersection with
the Δmaglim exists and subsequently another method could be used on the subset of planets with
known intersections.

4.4 Impact of the Integration Time Adjusted Completeness

As we showed in this paper, integration time adjusted completeness and Brown completeness
converge to the same value to within 0.00002 when evaluated at tmax ¼ 0 day. The integration
time adjusted completeness for an observation of an Earth-like planet population on a 1-M⊙ star
5 pc away and integration time of ≈1 day is 0.64% lower than the comparable Brown complete-
ness. For reference, the Roman target list in Table 9 of Ref. 1 has a maximal integration time of
1.71 days but most are <0.6 day. This means that we could expect an average reduction in yield
below 0.64% when observing a population of Earth-like planets around Sun-like stars. This
integration time completeness adjustment is within the 3.19%, 3σ, margin of error from 1000
Monte Carlo simulations of the cycle 6 Roman in Ref. 1 and cannot be considered statistically
significant. However, a ∼4-day integration time on a Sun-like star 25 pc away observing an
Earth-like population has a decrease in completeness above the Ref. 1 3σ margin of error.
However, the threshold of statistical significance should not deter the widespread use of inte-
gration time adjusted completeness as the adoption of this method can shore up the differences
between completeness-based yields and simulation-based yields. We can also say that integra-
tion time has a muted effect when observing stars that are farther away. This can most likely be
attributed to the increase in smin and resulting decrease in the total time-fraction that smaller
period planets spend within the visible limits of the telescope. Big planets with the orbital radius
of Jupiter will move more slowly and be less affected by integration times.

In Appendix M, we optimized an exoplanet direct imaging mission maximizing single-visit
Brown completeness yield and included the resulting Design Reference Mission (DRM) in
Table 2. The resulting DRM has a Brown completeness yield of 387.16 exoplanet detections
in a single-visit detection survey on average, but the integration time adjusted completeness yield
expects only 354.67 exoplanets on average. This means that Brown completeness for the par-
ticular instrument parameters optimized over the SAG13 planet population with the particular
mission parameters overpredicts the actual exoplanet yield by 32.49 exoplanets on average,
9.16% more than the integration time adjusted completeness yield. When calculating complete-
ness, we are careful to scale the completeness limits of integration by the star’s luminosity. For
the integration time adjusted completeness method, we additionally scale the planet’s orbital
periods based off the mass of the host star. The percentage difference above and beyond that
expected from Fig. 15 can be found by looking at these two adjustments applied to each star and
the target list in Table 2. The average star in the target list has a larger mass and a brighter
luminosity than that of the Sun. The brighter luminosity results in a smaller smin and smax, which
serves to incorporate more smaller semimajor axis planets into the completeness calculations,
and the larger star masses result in shorter periods, meaning that the planet visibility windows all
decrease in duration.

Integration time adjusted completeness is crucial for determining the ability of an Earth-like
planet to be spectrally characterized. A spectral characterization with a coronagraph could take
between a few days and 60 days. Because of the long integration time, the planners of a HabEx
use the “characterization completeness” of 10% and maximum integration time of 60 days as a
filter on stars to consider observing.8 The calculation of this critical filter could be substantially
improved by considering integration time adjusted completeness if the spectrum of the planet
must be taken all at once (i.e., observation spanning multiple weeks) and not spread across multi-
ple epochs. Just because a planet can be detected does not mean that it can be spectrally
characterized.

4.5 Dynamic Completeness and Computation Cost

The greatest benefit of using the methods in this paper to calculate completeness is the marginal
additional cost of calculating dynamic completeness. Generally, dynamic completeness requires
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the computation of true anomalies from time, which is prohibitive for>105 orbits at>100 differ-
ent times in the future. With our methods, calculating visibility windows allows us to use boolean
operations to compute dynamic completeness about 7× faster than Brown’s dynamic complete-
ness method. The computational cost of calculating completeness using the method described in
this paper is an order of magnitude larger than Ref. 2, but it can use orders of magnitude fewer
planets to do so. Unlike Brown’s method, within the computation time of our method, we also
get additional desirable information about the detectable planets such as their s extrema and
Δmag extrema.

4.6 Revisiting the Same Exoplanet

Another limitation present in the planning of exoplanet direct-imaging missions is the telescope
keep-out angles. Figure 3 of Ref. 1 contains a keep-out map for a subset of the DRM created in
that paper. The smallest percent of time that a target star is visible for the Roman is nominally
28%. Due to symmetry of the keep-out region, this translates into two separate time windows of
visibility of ∼51 days. Instead of considering the integration time an integration time input, it can
also be considered a revisit time input for determining the probability of being able to observe a
planet twice in the same target-star visibility window.

4.7 Exoplanet Classification

The underlying methods in this paper are used to find locations along a planet’s orbit where s and
Δmag intersections occur. The methods in this paper, with some modification, can also be used
to probabilistically classify an exoplanet subtype.4 If an exoplanet is detected with a particular
(s,Δmag) and an uncertainty region of s� σs and Δmag� σΔmag, then the methods in this paper
can be applied to each of these four bounding lines. By finding the average orbital time-fraction
that exoplanets of each type spend in the bounding uncertainty box, we can find the probability
that the exoplanet belongs to a specific exoplanet subtype. This requires additional work beyond
the scope of this paper.

5 Conclusion

We have demonstrated an accurate method for calculating integration time adjusted complete-
ness and its adaptation to calculating dynamic completeness. In the process, we also created fast
and accurate methods for calculating the true anomalies where a planet’s orbit has specific values
of projected separation Δmag and their extrema. We demonstrated how to use these methods to
calculate a more accurate integration time adjusted completeness using the fractions of time that
a planet is detectable by an instrument. We demonstrate that traditional methods of calculating
completeness overestimate the number of observable planets because they do not subtract the
integration time used in observing the target. For a Sun-like star at 25 pc with 1-day and 5-day
integration times, integration time adjusted completeness of Earth-like planets is reduced by 1%
and 5%, respectively. We applied integration time adjusted completeness to a target list opti-
mized using the Brown completeness method and found that Brown completeness overestimated
yields by 9.61%. We also demonstrated that our methods can be used to quickly calculate
dynamic completeness for determining the optimal time to revisit a target star.

6 Appendix A: Common Notation

There are many common variable forms used in this paper that are simply summarizable. Any
variable x refers to a 3D vector in X, Y, and Z coordinates of something. We use x to indicate an
array of variables, specifically used when referring to multiple roots of a polynomial. jABj refers to
the length of line segment AB. Line segment AB is treated as a vector.C 0 is a projection of pointC.

There are multiple different subscripts with different meanings used in this paper. A sub-
script with xi refers to the index of a host star (out of some whole, non-descript, star catalog).
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A subscript xk refers to an individual planet out of the whole large set of planets. Subscripts of
xmin, xmax, xlmin, and xlmax are descriptors on the individual variable x that indicate that the var-
iable is associated with the minimum, maximum, local minimum, or local maximum, respec-
tively. When solving for the distance between points inside an ellipse and the vertices or co-
vertices of that ellipse with semimajor axis a, we use the shorthand notation of the form
saþx;y. [This is specifically the distance between point (x, y) and (−a, 0).]

We denote coefficients of the polynomials of the four methods that solve the quartic in this
paper as A#.

In Fig. 4, we reference many points on the 3D elliptical orbit and 2D projection of this orbit
into the plane of the sky. Points on the original 3D ellipse are labeled B,H, P, C, K,O,D, A, B 0,
H 0, P 0, C 0, K 0, O 0, D 0, and A 0.

In Appendix K, we use p0 to p11 as intermediate constants for simplifying the full quartic
expression. P, D, and Δ (by itself and only in this section) are intermediate constants derived
from quartic coefficients for determining the sign of the quartic solutions.

K0 to K9 are intermediate simplifying coefficients used in representing Eqs. (13)–(15) in
Sec. 2.1.1. The full expansion of these equations is included in Appendix E.

(a)

(b)

Fig. 9 Planet-star separation of the planet is plotted in black. The separation extrema are indi-
cated by diamonds, where the maximum is red, local maximum is yellow, local minimum is
magenta, and minimum is teal. Lines are drawn at the minimum and maximum separations.
For the input separation of s ¼ 1 AU, the green dots are the analytically calculated orbit intersec-
tions. (a) The separation versus true anomaly and (b) the separation versus time past periastron
for a planet orbit with a ¼ 1.82 AU, e ¼ 0.09, Ω ¼ 3.37 rad, ω ¼ 4.86 rad, and i ¼ 1.25 rad.
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Fig. 10 sWA-orbit intersection error histogram calculated for a separation of sWA ¼ 1 AU for 105

planet orbits generated from the SAG13 planet population. Of these 105 planet orbits, 6201 orbits
have two intersections with the sWA circle, and 17,952 have four intersections with the sWA circle.
This results in a total of 84,210 planet-star intersections. After calculating and identifying true
anomalies of intersections using the methods described in this paper, we evaluated the
planet-star separation of each orbit at the true anomalies and calculated error from the input sWA.

(a)

(b)

Fig. 11 (a) The Δmag of a planet (black line) plotted against ν and (b) time past periastron. Δmag
extrema are indicated by diamonds, where the maximum is red, local maximum is yellow, local
minimum is magenta, and minimum is teal. Separation minimum and maximum are indicated by
horizontal lines. For an input Δmaglim ¼ 25 (green line), we calculated the specific true anomalies
(green dots) where the planet’s Δmag intersects this line. The specific planet KOE are
a ¼ 5.36 AU, e ¼ 0.56, ω ¼ 5.06 rad, Ω ¼ 0.69 rad, i ¼ 0.81 rad), p ¼ 0.3, and R ¼ 4R�.
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Fig. 13 Convergence of % error in completeness for varying numbers of planets used in its com-
putation for Brown’s method (green) and the method presented in this work with tmax ¼ 0 day
(purple). Completeness at the maximum number of planets is assumed to be the converged value
of completeness of the respective methods. The converged mean of Brown’s method is 0.25783
compared with the convergedmean of the method in this paper of 0.25785. The standard deviation
of the method in this paper is 0.0010.

