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Abstract. Standard algorithms for phase unwrapping often fail for interferometric quantitative phase imaging
(QPI) of biological samples due to the variable morphology of these samples and the requirement to image
at low light intensities to avoid phototoxicity. We describe a new algorithm combining random walk-based
image segmentation with linear discriminant analysis (LDA)-based feature detection, using assumptions about
the morphology of biological samples to account for phase ambiguities when standard methods have failed. We
present three versions of our method: first, a method for LDA image segmentation based on a manually compiled
training dataset; second, a method using a randomwalker (RW) algorithm informed by the assumed properties of
a biological phase image; and third, an algorithm which combines LDA-based edge detection with an efficient
RW algorithm. We show that the combination of LDA plus the RW algorithm gives the best overall performance
with little speed penalty compared to LDA alone, and that this algorithm can be further optimized using a genetic
algorithm to yield superior performance for phase unwrapping of QPI data from biological samples. © The Authors.
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1 Introduction
There is increasing interest in the application of quantitative
phase imaging (QPI) as a high-sensitivity method to study the
structural and dynamic behavior of biological samples.1,2 These
samples typically consist of single cells or cell clusters, which
are imaged over time to track changes in dry mass3 or refractive
index,4,5 for example, to monitor cellular growth6–8 and growth
regulation,9 quantify intercellular interactions10 or subcellular
features,11 and measure mechanical properties of cells, such
as red blood cells.12–14 In any interferometric QPI dataset, the
phase ambiguities inherent to QPI have to be removed to achieve
continuous phase distributions and precise, reproducible mea-
surements of these samples.15

Basic phase unwrapping of large jump discontinuities are
easily handled by a variety of algorithms, including the Flynn
or widely used Goldstein method.15 These algorithms can be
classified into three broad groups: path-following algorithms,
region algorithms, and global algorithms.16 In path-following
algorithms, phase integration is performed in a step sequence.
Goldstein’s branch cut algorithm is an example of a path-
dependent path-following algorithm that identifies inconsistency-

causing structures called residues and connects and balances
them.17 Region algorithms divide the data field into separate
regions, which are individually processed. The regions are
then unwrapped with respect to each other to process the entire
image.18 Flynn’s mask cut algorithm is an example of a region
algorithm.15,19 Global algorithms formulate phase unwrapping
in terms of minimization of a global function.15,20 More recent
alternative algorithms have built on or modified these classic
methods.18,21

However, imaging biological samples presents a unique chal-
lenge because of the varying morphology of cells during cell
culture, combined with the fact that the optical path length
through cells relative to background levels routinely exceeds
2π rad. Due to the varying morphology of cells and the desire
for high throughput measurements, these large phase differences
can occasionally occur over distances spanning a single pixel in
the resulting image. This is especially problematic for non-
adherent mammalian cells or for adherent mammalian cells dur-
ing mitosis, which typically have a large jump in phase from the
edge of the cell to the surrounding background. These edges are
liable to be phase unwrapped incorrectly by standard algorithms
[Fig. 1(a)]. Additionally, to avoid phototoxicity when imaging live
cells,22 a low light intensity is preferable, which results in poor
phase quality and high relative noise levels,23 further complicating
phase unwrapping.*Address all correspondence to: Thomas A. Zangle, E-mail: tzangle@ucla.edu
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There are a large variety of methods that have been proposed
to address this problem for two-dimensional images of biologi-
cal samples. Some methods bypass the unwrapping process
itself through the modification of instrumentation, including
heterodyne mixing,24 optical path locking,25 and the use of
the transport of intensity equation.26,27 However, for many of
the available QPI methods, phase unwrapping remains a general
problem of interest. There are several alternative algorithms that
modify the classic phase unwrapping methods or use specially
developed software to improve the speed and throughput of phase
unwrapping for QPI of biological specimens.18,28 However,
these methods are largely based on the standard algorithms
and may not adequately address all phase unwrapping problems
faced by these methods.