Fig. 12 A histogram of νðΔmagÞ error between the root solving method described in this paper and
a root solver of a cubic spline fit method (purple) for 510, 120 planet orbits that produce two inter-
sections (totaling 1,020,240 datapoints). We also compare the error between the root solving
method described in this paper and an optimization method (blue) for 104 planet subset of the
planet orbits that produce intersections. The optimization method investigates fewer planets
because it is orders of magnitude more computationally expensive, but it is a fundamentally differ-
ent approach to validating our method than a root solver.

Keithly, Savransky, and Spohn: Integration time adjusted completeness

J. Astron. Telesc. Instrum. Syst. 037002-27 Jul–Sep 2021 • Vol. 7(3)



Fig. 14 Per planet completeness error histogram between the integration time adjusted complete-
ness method with tmax ¼ 0 day and the test point method for 25,000 planets.

(a) (b)

Fig. 15 Integration time adjusted completeness values of (a) SAG13 planet population and
(b) Earth-like planet population with IWA = 0.045 arc sec, OWA = 6 arc sec, and Δmag ¼ 25 for
varying integration times and star distances.

Fig. 16 Brown completeness and integration time adjusted completeness versus integration time
for HIP 32,279 assuming a mass of 1.564M⊙, luminosity of 7.12 L⊙, and distance of di ¼ 3.51 pc.
The assumed telescope is a 4-m monolith with IWA = 0.045 arc sec and OWA = 6 arc sec and
Δmaglim computed using the instrument noise model as in Ref. 1.
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7 Appendix B: True Anomalies of s Intersection Process

The process outlined here is used in Sec. 2.1.2.

1. Define KOE.
2. ̱rk∕i from KOE.
3. Orbiting foci F from KOE.
4. Calculate 3D orbit ellipse center.
5. Project 3D ellipse to 2D ellipse.

(a) Prove that 3D ellipses project to 2D ellipses.
(b) Project 3D ellipse center to 2D ellipse center.
(c) Project ellipse orbiting foci into plane of the sky.
(d) Project semiminor axis line of 3D ellipse to 2D ellipse.
(e) Project semimajor axis line of 3D ellipse to 2D ellipse.
(f) Calculate QQ 0 construction line from semiminor axis and semiminor axis.
(g) Calculate projected ellipse semimajor axis and semiminor axis from O 0Q 0 and O 0Q.
(h) Calculate projected semimajor axis angular offset from X axis of plane of the sky.

6. Derotate the projected ellipse.
7. Center the projected ellipse.
8. Find minimum, maximum, local minimum, and local maximum of projected planet-star

separation.

(i) Formulate projected planet-star separation equation.
(j) Reformat and set δs2∕δxe equal to 0.
(k) Combine coefficients into standard quartic form.
(l) Use standard general quartic solutions.

(m) Take the absolute value and only real component of xe solutions.
(n) Calculate ye associated with each solution.
(o) Assign solutions to minimum, maximum, local minimum, and local maximum planet-

star separations.

Fig. 17 Dynamic completeness assuming the same parameters as in Ref. 13 (Δmag ¼ 26,
MHIP29271 ¼ 1.103M⊙, di ¼ 10.215 pc, OWA = 600 arc sec, IWA = 0.075 arc sec, 0.7

ffiffiffi
L

p
≤ a ≤

1.5
ffiffiffi
L

p
, 0 ≤ e ≤ 0.35, p ¼ 0.26, R ¼ 1R�, and L ¼ 0.83L⊙). In this work (blue), we assume a

quasi-Lambert phase function, but in Ref. 13, a Lambert phase function is assumed. Work
was done to replicate Brown’s original work (Brown Lambert, orange line) and replicate
Brown’s work using the quasi-Lambert phase function (Brown quasi-Lambert, red line).
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i. For all solutions (all real and only 2 real):

A. Calculate smin from x1 and assign ðxmin; yminÞ of quadrant 1.
B. Calculate smax from x0 and assign ðxmax; ymaxÞ of quadrant 1.

ii. All real solutions (where all solutions have IðyÞ < 10−5, additionally assign).

C. The larger of sðx2Þ and sðx3Þ becomes slmax and assign ðxlmax; ylmaxÞ of quadrant 1.
D. The smaller of sðx2Þ and sðx3Þ becomes slmin and assign ðxlmin; ylminÞ of quadrant 1.

iii. Assign solution signs to proper quadrants.

9. Find circle and projected derotated centered ellipse intersection points.

(p) Formulate circle-ellipse intersection equation.
(q) Reformat into standard quartic form.
(r) Use standard general quartic solutions.
(s) Classify intersection solutions.

iv. Inside outer separation bounds, smin < s < smax.
v. Inside local min/max separation bounds, slmin < s < slmax.
vi. Outside outer separation bounds (no intersections).

(t) Calculate intersection solutions for planets with smin, smax, slmin, and slmax.

vii. Two intersections on same y side of ellipse as the star, smin < s < slmin x ¼( x3;Iðx1Þ > 10−10

x1;Iðx1Þ < 10−10

x0

.

viii. Four intersections where, slmin < s < slmax

• Calculate Δx ¼ xk − jxj, (k ∈ f0;1; 2;3g).
• Sort Δxk from min to max and rearrange the associated xk to match

that order.

• Same XY points is x3.

• Same X opposite Y is x2.

• Opposite X Same Y is x0.

• Opposite X opposite Y is x1.

ix. Two intersections on opposite x side of ellipse as the star, slmax < s < smax.

• x0 and x1.

• y1 is opposite sign of jyj.
(u) Calculate intersection solutions for planets with only smin and smax.

x. Calculate projected ellipse quadrant separation bounds sx;bþy, sx;b−y, saþx;y,
and sa−x;y.

xi. Identify star location type and quadrant order.

• Type 0 occurs where sxþa;y < sx;yþb. Smallest to largest order: sx;b−y, sa−x;y,
sxþa;y, sx;yþb.

• Type 1 occurs where sx;yþb < sa−x;y. Smallest to largest order: sx;b−y, sx;yþb,
sa−x;y, sxþa;y.

• Type 2 occurs where sa−x;y < sx;yþb and sx;yþb < sxþa;y and sx;b−y < sa−x;y.
Smallest to largest order: sx;b−y, sa−x;y, sx;yþb, sxþa;y.

• Type 3 occurs where sa−x;y < sx;b−y. Smallest to largest order: sa−x;y, sx;b−y,
sx;yþb, sxþa;y.
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8 Appendix C: ν from Δmag Extrema process

Here we present the full outline of our process for calculating true anomalies where the planet’s
orbit has a Δmag extrema. These steps are discussed in Sec. 2.2.

1. Substitute into Eq. (1) components and expand until all terms are functions of KOE.
2. Manipulate the Δmag equation until all ν terms are isolated on the right side.
3. Take the derivative.
4. Replace sinðνÞ with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos ðνÞ2

p
.

5. Replace all cosðνÞ with x.
6. Isolate all square root terms to general form A2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
¼ B2.

7. Square both sides.
8. Find polynomial coefficients of x.
9. Solve with root solver.

10. Filter out x solutions with imaginary components (>10−7) (10−8 is approximatelyffiffiffiffiffiffiffiffiffiffiffi
10−16

p
, machine precision).

11. Filter out invalid solutions, 1 < x or −1 > x.
12. Compute ν0 ¼ cos−1ðxÞ and ν1 ¼ 2π − ν0.
13. Compute associated Δmag0 and Δmag1.
14. Remove solutions that are not extrema.
15. Assign solutions Δmagmax ¼ minðΔmag0;Δmag1Þ.
16. Assign solutions Δmagmin ¼ maxðΔmag0;Δmag1Þ
17. Remove duplicate solutions.
18. Remove assigned solutions.
19. Check if solution is extrema.
20. Assign Δmaglmin and Δmaglmax.

9 Appendix D: ν from Δmaglim Intersection Process

Here we present the full outline of our process for calculating true anomalies where the planet’s
orbit has a specified Δmag, which we call an intersection. These steps are discussed in Sec. 2.2.

1. Find Δmag extrema.
2. Find planets where Δmag < Δmagmax, Δmag > Δmagmin, and Δmag > Δmaglmax or

Δmag < Δmaglmin (these planets have only two intersections).
3. Substitute into Δmag equation components and expand until all terms are functions

of KOE.
4. Manipulate the equation until all ν terms are isolated on the right side.
5. Expand.

6. Replace sinðνÞ with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos ðνÞ2

p
.

7. Replace all cosðνÞ with x.
8. Isolate all square root terms to general form A2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
¼ B2.

9. Square both sides.
10. Expand.
11. Find polynomial coefficients of x.
12. Solve with root solver.
13. Filter out solutions with imaginary components (>10−7).
14. Filter out solutions 1 < xk or −1 > xk.
15. Take arrays ν0 ¼ cos−1ðxÞ and ν1 ¼ 2π − ν0.
16. Solve for associated arrays Δmag0 and Δmag1.
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17. Remove solutions where jΔmag0 − Δmagj > 0.01 and jΔmag1 − Δmagj > 0.01 (Note
that 0.01 is <� 0.08% error on dmag).