Here, we present a new phase unwrapping method for cor-
recting phase ambiguities in QPI of biological samples where
the standard algorithms have failed. This approach, a hybrid ran-
dom walk-linear discriminant (HRL) method, is intended to be
applied to phase-shifting interferometry (PSI) data after first
applying the Goldstein algorithm.15,17 The HRL approach com-
bines two techniques: linear discriminant analysis (LDA), a
widely used scheme for dimension reduction and feature extrac-
tion, and a random walker (RW) segmentation algorithm. LDA
projects data onto a lower dimensional vector space such that the
ratio of between-class difference to the within-class difference is
maximized, achieving maximum discrimination between
classes.29 In this application, it is used to emphasize the edges
of phase-wrapped regions. In RW image segmentation, a seed
mask specifies locations in the image with a predetermined

label. Unseeded pixels are labeled using the probabilities that
a RW agent starting at that location terminates at each label
in the seed mask. The random walk can be biased (for example,
to avoid sharp intensity gradients), and the final segmentation is
derived by determining the most probable seed destination for
each pixel.30 Here, the LDA class probability image is used as
the weighting function for the RW algorithm to efficiently seg-
ment phase-wrapped regions.

The HRL algorithm combines the advantages of these two
techniques based on two assumptions about QPI data from bio-
logical samples: (1) cell optical path length is never less than
zero (ncell > nmedia) and (2) uncorrected regions are predomi-
nantly 2π rad lower than the correct level, as is commonly
observed in our QPI datasets of biological samples. This second
assumption means that the phase unwrapping problem is
reduced to a matter of classifying pixels as belonging to properly
phase unwrapped segments (“good” regions) or improperly
unwrapped segments (“bad” regions) and applying a one-wave-
length correction to pixels in the “bad” regions. To achieve this,
manually phase-unwrapped training data is used to train an LDA
classifier to generate an image that highlights the edges of
phase-wrapped regions. Then, a RW segmentation method is
applied to this image, starting at known-good or known-bad
points based on the assumption that the cell optical path length
is never less than zero. This segmentation approach is highly
efficient because the gradient of the LDA image is large at
the boundaries of the phase-wrapped regions, and the RW
method is, therefore, strongly biased to not cross these bounda-
ries. As a final step, a genetic algorithm (GA) is applied to

Fig. 1 Linear discriminant analysis (LDA)-based segmentation for phase-unwrapping of biological sam-
ple quantitative phase imaging data. (a–e) selected inputs to LDA method (a) raw (unwrapped) phase
data, (b) intensity image, (c) phase modulation magnitude, (d) natural logarithm of the phase derivative
variance, (e) Laplace-filtered phase image, and (f) predicted edges from LDA composite image com-
pared to manual phase unwrapping results. In (f), green shows the manually selected mask edge,
red is the LDA detected edge, and yellow shows overlap of both edges. (g) True positive rate versus
false positive rate for LDA-based image segmentation during successive optimizations by a genetic algo-
rithm (GA). The ratio of false positives to true positives generally decreases with increased number of
generations with some variation inherent to genetic optimization algorithms.
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fine-tune the LDA coefficients. The result is phase unwrapping
that is highly accurate relative to manually unwrapped results
[area under curve ðAUCÞ ¼ 0.999] for effective phase unwrap-
ping of biological phase interferometry data.

2 Methods

2.1 Quantitative Phase Imaging Data

Phase, intensity, and phase modulation magnitude31 data were
acquired on a Contour GT-X8 (Bruker) interference microscope
in PSI mode. The Bruker system was modified to accommodate
a custom live cell incubation system and a 20×, 0.28 numerical
aperture microscope objective with attached Michelson interfer-
ometer. The Michelson interferometer consisted of a beam split-
ter, reference mirror, and compensation reference chamber filled
with deionized water. Illumination was provided by a 530-nm
fiber-coupled LED (Thorlabs). Mouse L-cell fibroblasts and
M202 human melanoma cells32 were cultured as described pre-
viously7,10,33 in phenol-red free Dulbecco’s modified Eagle’s
medium supplemented with 10% fetal bovine serum (Omega
Scientific), 1× nonessential amino acid solution (Invitrogen),
2 mM glutamine (Invitrogen) and antibiotics.

Raw interferograms were unwrapped using the Goldstein
method,17 which unwraps images by isolating and avoiding
local-error-causing residues,15 prior to the manual or automated
correction methods described here.

2.2 Manual Phase Unwrapping

Manual phase unwrapping was performed on a set of 50 phase
images of mouse L-cells and 50 phase images of M202
melanoma cells to serve as training datasets and 50 additional
images of each cell type as test sets for evaluation of our final
automatic phase unwrapping method. Regions to be corrected
were selected by looking for cellular areas with sharp internal
edges, indicating a poorly placed branch cut in the Goldstein-
unwrapping process, or regions with phase shifts below the
background level, which would indicate nonphysical refractive
indices less than that of the cell culture media. A custom graphi-
cal user interface was written in MATLAB (Mathworks) with
three main steps: (1) select an integer multiple of 2π rad correc-
tion to be applied, (2) select image regions to be corrected using
the imfreehand function in the image processing toolbox, and
(3) manually correct the phase unwrapping result at individual
points. This process was repeated until all phase-wrapped
regions were corrected. Results were then saved as a mask file
containing the integer-wavelength corrections, as well as a cor-
rected phase map.

2.3 Linear Discriminant Analysis

LDA was performed pixelwise based on 17 parameters: (1) the
raw phase data after Goldstein unwrapping, (2) the estimated
image background constructed by masking the location of any
apparent cells, then fitting a plane to the remaining background
regions to remove any tilt, (3) a Prewitt filtered image, (4) a
Sobel filtered image; (5) a Laplacian filtered image with kernel
[0 −1 0; −1 4 −1; 0 −1 0], (6) a modified Laplacian filtered
image with kernel [−0.5 −1 −0.5; −1 8 −1; −0.5 −1 −0.5],
(7) a large Laplacian filtered image with kernel [−10 −5 −2
−1 −2 −5 −10; −5 0 3 4 3 0 −5; −2 3 6 7 6 3 −2; −1 4 7
8 7 4 −1; −2 3 6 7 6 3 −2; −5 0 3 4 3 0 −5; −10 −5 −2
−1 −2 −5 −10], (8) a Laplacian of Gaussian filtered image,34

(9) a 3 × 3 mean filtered image, (10) a 3 × 3 median filtered
image, (11) the phase derivative variance (PDV) of the
image, defined as the variance of the partial derivative of the
phase in a four-connected neighborhood at each pixel and com-
puted using the method described in the phase quality guided
path following method15 and implemented in MATLAB by
Spottiswoode,35 (12) the natural logarithm of the PDV image to
provide data with comparable dynamic range to the other mea-
sures, (13) the phase modulation magnitude, or amplitude of the
intensity fluctuations in the phase-shifted fringes, computed by
the Bruker optical profilometer,31 (14) the natural logarithm of
the phase modulation image, (15) the Laplacian filtered phase
modulation image, (16) the intensity image, and (17) the
Laplacian filtered intensity image.

LDA class probabilities were calculated using the Fisher lin-
ear discriminant36 with prior probabilities equal to the observed
sample probabilities and all code implemented in MATLAB.37

The LDA-only phase unwrapping algorithm used LDA class
probabilities as the input to a marker-based watershed algo-
rithm34 to define phase-wrapped image regions.

2.4 Random Walker Algorithm

The RW algorithms assign each pixel a probability that a RW
agent released from that pixel will reach a predetermined
pixel of a given label (e.g., known-good or known-bad). Pixel
labels were assigned by first subtracting the background tilt
from raw phase images. Then pixels were assigned a “bad” label
if they were more than a threshold value below the background
level of zero, or if they were on the low side of an edge with a
first derivative greater than a jump threshold (computed in all
four cardinal directions by first-order discretization). Pixels
were assigned a “good” label if they were smaller than the
mean phase value in their 100 × 100 pixel neighborhood or if
they were on the high side of an edge with a first derivative
greater than the jump threshold.