18. Remove duplicate solutions.
19. Verify that there are only two viable solutions.
20. Assign solutions to ν.

10 Appendix E: Projected Ellipse Semimajor Axis and Semiminor Axis,
and θ

We write the analytical expressions for ap, bp, and θ using full expansions of Eqs. (13)–(15).
These expressions are far too long to be practically conveyed, so we use the following inter-
mediary parameters here and only here to simplify these expressions:

EQ-TARGET;temp:intralink-;e061;116;594

K0 ¼ eð1 − e2Þ
K1 ¼ sinðΩÞ cosðωÞ þ sinðωÞ cosðΩÞ cosðiÞ

K2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
eþ 1

1 − e

r
K3 ¼ að1 − e2Þ
K4 ¼ − sinðΩÞ sinðωÞ cosðiÞ þ cosðΩÞ cosðωÞ
K5 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

1K
2
3 þ K2

4K
2
3 þ K2

3sin
2ðiÞsin2ðωÞ

q
K6 ¼ K3ð− sinðΩÞ cosðωÞ − sinðωÞ cosðΩÞ cosðiÞÞ∕ð1 − eÞ
K7 ¼ K3ðsinðΩÞ sinðωÞ cosðiÞ − cosðΩÞ cosðωÞÞ∕ð1 − eÞ
K8 ¼ K3ðsinðΩÞ cosðωþ 2 tan−1ðK2ÞÞ þ sinðω

þ 2 tan−1ðK2ÞÞ cosðΩÞ cosðiÞÞ∕ðe cosð2 tan−1ðK2ÞÞ þ 1Þ
K9 ¼ K3ð− sinðΩÞ sinðωþ 2 tan−1ðK2ÞÞ cosðiÞ

þ cosðΩÞ cosðωþ 2 tan−1ðK2ÞÞÞ∕ðe cosð2 tan−1ðK2ÞÞ þ 1Þ: (61)

The simplified expression for the semimajor axis of the projected ellipse is
EQ-TARGET;temp:intralink-;e062;116;342

ap ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
K0a2K1

K5

−
K0a2K4

K5

þ K6 − K9

�
2

þ
�
K0a2K1

K5

þ K0a2K4

K5

þ K7 þ K8

�
2

s

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
K0a2K1

K5

−
K0a2K4

K5

− K7 þ K8

�
2

þ
�
K0a2K1

K5

þ K0a2K4

K5

þ K6 þ K9

�
2

s
: (62)

The simplified expression for the projected ellipse semiminor axis is
EQ-TARGET;temp:intralink-;e063;116;243

bp ¼ −
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi����K0a2K1

K5

−
K0a2K4

K5

þ K6 − K9

����2 þ
����K0a2K1

K5

þ K0a2K4

K5

þ K7 þ K8

����2
s

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi����K0a2K1

K5

−
K0a2K4

K5

− K7 þ K8

����2 þ
����K0a2K1

K5

þ K0a2K4

K5

þ K6 þ K9

����2
s

: (63)

The simplified expression for the angle between the projected ellipse semimajor axis and
X axis is

EQ-TARGET;temp:intralink-;e064;116;133θ ¼ 1

2

"
tan−1

 K0a2K1

K5
− K0a2K4

K5
þ K6 − K9

K0a2K1

K5
þ K0a2K4

K5
þ K7 þ K8

!
þ tan−1

 K0a2K1

K5
þ K0a2K4

K5
þ K6 þ K9

− K0a2K1

K5
þ K0a2K4

K5
þ K7 − K8

!#
: (64)
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11 Appendix F: s Extrema Polynomial

We reduced Eq. (22) from Sec. 2.1.2 into the standard reduced form of a quartic expression:

EQ-TARGET;temp:intralink-;e065;116;704

0 ¼ x4e þ
−2a2px� þ 2b2px�

ða4p − 2a2pb2p þ b4pÞ∕a2p
x3e þ

−a4p þ 2a2pb2p þ a2px2� − b4p þ b2py2�
ða4p − 2a2pb2p þ b4pÞ∕a2p

x2e

þ 2a4px� − 2a2pb2px�
ða4p − 2a2pb2p þ b4pÞ∕a2p

xe þ
−a4px2�

ða4p − 2a2pb2p þ b4pÞ∕a2p
: (65)

The coefficients of the quartic expression are

EQ-TARGET;temp:intralink-;e066;116;611A0 ¼
−2a2px� þ 2b2px�

ða4p − 2a2pb2p þ b4pÞ∕a2p
; (66)

EQ-TARGET;temp:intralink-;e067;116;548

B0 ¼
−a4p þ 2a2pb2p þ a2px2� − b4p þ b2py2�

ða4p − 2a2pb2p þ b4pÞ∕a2p
; (67)

EQ-TARGET;temp:intralink-;e068;116;506C0 ¼
2a4px� − 2a2pb2px�

ða4p − 2a2pb2p þ b4pÞ∕a2p
; (68)

EQ-TARGET;temp:intralink-;e069;116;464D0 ¼
−a4px2�

ða4p − 2a2pb2p þ b4pÞ∕a2p
: (69)

12 Appendix G: s Intersection Polynomial

After dividing by the coefficient of x4e in Eq. (35) from Sec. 2.1.3, we get
EQ-TARGET;temp:intralink-;e070;116;389

0 ¼ x4e −
4a2px�
a2p − b2p

x3e þ
2a2pða2pb2p − a2ps2 þ 3a2px2� þ a2py2� − b4p þ b2ps2 − b2px2� þ b2py2�Þ

a4p − 2a2pb2p þ b4p
x2e

þ 4a4px�ð−b2p þ s2 − x2� − y2�Þ
a4p − 2a2pb2p þ b4p

xe

þ a4pðb4p − 2b2ps2 þ 2b2px2� − 2b2py2� þ s4 − 2 s2x2� − 2 s2y2� þ x4� þ 2x2�y2� þ y4�Þ
a4p − 2a2pb2p þ b4p

: (70)

The coefficients of the general quartic expression in Eq. (36) are

EQ-TARGET;temp:intralink-;e071;116;268A1 ¼ −
4a2px�
a2p − b2p

; (71)

EQ-TARGET;temp:intralink-;e072;116;206B1 ¼
2a2pða2pb2p − a2ps2 þ 3a2px2� þ a2py2� − b4p þ b2ps2 − b2px2� þ b2py2�Þ

a4p − 2a2pb2p þ b4p
; (72)

EQ-TARGET;temp:intralink-;e073;116;164C1 ¼
4a4px�ð−b2p þ s2 − x2� − y2�Þ

a4p − 2a2pb2p þ b4p
; (73)

and

EQ-TARGET;temp:intralink-;e074;116;122D1 ¼
a4pðb4p − 2b2ps2 þ 2b2px2� − 2b2py2� þ s4 − 2 s2x2� − 2 s2y2� þ x4� þ 2x2�y2� þ y4�Þ

a4p − 2a2pb2p þ b4p
: (74)
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13 Appendix H: Δmag Extrema Polynomial

Here we include the coefficients of Eq. (49) from Sec. 2.2 as
EQ-TARGET;temp:intralink-;e075;116;704

A2 ¼ e4 sin4ðiÞ;
B2 ¼ 3e3ðe sinðωÞ þ sinðiÞÞsin3ðiÞ;

C2 ¼
1

4
e2ð4e2 sin2ðiÞ sin2ðωÞ − 8e2 sin2ðiÞ þ 8e2 sin2ðωÞ þ 5e2 þ 34e sinðiÞ sinðωÞ

þ 13sin2ðiÞÞsin2ðiÞ;

D2 ¼
1

2
e½2e3 sin2ðiÞsin3ðωÞ − 8e3 sin2ðiÞ sinðωÞ þ 3e3 sinðωÞ þ 5e2 sin3ðiÞsin2ðωÞ

− 11e2 sin3ðiÞ þ 10e2 sinðiÞsin2ðωÞ þ 7e2 sinðiÞ þ 17e sin2ðiÞ sinðωÞ
þ 3sin3ðiÞÞ sinðiÞ;

E2 ¼ −
5e4 sin4ðiÞsin2ðωÞ

4
þ 5e4 sin4ðiÞ

4
−
7e4 sin2ðiÞsin2ðωÞ

4
−
3e4 sin2ðiÞ

2

þ e4

4
þ 3e3 sin3ðiÞsin3ðωÞ

2
− 10e3 sin3ðiÞ sinðωÞ þ 7e3 sinðiÞ sinðωÞ

2

þ 2e2 sin4ðiÞsin2ðωÞ − 21e2 sin4ðiÞ
4

þ 4e2 sin2ðiÞsin2ðωÞ þ 7e2 sin2ðiÞ
2

þ 7e sin3ðiÞ sinðωÞ
2

þ sin4ðiÞ
4

;

F2 ¼ −
3e4 sin3ðiÞsin3ðωÞ

2
þ 3e4 sin3ðiÞ sinðωÞ

2
−
3e4 sinðiÞ sinðωÞ

2
−
e3 sin4ðiÞsin4ðωÞ

2

−
5e3 sin4ðiÞsin2ðωÞ

2
þ 3e3 sin4ðiÞ − 5e3 sin2ðiÞsin2ðωÞ − 7e3 sin2ðiÞ

2
þ e3

2

−
e2 sin3ðiÞsin3ðωÞ

2
− 8e2 sin3ðiÞ sinðωÞ þ 5e2 sinðiÞ sinðωÞ

2
þ e sin4ðiÞsin2ðωÞ

2

− 2e sin4ðiÞ þ e sin2ðiÞsin2ðωÞ þ 3e sin2ðiÞ
2

þ sin3ðiÞ sinðωÞ
2

;

G2 ¼ −
e4 sin4ðiÞsin4ðωÞ

4
þ e4 sin4ðiÞsin2ðωÞ

2
−
e4 sin4ðiÞ

4
−
e4 sin2ðiÞsin2ðωÞ

2

þ e4 sin2ðiÞ
2

−
e4

4
−
7e3 sin3ðiÞsin3ðωÞ

2
þ 7e3 sin3ðiÞ sinðωÞ

2
−
7e3 sinðiÞ sinðωÞ

2

−
5e2 sin4ðiÞsin4ðωÞ

4
− e2 sin4ðiÞsin2ðωÞ þ 9e2 sin4ðiÞ

4
− 5e2 sin2ðiÞsin2ðωÞ

−
5e2 sin2ðiÞ

2
þ e2

4
−
3e sin3ðiÞsin3ðωÞ

2
− 2e sin3ðiÞ sinðωÞ þ e sinðiÞ sinðωÞ

2

−
sin4ðiÞ

4
þ sin2ðiÞ

4
;

H2 ¼ −
e3 sin4ðiÞcos4ðωÞ

2
þ e3 sin2ðiÞcos2ðωÞ − e3

2
þ 5e2 sin3ðiÞ sinðωÞcos2ðωÞ

2

−
5e2 sinðiÞ sinðωÞ

2
−
3eðcos 2ðiÞ − 1Þ2ðcosð4wÞ − 1Þ

64
þ e sin4ðiÞcos4ðωÞ

2

−
5e sin2ðiÞsin2ðωÞ

2
−
e sin2ðiÞcos2ðωÞ

2
−
sin3ðiÞsin3ðωÞ

2
; and

I2 ¼ −
e2 sin4ðiÞcos4ðωÞ

4
þ e2 sin2ðiÞcos2ðωÞ

2
−
e2

4
þ e sin3ðiÞ sinðωÞcos2ðωÞ

2

−
e sinðiÞ sinðωÞ

2
−
ðcosð2iÞ − 1Þ2ðcosð4wÞ − 1Þ

128
−
sin2ðiÞsin2ðωÞ

4
: (75)
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14 Appendix I: Δmag Intersection Polynomial

Here we include the coefficients of Eq. (50) from Sec. 2.2 as

EQ-TARGET;temp:intralink-;e076;116;704

A3 ¼
e4 sin4ðiÞ

16
;

B3 ¼
1

4
e3ðe sinðωÞ þ sinðiÞÞsin3ðiÞ;

C3 ¼
1

8
e2ðe2 cos2ðiÞcos2ðωÞ − 3e2 cos2ðωÞ þ 3e2 þ 8e sinðiÞ sinðωÞ − 3cos2ðiÞ

þ 3Þsin2ðiÞ;

D3 ¼
1

4
e½−e3 sin3ðωÞcos2ðiÞ þ e3 sin3ðωÞ þ e3 sinðωÞcos2ðiÞ − 2e2 sin3ðiÞcos2ðωÞ

− 4e2 sinðiÞcos2ðωÞ þ 6e2 sinðiÞ − 6e sinðωÞcos2ðiÞ þ 6e sinðωÞ
þ sin3ðiÞÞ sinðiÞ;

E3 ¼
e4 sin4ðiÞsin4ðωÞ

16
−
e4 sin4ðiÞsin2ðωÞ

8
þ e4 sin4ðiÞ

16
þ e4 sin2ðiÞsin2ðωÞ

8

−
e4 sin2ðiÞ

8
þ e4

16
þ e3 sin3ðiÞsin3ðωÞ − e3 sin3ðiÞ sinðωÞ þ e3 sinðiÞ sinðωÞ

− e2ξ sin2ðiÞsin2ðωÞ þ e2ξ sin2ðiÞ
2

þ 3e2 sin4ðiÞsin2ðωÞ
4

−
3e2 sin4ðiÞ

4

þ 3e2 sin2ðiÞsin2ðωÞ
2

þ 3e2 sin2ðiÞ
4

þ e sin3ðiÞ sinðωÞ þ sin4ðiÞ
16

;

F3 ¼
e3 sin4ðiÞsin4ðωÞ

4
−
e3 sin4ðiÞsin2ðωÞ

2
þ e3 sin4ðiÞ

4
þ e3 sin2ðiÞsin2ðωÞ

2

−
e3 sin2ðiÞ

2
þ e3

4
− e2ξ sinðiÞ sinðωÞ þ 3e2 sin3ðiÞsin3ðωÞ

2

−
3e2 sin3ðiÞ sinðωÞ

2
þ 3e2 sinðiÞ sinðωÞ

2
− 2eξ sin2ðiÞsin2ðωÞ þ e ξ sin2ðiÞ

þ e sin4ðiÞsin2ðωÞ
2

−
e sin4ðiÞ

2
þ e sin2ðiÞsin2ðωÞ þ e sin2ðiÞ

2

þ sin3ðiÞ sinðωÞ
4

;

G3 ¼ −
e2ξ sin2ðiÞcos2ðωÞ

2
−
e2ξ
2

þ 3e2 sin4ðiÞcos4ðωÞ
8

−
3e2 sin2ðiÞcos2ðωÞ

4

þ 3e2

8
− 2eξ sinðiÞ sinðωÞ − e sin3ðiÞ sinðωÞcos2ðωÞ þ e sinðiÞ sinðωÞ

−
ξ sin2ðiÞsin2ðωÞ

2
þ ξ sin2ðiÞcos2ðωÞ

2
þ ðcosð2iÞ − 1Þ2ðcosð4wÞ − 1Þ

256

−
sin4ðiÞcos4ðωÞ

8
þ 3 sin2ðiÞsin2ðωÞ

8
þ sin2ðiÞcos2ðωÞ

8
;

H3 ¼ −eξ sin2ðiÞcos2ðωÞ − eξþ e sin4ðiÞcos4ðωÞ
4

−
e sin2ðiÞcos2ðωÞ

2
þ e

4

− ξ sinðiÞ sinðωÞ − sin3ðiÞ sinðωÞcos2ðωÞ
4

þ sinðiÞ sinðωÞ
4

; and

I3 ¼ ξ2 −
ξ sin2ðiÞcos2ðωÞ

2
−
ξ

2
þ sin4ðiÞcos4ðωÞ

16
−
sin2ðiÞcos2ðωÞ

8
þ 1

16
: (76)
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15 Appendix J: Proof that Ellipses Project to Ellipses

Let us suppose that we have some ellipse on an arbitrary plane indicated by the black ellipse in
Fig. 4. We will say AB and CD are the principal axes of some this 3D ellipse. AB and CD
intersect at point O, the geometric center of this 3D ellipse. We will say point P is any point
on the ellipse with H being the projection of point P onto axis AB and K being the projection of
point P onto axis CD. By the definition of an ellipse, we have

EQ-TARGET;temp:intralink-;e077;116;653

OH2

OB2
þ OK2

OD2
¼ 1: (77)

Now we let A 0, B 0, C 0, D 0, O 0, K 0, H 0, and P 0 be the perpendicular projections of points A,
B, C, D, O, K, H, and P onto any given plane. Since perpendicular projections preserve the
ratios of segments on a line, we can now say

EQ-TARGET;temp:intralink-;e078;116;568

O 0H 02

O 0B 02 þ
O 0K 02

O 0D 02 ¼ 1: (78)

This equation means that point P 0 belongs to the ellipse having A 0B 0 and C 0D 0 as conjugate
diameters. For an ellipse, two diameters are conjugate if and only if the tangent line to the ellipse
at an endpoint of one diameter is parallel to the other diameter.

16 Appendix K: Quartic Solution

The quartic function has a known analytical solution.19 We start with a set of useful simplifying
terms

EQ-TARGET;temp:intralink-;e079;116;416p0 ¼
�
−
3A2

8
þ B

�
3

; (79)

EQ-TARGET;temp:intralink-;e080;116;354p1 ¼
�
A

�
A2

8
−
B
2

�
þ C

�
2

; (80)

EQ-TARGET;temp:intralink-;e081;116;314p2 ¼ −A
�
A

�
3A2

256
−

B
16

�
þ C

4

�
þD; (81)

EQ-TARGET;temp:intralink-;e082;116;274p3 ¼ −
3A2

8
þ B; (82)

EQ-TARGET;temp:intralink-;e083;116;236p4 ¼ 2A

�
A2

8
−
B
2

�
; (83)

EQ-TARGET;temp:intralink-;e084;116;195p5 ¼ −
p0

108
−
p1

8
þ p2p3

3
; (84)

EQ-TARGET;temp:intralink-;e085;116;161p6 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0

216
þ p1

16
−
p2p3

6
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
5

4
þ
	
−p2 −

p2
3

12



3

27

vuut3

vuuut
; (85)

EQ-TARGET;temp:intralink-;e086;116;103p7 ¼
A2

4
−
2B
3

; (86)
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EQ-TARGET;temp:intralink-;e087;116;735p8 ¼
2p2 þ p2

3

6

3p6

; (87)

EQ-TARGET;temp:intralink-;e088;116;680p9 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2

ffiffiffiffiffi
p5

3
p þ p7

q
; (88)

EQ-TARGET;temp:intralink-;e089;116;645p10 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p6 þ p7 þ p8

p
; (89)

and

EQ-TARGET;temp:intralink-;e090;116;617p11 ¼
A2

2
−
4B
3

: (90)

The solutions are four piecewise functions:

EQ-TARGET;temp:intralink-;e091;116;557x0 ¼

8>>><
>>>:

− A
4
þ p9

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p11þ2

ffiffiffiffi
p5

3
p þ−2C−p4

p9

q
2

for p2 þ p2
3

12
¼ 0

− A
4
− p10

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p11−2p6þp9þ2Cþp4

p10

q
2

otherwise

; (91)

EQ-TARGET;temp:intralink-;e092;116;462x1 ¼

8>>><
>>>:

− A
4
þ p9

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p11þ2

ffiffiffiffi
p5

3
p −2Cþp4

p9

q
2

for p2 þ p2
3

12
¼ 0

− A
4
− p10

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p11−2p6þp9þ2Cþp4

p10

q
2

otherwise

; (92)

EQ-TARGET;temp:intralink-;e093;116;388x2 ¼

8>>><
>>>:

− A
4
− p9

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p11þ2

ffiffiffiffi
p5

3
p −−2C−p4

p9

q
2

for p2 þ p2
3

12
¼ 0

− A
4
þ p10

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p11−2p6þp9þ−2C−p4

p10

q
2

otherwise

; (93)

and

EQ-TARGET;temp:intralink-;e094;116;314x3 ¼

8>>><
>>>:

− A
4
− p9

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p11þ2

ffiffiffiffi
p5

3
p −−2C−p4

p9

q
2

for p2 þ p2
3

12
¼ 0

− A
4
þ p10

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p11−2p6þp9þ−2C−p4

p10

q
2

otherwise

: (94)

Theoretically, we always have four solutions. Theoretically, we can use equations of coef-
ficients to determine how many roots are real, complex, and double roots. The general form of
the quartic defines the expressions Δ, P, D2, R, and Δ0, which are

EQ-TARGET;temp:intralink-;e095;116;194

Δ ¼ 256D3 − 192ACD2 − 128B2D2 þ 144BC2D − 27C4 þ 144A2BD2 − 6A2C2D

− 80AB2CDþ18ABC3 þ 16B4D − 4B3C2 − 27A4D2 þ 18A3BCD − 4A3C3

− 4A2B3Dþ A2B2C2; (95)

EQ-TARGET;temp:intralink-;e096;116;111P ¼ 8B − 3A2; (96)

EQ-TARGET;temp:intralink-;e097;116;84D2 ¼ 64D − 16B2 þ 16A2B − 16AC − 3A4; (97)
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EQ-TARGET;temp:intralink-;e098;116;735R ¼ A3 þ 8C − 4AB; (98)

EQ-TARGET;temp:intralink-;e099;116;701Δ0 ¼ B2 − 3ACþ 12D: (99)

After evaluation of these constants, we can determine

EQ-TARGET;temp:intralink-;e100;116;677solution types ¼
8<
:

2 distinctR roots & 2 complex conjugate roots Δ < 0

4R distinct roots Δ > 0 & P < 0 &D < 0

2 pair complex conjugate roots Δ > 0 & ðP > 0jD > 0Þ
:

(100)

However, the use of this theoretical classification does not work when numerical errors are
introduced. The accumulation of numerical errors causes the solutions to be improperly clas-
sified for a sufficiently large number of cases to prohibit the use of these classifications. The Δ
expression rarely evaluates to Δ ¼ 0 when it should do so quite frequently. Numerical round-
ing errors can also frequently result in the evaluation Δ < 0 when in reality Δ > 0 and
vice versa.

17 Appendix L: Earth-Like Subpopulation

We use a definition of Earth-like exoplanet similar to that used in Ref. 8. We use a more
conservative planetary radius range of 0.9R� ≤ R ≤ 1.4R�. We use the flux-at-planet range
of 0.3586 ≤ Lplan ≤ 1.1080. To classify a planet, we use the time-averaged incident flux on the
planet calculated by

EQ-TARGET;temp:intralink-;e101;116;436Lplan ¼
L�	

aþ ae2
2



2
: (101)

18 Appendix M: 4-m Monolith Design Reference Mission

We calculated the Brown completeness and integration time adjusted completeness for a 4-m
monolith telescope with a contrast of 10−10 on the SAG13 planet population discussed in Ref. 1.
The Δmag and separations of integration are scaled by the luminosity of each candidate target
star. The orbital periods are similarly scaled by the mass of each target star in the case of inte-
gration time adjusted completeness. We optimized the mission schedule using the sequential
least squares quadratic programming method discussed in Ref. 1 with the Brown completeness
method. Our approach included the adoption of the use of the local zodiacal light minimum and
filtering of target stars.

We assume a total telescope time of 213.67 days (∼7 months) and that each observation
requires 0.1 day of overhead time and 0.042 day settling time. The coronagraph parameters used
are from a vortex charge six coronagraph at a wavelength of 500 nm with an IWA of 0.045 arc
sec and OWA of 2.127 arc sec and a working angle of integration consistent with that used
in Ref. 1.

The resulting Brown completeness optimized integration times for a DRM are included in
Table 2. The summed Brown completeness for this DRM is 68.89, whereas the same summed
integration time adjusted completeness is 63.11, a difference of 5.78. We can multiply either of
these numbers by the SAG13 exoplanet occurrence rate of 5.62 to get the expected number of
exoplanets detected in a single-visit blind search. These are 387.16 and 354.67 on average,
respectively. This means that 32.49 planets are lost in a mission by not taking into account inte-
gration times when optimizing the mission schedule.
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Table 2 4-m monolith DRM.

Name Dist (pc) Int. time (day) Δmag Cbrown C IAC

HIP 439 4.34 0.399 19.557 0.049 0.041

HIP 522 25.71 0.181 23.476 0.038 0.033

HIP 544 13.67 0.6 23.403 0.16 0.141

HIP 746 16.78 0.066 27.142 0.247 0.24

HIP 910 18.75 0.383 24.916 0.16 0.146

HIP 950 21.28 0.341 24.504 0.106 0.095

HIP 1292 17.5 0.338 22.181 0.054 0.047

HIP 1392 B 15.19 0.293 21.362 0.039 0.033

HIP 1475 3.57 0.625 20.237 0.105 0.089

HIP 1499 23.25 0.139 21.736 0.018 0.016

HIP 1599 8.59 0.374 25.793 0.47 0.438

HIP 1803 20.86 0.241 22.209 0.036 0.031

HIP 2021 7.46 0.179 26.942 0.55 0.525

HIP 2072 23.81 0.129 25.773 0.103 0.097

HIP 2081 25.97 0.053 26.432 0.082 0.078

HIP 2711 25.48 0.193 23.752 0.045 0.039

HIP 3093 11.06 0.745 23.731 0.242 0.213

HIP 3170 24.96 0.192 23.257 0.038 0.033

HIP 3419 29.53 0.035 26.545 0.048 0.046

HIP 3497 22.06 0.184 21.928 0.025 0.022

HIP 3505 26.75 0.169 24.171 0.044 0.039

HIP 3583 15.16 0.567 23.919 0.17 0.151

HIP 3765 7.45 0.861 23.974 0.38 0.339

HIP 3810 23.45 0.27 24.446 0.078 0.07

HIP 3909 15.75 0.515 24.685 0.207 0.187

HIP 4148 14.17 0.293 21.192 0.039 0.033

HIP 4151 18.74 0.353 25.07 0.166 0.152

HIP 5336 7.55 0.66 24.859 0.459 0.418

HIP 5862 15.11 0.46 25.001 0.238 0.217

HIP 6379 16.81 0.217 21.188 0.028 0.024

HIP 6706 25.21 0.207 23.99 0.051 0.046

HIP 6813 28.62 0.13 24.535 0.037 0.033

HIP 7235 19.05 0.164 21.17 0.021 0.018

HIP 7339 20.66 0.236 22.106 0.035 0.03
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Table 2 (Continued).

Name Dist (pc) Int. time (day) Δmag Cbrown C IAC

HIP 7513 13.49 0.296 25.765 0.309 0.288

HIP 7601 27.38 0.129 23.04 0.023 0.02

HIP 7734 21.37 0.17 21.643 0.022 0.019

HIP 7918 12.74 0.521 24.978 0.295 0.269

HIP 7978 17.43 0.483 24.302 0.153 0.137

HIP 7981 7.53 0.733 24.611 0.44 0.398

HIP 8102 3.65 0.323 26.364 0.745 0.704

HIP 8362 10.07 0.753 24.254 0.318 0.285

HIP 8433 27.86 0.119 23.024 0.021 0.019

HIP 8497 23.19 0.241 25.078 0.098 0.09

HIP 8796 19.42 0.141 26.116 0.18 0.17

HIP 8903 17.99 0.08 26.814 0.217 0.209

HIP 9007 17.85 0.199 25.89 0.207 0.194

HIP 9236 22.01 0.069 26.565 0.138 0.132

HIP 9884 20.18 0.069 26.753 0.172 0.165

HIP 10138 10.78 0.746 23.544 0.231 0.204

HIP 10306 28.87 0.115 23.779 0.026 0.023

HIP 10644 10.78 0.528 25.092 0.359 0.329

HIP 10723 24.35 0.218 23.513 0.047 0.041

HIP 10798 12.67 0.605 22.975 0.146 0.128

HIP 11029 29.66 0.097 23.551 0.02 0.018

HIP 11783 26.7 0.179 24.768 0.055 0.049

HIP 12114 7.18 0.88 23.866 0.379 0.337

HIP 12186 25.78 0.173 23.307 0.034 0.03

HIP 12444 21.76 0.299 23.526 0.067 0.059

HIP 12623 24.19 0.249 24.661 0.076 0.068

HIP 12653 17.17 0.488 24.473 0.167 0.15

HIP 12777 11.13 0.324 25.829 0.381 0.356

HIP 12843 14.22 0.352 25.471 0.28 0.259

HIP 13402 10.35 0.771 23.572 0.245 0.216

HIP 13665 26.71 0.159 23.616 0.035 0.031

HIP 14146 27.17 0.112 25.539 0.062 0.058

HIP 14150 20.64 0.162 21.435 0.021 0.018

HIP 14632 10.54 0.328 25.855 0.402 0.375
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Table 2 (Continued).

Name Dist (pc) Int. time (day) Δmag Cbrown C IAC

HIP 14954 22.58 0.299 24.511 0.09 0.08

HIP 15330 12.01 0.669 24.437 0.278 0.25

HIP 15371 12.03 0.592 24.779 0.303 0.275

HIP 15457 9.14 0.567 25.073 0.413 0.378

HIP 15510 6.04 0.426 25.751 0.581 0.541

HIP 16245 21.68 0.264 25.16 0.121 0.111

HIP 16537 3.21 0.377 26.121 0.768 0.722

HIP 16852 13.96 0.339 25.542 0.289 0.268

HIP 17378 9.04 0.286 26.162 0.466 0.438

HIP 17420 13.95 0.326 21.324 0.044 0.038

HIP 17439 16.03 0.286 21.475 0.039 0.033

HIP 17651 17.63 0.25 25.64 0.206 0.192

HIP 18859 18.83 0.429 24.311 0.132 0.118

HIP 19076 16.94 0.466 23.433 0.114 0.101

HIP 19205 27.6 0.147 24.021 0.036 0.032

HIP 19335 21.0 0.341 23.973 0.09 0.08

HIP 19849 4.98 0.504 25.516 0.625 0.579

HIP 19859 21.33 0.244 22.41 0.039 0.034

HIP 19884 13.04 0.19 20.397 0.024 0.02

HIP 19893 20.46 0.206 25.608 0.152 0.141

HIP 19921 18.24 0.322 25.261 0.183 0.168

HIP 19990 28.94 0.122 24.383 0.033 0.03

HIP 21421 20.43 0.039 27.351 0.17 0.166

HIP 21547 29.43 0.107 23.929 0.025 0.022

HIP 21770 20.17 0.24 25.449 0.153 0.141

HIP 21861 28.67 0.127 24.318 0.034 0.03

HIP 22263 13.28 0.635 24.402 0.243 0.218

HIP 22336 26.42 0.154 23.183 0.029 0.026

HIP 22449 8.07 0.218 26.617 0.516 0.491

HIP 23311 8.71 0.832 23.26 0.258 0.226

HIP 23482 26.08 0.185 24.074 0.047 0.042

HIP 23693 11.65 0.434 25.351 0.346 0.319

HIP 23783 26.29 0.189 24.587 0.055 0.049

HIP 23875 27.4 0.044 26.48 0.067 0.064
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Table 2 (Continued).

Name Dist (pc) Int. time (day) Δmag Cbrown C IAC

HIP 23941 25.46 0.208 24.364 0.057 0.051

HIP 24186 3.91 0.377 19.298 0.044 0.037

HIP 24786 25.03 0.183 23.045 0.034 0.029

HIP 24813 12.63 0.458 25.207 0.311 0.285

HIP 25110 20.89 0.343 24.749 0.12 0.108

HIP 25278 14.39 0.517 24.847 0.246 0.224

HIP 25544 19.2 0.183 21.347 0.024 0.02

HIP 25623 13.02 0.163 20.148 0.02 0.017

HIP 25878 5.68 0.483 20.34 0.068 0.058

HIP 26394 18.32 0.446 24.074 0.128 0.114

HIP 26779 12.28 0.645 23.215 0.171 0.15

HIP 27072 8.93 0.256 26.326 0.474 0.448

HIP 27288 21.61 0.108 26.165 0.141 0.134

HIP 27321 19.44 0.155 26.012 0.178 0.167

HIP 27435 15.18 0.544 23.539 0.145 0.128

HIP 27628 26.73 0.081 25.936 0.071 0.066

HIP 27887 13.0 0.376 21.413 0.053 0.045

HIP 27890 26.25 0.19 24.754 0.058 0.053

HIP 28103 14.88 0.2 26.143 0.282 0.266

HIP 28360 24.87 0.031 27.217 0.098 0.096

HIP 28908 25.62 0.143 22.489 0.022 0.019

HIP 28954 15.27 0.327 21.575 0.046 0.039

HIP 29271 10.2 0.582 24.95 0.369 0.337

HIP 29295 5.75 0.401 20.008 0.051 0.043

HIP 29525 17.95 0.337 22.3 0.055 0.048

HIP 29568 16.72 0.423 22.752 0.083 0.073

HIP 29650 20.82 0.358 24.425 0.109 0.097

HIP 29800 19.25 0.394 24.751 0.145 0.131

HIP 29860 19.25 0.396 23.768 0.102 0.09

HIP 30503 21.88 0.228 22.401 0.036 0.031

HIP 31592 19.75 0.225 25.568 0.163 0.151

HIP 32349 2.63 0.025 30.177 0.872 0.861

HIP 32362 18.0 0.145 26.221 0.21 0.199

HIP 32366 24.38 0.207 23.238 0.041 0.036

Keithly, Savransky, and Spohn: Integration time adjusted completeness
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Table 2 (Continued).

Name Dist (pc) Int. time (day) Δmag Cbrown C IAC

HIP 32439 17.87 0.465 24.414 0.152 0.136

HIP 32480 16.72 0.498 24.565 0.18 0.163

HIP 32607 29.6 0.051 26.098 0.046 0.043

HIP 32765 25.26 0.215 24.454 0.061 0.055

HIP 32984 8.71 0.777 22.753 0.205 0.179

HIP 33094 25.89 0.154 22.824 0.026 0.023

HIP 33277 17.24 0.471 23.721 0.125 0.111

HIP 33690 18.33 0.245 21.638 0.033 0.028

HIP 33817 14.65 0.425 22.086 0.071 0.061

HIP 34017 19.13 0.372 23.259 0.082 0.072

HIP 34834 21.43 0.231 25.368 0.13 0.12

HIP 35136 16.89 0.503 24.178 0.156 0.139

HIP 35296 A 14.59 0.444 22.214 0.077 0.067

HIP 36366 18.05 0.245 25.626 0.197 0.183

HIP 36399 27.24 0.132 23.032 0.024 0.021

HIP 36439 20.24 0.38 24.354 0.114 0.102

HIP 36795 25.3 0.184 25.172 0.076 0.069

HIP 37279 3.51 0.063 28.816 0.796 0.778

HIP 37349 14.21 0.281 21.13 0.037 0.031

HIP 37606 24.67 0.233 24.476 0.067 0.06

HIP 37826 10.36 0.073 27.756 0.442 0.43

HIP 38784 17.19 0.358 22.262 0.059 0.051

HIP 38908 16.2 0.532 24.279 0.174 0.155

HIP 39157 16.77 0.216 21.173 0.028 0.024

HIP 39342 17.31 0.195 21.121 0.025 0.022

HIP 39757 19.48 0.083 26.621 0.184 0.177

HIP 39780 23.29 0.266 24.017 0.068 0.06

HIP 39903 19.98 0.305 25.155 0.148 0.135

HIP 40035 22.38 0.292 23.955 0.075 0.066

HIP 40693 12.49 0.674 23.689 0.205 0.181

HIP 40702 19.56 0.196 25.75 0.171 0.159

HIP 40706 28.63 0.124 25.177 0.045 0.041

HIP 40843 18.27 0.438 24.634 0.156 0.141

HIP 41211 26.62 0.159 23.493 0.033 0.029

Keithly, Savransky, and Spohn: Integration time adjusted completeness
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Table 2 (Continued).

Name Dist (pc) Int. time (day) Δmag Cbrown C IAC

HIP 41484 22.25 0.216 22.368 0.033 0.029

HIP 41926 12.21 0.621 22.933 0.151 0.132

HIP 42438 14.36 0.607 24.195 0.204 0.182

HIP 42808 11.14 0.631 22.574 0.141 0.123

HIP 43587 12.34 0.673 23.552 0.197 0.173

HIP 43726 17.39 0.442 23.35 0.105 0.092

HIP 43797 24.15 0.229 23.68 0.052 0.046

HIP 44075 21.03 0.323 23.609 0.077 0.068

HIP 44127 14.51 0.129 26.677 0.3 0.288

HIP 44143 26.42 0.182 24.346 0.049 0.044

HIP 44897 19.19 0.377 23.372 0.086 0.076

HIP 45170 20.36 0.232 21.979 0.033 0.028

HIP 45333 19.57 0.397 24.602 0.134 0.12

HIP 45343 6.11 0.566 20.808 0.09 0.076

HIP 45617 17.27 0.131 20.537 0.016 0.014

HIP 46509 17.33 0.342 25.261 0.201 0.184

HIP 46580 12.91 0.281 20.919 0.036 0.031

HIP 46733 23.82 0.112 25.913 0.105 0.099

HIP 46843 17.79 0.161 20.93 0.021 0.018

HIP 46853 13.48 0.158 26.543 0.327 0.312

HIP 47080 11.37 0.689 24.424 0.295 0.265

HIP 47592 15.01 0.457 25.025 0.241 0.22

HIP 48113 18.37 0.425 24.727 0.159 0.143

HIP 48331 11.16 0.237 20.399 0.03 0.025

HIP 48833 28.15 0.136 24.138 0.034 0.031

HIP 49081 15.05 0.571 24.431 0.206 0.185

HIP 49593 28.24 0.137 25.074 0.047 0.043

HIP 49669 24.31 0.029 27.69 0.106 0.105

HIP 49809 27.74 0.141 23.924 0.034 0.03

HIP 49908 4.87 0.989 22.892 0.356 0.312

HIP 50075 22.85 0.198 22.331 0.03 0.026

HIP 50384 22.81 0.257 23.348 0.054 0.047

HIP 50505 20.24 0.198 21.651 0.026 0.022

HIP 50564 21.37 0.309 24.921 0.119 0.108

Keithly, Savransky, and Spohn: Integration time adjusted completeness
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Table 2 (Continued).

Name Dist (pc) Int. time (day) Δmag Cbrown C IAC

HIP 50954 16.22 0.219 25.922 0.244 0.229

HIP 51459 12.78 0.464 25.177 0.305 0.28

HIP 51502 21.5 0.333 24.57 0.105 0.094

HIP 51523 21.81 0.298 24.914 0.112 0.102

HIP 51814 26.53 0.179 24.362 0.049 0.044

HIP 51933 25.08 0.195 23.413 0.04 0.035

HIP 53229 29.09 0.108 25.297 0.043 0.04

HIP 53253 29.13 0.101 25.391 0.044 0.041

HIP 53721 14.06 0.509 24.905 0.257 0.234

HIP 53910 24.45 0.039 26.951 0.103 0.1

HIP 54035 2.54 1.0 21.604 0.308 0.263

HIP 54182 28.99 0.125 24.696 0.037 0.033

HIP 54211 4.86 0.263 19.093 0.027 0.023

HIP 54745 21.93 0.213 22.22 0.032 0.027

HIP 54872 17.91 0.074 26.903 0.219 0.212

HIP 55691 A 13.71 0.174 20.377 0.022 0.018

HIP 55779 27.22 0.158 24.189 0.041 0.037

HIP 56445 27.23 0.133 23.075 0.024 0.021

HIP 56452 9.56 0.799 24.001 0.31 0.276

HIP 56802 26.73 0.158 23.596 0.034 0.03

HIP 56997 9.61 0.688 24.618 0.365 0.329

HIP 56998 12.4 0.178 20.179 0.022 0.018

HIP 57443 9.22 0.55 25.115 0.413 0.378

HIP 57507 17.47 0.358 22.357 0.061 0.053

HIP 57632 11.0 0.088 27.443 0.417 0.404

HIP 57757 10.93 0.259 26.148 0.398 0.374

HIP 57939 9.09 0.782 22.992 0.22 0.192

HIP 58001 25.5 0.037 26.884 0.089 0.087

HIP 58345 10.16 0.549 21.707 0.093 0.08

HIP 58576 12.76 0.676 24.144 0.236 0.21

HIP 58803 25.32 0.212 24.371 0.058 0.052

HIP 58910 5.52 0.78 21.563 0.167 0.143

HIP 59072 19.76 0.204 25.689 0.166 0.154

HIP 59199 14.94 0.253 25.855 0.273 0.256

Keithly, Savransky, and Spohn: Integration time adjusted completeness
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Table 2 (Continued).

Name Dist (pc) Int. time (day) Δmag Cbrown C IAC

HIP 59750 22.35 0.244 22.816 0.043 0.038

HIP 59774 24.69 0.072 26.26 0.097 0.092

HIP 60965 26.63 0.051 26.407 0.075 0.071

HIP 61053 21.78 0.261 22.834 0.047 0.041

HIP 61084 27.15 0.037 26.765 0.07 0.068

HIP 61174 18.28 0.271 25.475 0.188 0.174

HIP 61291 16.18 0.248 21.274 0.033 0.028

HIP 61317 8.44 0.386 25.755 0.475 0.442

HIP 62145 14.88 0.318 21.442 0.043 0.037

HIP 62207 17.38 0.456 23.567 0.116 0.102

HIP 62523 16.93 0.418 22.789 0.083 0.073

HIP 62951 7.53 0.378 20.357 0.049 0.041

HIP 62956 25.31 0.03 27.46 0.093 0.091

HIP 63076 29.29 0.112 24.085 0.028 0.025

HIP 63613 27.87 0.107 25.502 0.055 0.051

HIP 63721 4.62 0.538 20.255 0.081 0.068

HIP 64394 9.13 0.381 25.732 0.447 0.416

HIP 64408 20.67 0.337 24.857 0.127 0.115

HIP 64583 18.2 0.38 25.015 0.174 0.159

HIP 64792 17.56 0.467 24.586 0.166 0.15

HIP 64924 8.56 0.553 25.147 0.439 0.403

HIP 65109 18.02 0.076 26.859 0.216 0.209

HIP 65352 15.45 0.25 21.164 0.033 0.028

HIP 65355 16.14 0.162 20.661 0.021 0.017

HIP 65530 21.17 0.228 22.163 0.034 0.029

HIP 65721 17.99 0.426 24.802 0.169 0.153

HIP 66249 22.71 0.095 26.18 0.124 0.117

HIP 66765 15.65 0.293 21.439 0.039 0.034

HIP 67153 19.4 0.236 25.54 0.169 0.157

HIP 67155 5.41 0.319 19.535 0.036 0.03

HIP 67275 15.62 0.345 25.386 0.242 0.224

HIP 67422 A 13.41 0.362 21.413 0.05 0.043

HIP 67927 11.4 0.139 26.884 0.397 0.38

HIP 68030 24.86 0.165 22.587 0.026 0.023

Keithly, Savransky, and Spohn: Integration time adjusted completeness
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Table 2 (Continued).

Name Dist (pc) Int. time (day) Δmag Cbrown C IAC

HIP 68184 10.06 0.729 22.959 0.194 0.169

HIP 68682 16.98 0.42 22.833 0.085 0.074

HIP 68933 18.03 0.072 26.912 0.216 0.209

HIP 69671 21.22 0.258 22.541 0.043 0.037

HIP 69701 22.24 0.194 25.491 0.121 0.112

HIP 69713 29.07 0.124 24.773 0.037 0.034

HIP 69965 18.03 0.43 23.529 0.106 0.093

HIP 69972 11.8 0.592 22.482 0.124 0.108

HIP 69989 26.1 0.181 23.903 0.043 0.038

HIP 70319 17.19 0.411 22.815 0.082 0.072

HIP 70497 14.53 0.261 25.85 0.284 0.266

HIP 70857 19.89 0.178 21.426 0.023 0.02

HIP 70873 23.74 0.172 22.267 0.025 0.022

HIP 71075 26.61 0.056 26.311 0.074 0.071

HIP 71181 13.22 0.337 21.254 0.046 0.039

HIP 71284 15.83 0.314 25.495 0.241 0.224

HIP 71855 20.0 0.203 21.649 0.027 0.023

HIP 71957 18.27 0.204 25.823 0.197 0.185

HIP 72567 18.17 0.429 23.644 0.109 0.097

HIP 72603 22.98 0.285 24.398 0.082 0.073

HIP 72622 23.24 0.062 26.537 0.119 0.114

HIP 72848 11.51 0.715 23.602 0.219 0.193

HIP 73100 25.11 0.202 23.679 0.046 0.04

HIP 73165 26.9 0.165 25.043 0.058 0.052

HIP 73996 19.55 0.347 25.001 0.15 0.136

HIP 74273 24.2 0.167 22.366 0.025 0.022

HIP 74537 17.67 0.311 21.982 0.046 0.04

HIP 74605 25.34 0.211 24.386 0.059 0.053

HIP 74702 15.85 0.274 21.367 0.036 0.031

HIP 74975 25.38 0.211 24.352 0.058 0.052

HIP 75181 14.81 0.589 24.092 0.188 0.167

HIP 75718 20.58 0.139 21.214 0.018 0.015

HIP 75809 21.85 0.176 21.803 0.024 0.02

HIP 76219 28.93 0.123 24.381 0.033 0.03

Keithly, Savransky, and Spohn: Integration time adjusted completeness
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Table 2 (Continued).

Name Dist (pc) Int. time (day) Δmag Cbrown C IAC

HIP 76267 23.01 0.038 27.087 0.125 0.121

HIP 76829 17.44 0.34 25.26 0.198 0.182

HIP 77052 14.66 0.578 23.722 0.165 0.146

HIP 77070 22.68 0.084 26.306 0.125 0.119

HIP 77257 12.12 0.385 25.5 0.338 0.313

HIP 77358 15.35 0.525 23.372 0.132 0.117

HIP 77760 15.89 0.352 25.336 0.234 0.216

HIP 77801 17.35 0.437 23.278 0.102 0.089

HIP 77952 12.38 0.126 26.908 0.365 0.351

HIP 78072 11.25 0.272 26.058 0.385 0.361

HIP 78459 17.24 0.488 24.429 0.164 0.147

HIP 78527 21.03 0.173 25.748 0.145 0.135

HIP 78775 14.52 0.451 22.244 0.079 0.069

HIP 79190 14.67 0.304 21.331 0.041 0.035

HIP 79248 17.57 0.328 22.113 0.051 0.044

HIP 79537 13.89 0.226 20.787 0.029 0.025

HIP 79578 21.55 0.168 21.662 0.022 0.019

HIP 79672 13.9 0.625 24.242 0.217 0.194

HIP 79822 29.74 0.107 24.346 0.028 0.026

HIP 80179 27.27 0.165 24.698 0.049 0.044

HIP 80331 28.23 0.053 26.202 0.058 0.055

HIP 80337 12.78 0.641 24.472 0.261 0.235

HIP 80686 12.12 0.492 25.116 0.32 0.293

HIP 81300 9.75 0.794 23.977 0.302 0.268

HIP 81935 14.26 0.166 20.386 0.021 0.017

HIP 82003 9.81 0.179 19.732 0.021 0.017

HIP 82020 26.11 0.192 24.816 0.061 0.055

HIP 82396 19.54 0.085 26.601 0.183 0.175

HIP 82587 29.19 0.111 23.885 0.026 0.023

HIP 82588 17.25 0.303 21.827 0.043 0.037

HIP 82621 26.94 0.13 22.785 0.021 0.019

HIP 82860 15.26 0.419 25.138 0.241 0.22

HIP 83000 28.04 0.084 25.743 0.056 0.052

HIP 83389 18.59 0.25 21.73 0.034 0.029

Keithly, Savransky, and Spohn: Integration time adjusted completeness
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Table 2 (Continued).

Name Dist (pc) Int. time (day) Δmag Cbrown C IAC

HIP 83541 17.84 0.284 21.815 0.04 0.034

HIP 83591 10.71 0.218 20.197 0.027 0.023

HIP 83601 20.67 0.317 23.214 0.067 0.058

HIP 83609 5.62 0.311 19.561 0.035 0.029

HIP 83990 13.62 0.26 20.929 0.034 0.029

HIP 84143 22.53 0.104 26.117 0.126 0.119

HIP 84478 5.95 0.95 23.071 0.332 0.29

HIP 84862 14.33 0.578 24.57 0.231 0.208

HIP 85042 19.52 0.316 22.628 0.056 0.049

HIP 85235 12.8 0.588 22.853 0.136 0.119

HIP 85295 7.7 0.45 20.704 0.063 0.053

HIP 86201 23.16 0.251 25.007 0.097 0.088

HIP 86400 11.0 0.644 22.624 0.147 0.128

HIP 86486 21.45 0.29 25.037 0.121 0.11

HIP 86614 22.84 0.226 25.235 0.107 0.098

HIP 86620 23.06 0.257 23.538 0.057 0.05

HIP 86742 25.09 0.079 26.132 0.091 0.086

HIP 86796 15.51 0.512 24.744 0.215 0.195

HIP 86974 8.31 0.253 26.393 0.501 0.474

HIP 88175 23.55 0.233 25.073 0.094 0.085

HIP 88635 29.7 0.065 25.833 0.044 0.041

HIP 88694 17.55 0.439 23.382 0.104 0.092

HIP 88771 26.63 0.088 25.85 0.071 0.066

HIP 88972 11.02 0.686 23.01 0.178 0.156

HIP 89042 17.61 0.476 24.3 0.15 0.135

HIP 89348 22.92 0.28 24.79 0.094 0.085

HIP 89474 22.82 0.213 22.54 0.034 0.03

HIP 89962 18.54 0.154 26.107 0.197 0.186

HIP 90496 23.97 0.088 26.129 0.105 0.099

HIP 90790 13.25 0.399 21.587 0.059 0.05

HIP 91262 7.68 0.03 29.135 0.559 0.549

HIP 91768 3.52 0.41 19.289 0.05 0.041

HIP 92024 28.55 0.136 24.804 0.041 0.037

HIP 92043 19.21 0.229 25.603 0.174 0.162

Keithly, Savransky, and Spohn: Integration time adjusted completeness
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Table 2 (Continued).

Name Dist (pc) Int. time (day) Δmag Cbrown C IAC

HIP 92161 28.89 0.115 25.259 0.044 0.041

HIP 92549 25.67 0.187 23.697 0.042 0.037

HIP 93747 25.46 0.055 26.449 0.088 0.084

HIP 93858 16.95 0.437 23.018 0.094 0.082

HIP 93966 21.43 0.285 23.049 0.056 0.049

HIP 94083 27.3 0.159 24.403 0.044 0.039

HIP 94376 29.87 0.06 25.889 0.043 0.04

HIP 95149 18.83 0.293 22.147 0.045 0.039

HIP 95319 15.76 0.465 22.822 0.097 0.085

HIP 95447 15.18 0.537 24.662 0.217 0.196

HIP 95501 15.53 0.158 26.357 0.269 0.256

HIP 95995 A 16.96 0.367 22.278 0.061 0.053

HIP 96100 5.75 0.532 25.374 0.576 0.531

HIP 96258 25.11 0.198 23.568 0.043 0.038

HIP 96441 18.34 0.281 25.424 0.186 0.172

HIP 96895 21.08 0.315 23.431 0.07 0.062

HIP 96901 21.21 0.284 22.947 0.054 0.047

HIP 97649 5.12 0.061 28.669 0.689 0.673

HIP 97650 27.87 0.135 23.712 0.03 0.027

HIP 97675 19.19 0.403 24.679 0.143 0.129

HIP 97944 14.05 0.552 23.011 0.128 0.113

HIP 98036 13.7 0.257 25.942 0.308 0.289

HIP 98066 25.99 0.196 24.561 0.057 0.051

HIP 98470 21.25 0.322 23.721 0.078 0.069

HIP 98698 12.86 0.225 20.606 0.029 0.024

HIP 98767 15.86 0.539 23.947 0.159 0.142

HIP 98792 15.77 0.222 21.051 0.029 0.025

HIP 98819 17.77 0.453 23.791 0.122 0.108

HIP 98921 18.79 0.371 23.036 0.076 0.067

HIP 98959 17.73 0.425 23.298 0.098 0.086

HIP 99031 23.95 0.242 23.966 0.061 0.054

HIP 99137 23.43 0.197 22.533 0.031 0.027

HIP 99240 6.11 0.299 26.312 0.598 0.564

HIP 99461 6.01 0.782 24.537 0.499 0.452

Keithly, Savransky, and Spohn: Integration time adjusted completeness

J. Astron. Telesc. Instrum. Syst. 037002-50 Jul–Sep 2021 • Vol. 7(3)



Table 2 (Continued).

Name Dist (pc) Int. time (day) Δmag Cbrown C IAC

HIP 99572 27.7 0.118 22.892 0.02 0.018

HIP 99701 6.2 0.402 20.137 0.052 0.044

HIP 99825 8.91 0.825 23.923 0.323 0.287

HIP 100017 17.57 0.453 23.653 0.117 0.104

HIP 100511 26.25 0.131 22.509 0.02 0.018

HIP 100925 19.52 0.216 21.657 0.029 0.025

HIP 101345 24.4 0.212 23.393 0.044 0.039

HIP 101612 27.79 0.153 24.797 0.046 0.042

HIP 101983 24.66 0.232 24.425 0.066 0.059

HIP 101997 14.38 0.499 22.622 0.101 0.088

HIP 102040 20.95 0.242 22.254 0.037 0.032

HIP 102333 24.17 0.195 25.258 0.09 0.083

HIP 102422 14.27 0.201 26.191 0.299 0.282

HIP 102485 14.68 0.297 25.672 0.275 0.256

HIP 102488 22.29 0.068 26.555 0.133 0.128

HIP 103389 21.97 0.291 23.579 0.067 0.059

HIP 103458 22.14 0.176 21.863 0.024 0.02

HIP 103673 28.01 0.12 23.163 0.022 0.02

HIP 104214 3.5 0.778 24.704 0.657 0.599

HIP 104217 3.5 0.966 23.852 0.562 0.503

HIP 104239 A 17.57 0.13 20.584 0.016 0.014

HIP 105090 3.95 1.019 22.792 0.39 0.341

HIP 105199 15.04 0.077 27.164 0.291 0.282

HIP 105858 9.26 0.361 25.804 0.445 0.415

HIP 106440 4.95 0.288 19.245 0.031 0.026

HIP 106559 27.1 0.14 23.208 0.027 0.023

HIP 106696 14.62 0.283 21.212 0.037 0.032

HIP 107089 21.2 0.174 25.728 0.142 0.132

HIP 107350 17.89 0.43 23.466 0.104 0.092

HIP 107556 11.87 0.142 26.818 0.38 0.364

HIP 107649 15.99 0.539 24.202 0.173 0.154

HIP 107975 27.45 0.143 23.663 0.031 0.028

HIP 108036 26.62 0.173 24.239 0.046 0.041

HIP 108870 3.62 0.625 25.183 0.688 0.633
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Table 2 (Continued).

Name Dist (pc) Int. time (day) Δmag Cbrown C IAC

HIP 109176 11.73 0.252 26.12 0.371 0.349

HIP 109378 21.56 0.164 21.628 0.022 0.018

HIP 109422 18.28 0.399 24.905 0.168 0.153

HIP 109427 28.3 0.071 25.894 0.055 0.052

HIP 109821 22.05 0.24 22.624 0.04 0.035

HIP 110649 20.56 0.369 24.363 0.11 0.098

HIP 111449 22.68 0.294 24.314 0.083 0.074

HIP 112117 23.64 0.22 23.07 0.042 0.037

HIP 112447 16.3 0.286 25.586 0.233 0.217

HIP 112935 27.28 0.155 24.059 0.038 0.034

HIP 113137 26.75 0.131 22.721 0.021 0.019

HIP 113283 7.61 0.849 22.821 0.242 0.211

HIP 113357 15.61 0.554 24.306 0.186 0.167

HIP 113368 7.7 0.065 28.225 0.554 0.54

HIP 113421 19.86 0.31 22.688 0.055 0.048

HIP 113576 8.22 0.273 20.018 0.033 0.028

HIP 113860 29.42 0.109 24.09 0.027 0.024

HIP 114046 3.28 1.0 21.937 0.308 0.265

HIP 114430 27.65 0.123 23.011 0.022 0.019

HIP 114570 24.59 0.192 25.221 0.085 0.077

HIP 114622 6.54 0.811 24.377 0.46 0.415

HIP 114924 20.5 0.362 24.042 0.098 0.087

HIP 114948 20.54 0.356 23.94 0.094 0.083

HIP 114996 23.06 0.154 25.676 0.112 0.104

HIP 116085 16.93 0.296 21.711 0.041 0.036

HIP 116584 26.41 0.133 25.433 0.068 0.063

HIP 116727 14.1 0.186 26.3 0.305 0.29

HIP 116745 11.42 0.44 21.427 0.065 0.056

HIP 116771 13.71 0.317 25.66 0.3 0.279

HIP 120005 6.11 0.543 20.704 0.083 0.07
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