The faster random walk method was based on the algorithm
presented and implemented in MATLAB by Grady.30 Briefly,
this method bypasses a Monte Carlo-type simulation of individ-
ual RW agents by solving for a solution to the Dirichlet prob-
lem.30,38,39 Additionally, this method can be biased to obtain
higher quality segmentation by adjusting the probability that a
RWagent will move in a given direction based on the difference
in image intensity between the two corresponding pixels. To
bias this method for more accurate segmentation, we tested
the phase image, the LDA class probability image, and the natu-
ral logarithm of the LDA class probability image, with the natu-
ral logarithm of the LDA class probability image giving superior
results.

2.5 Genetic Algorithm

LDA images define the probability that a given pixel lies on the
edge of a phase-wrapped region, but does not compute the opti-
mal image statistic weighting required for follow-on processing
to turn those probability images into correctly phase-unwrapped
data. To optimize LDA coefficients for phase unwrapping by
watershed transform or the RW algorithm, we searched for
an optimal set of coefficients to the LDA terms using the GA
from the global optimization toolbox in MATLAB. The GA
is an iterative process that repeatedly modifies a population
of individual solutions. Random individuals are selected at
each step and used to produce the next iteration. Over successive
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generations, the optimal solution is reached [Fig. 1(g)]. We used
a genetic optimization with a tolerance of 1 × 10−10, a migration
fraction of 0.3 and an initial range of −10 to 10 for all LDA term
coefficients. For RWmethods, we also modified the background
threshold parameter with an initial range of 0.06 to 1.57 rad.

3 Results

3.1 Linear Discriminant Analysis Segmentation

We manually unwrapped a randomly chosen set of 50 images of
mouse L-cells and a set of 50 images of M202 human melanoma
cells, which contained phase unwrapping errors after phase
unwrapping via the Goldstein method. In the mouse L-cell
image set, 1.2% of pixels in this set were phase wrapped, and
the vast majority of these errors (99.7%) were 2π rad lower than
the expected phase value, with the remaining 0.3% of phase
errors being 2π rad too high. We chose to focus solely on
the 99.7% of phase errors which were 2π rad below the expected
value. Images of M202 melanoma cells contained far fewer
phase unwrapping errors after phase unwrapping via the
Goldstein method, with only 0.06% of pixels being phase
wrapped, and >99.9% being 2π rad below the expected value.
This makes the phase unwrapping problem for these images a
two-class classification problem, which is readily amenable to
the use of statistical classifier techniques.36

We first segmented these images using LDA based on the
manual classification results and 17 pixelwise statistics for

each image, 12 based on the raw phase image itself, 3 based
on the phase quality magnitude image, and 2 based on the inten-
sity image [Figs. 1(a)–1(e)]. Most image statistics are based on
linear image filters chosen to highlight the edges of cells and
phase-wrapped regions in the raw phase image. We used the
natural logarithm of the PDV and phase quality magnitude to
provide an image that more closely matched the dynamic range
of the others in the set.

We performed LDA to classify pixels into two classes:
(1) pixels lying on the edge of phase-wrapped regions and
(2) correctly unwrapped pixels and pixels in the interior of
phase-wrapped regions. This gave a superior performance rela-
tive to LDA for separation of phase-wrapped interiors from cor-
rectly unwrapped regions, likely due to the presence of strong
features at the edges of phase wrapped regions and because the
interiors of phase-wrapped regions resemble correctly unwrapped
pixels. LDA provides a set of coefficients to the 17 input images
that maximizes the ratio of between-class difference to thewithin-
class difference.29 The final LDA image resulting from this analy-
sis is, therefore, a linear combination of all 17 input images. We
observed a fair agreement between manually marked edges and
those with an LDA-determined probability of being in the edge
class, pedge, of >0.5 [Fig. 1(f)].

Phase unwrapping, however, requires determination of the
interior, wrapped pixels as well as the edges, and most LDA-
determined edges did not define a continuous boundary. To
complete the LDA boundaries, we used a marked watershed

Fig. 2 Random walker (RW)-based image segmentation for phase unwrapping. (a and b) marked phase
image of mouse fibroblasts with sample unbiased RW agent paths. Green shows automatically deter-
mined known-good regions (background or falling edge), red shows automatically determined known-
bad regions (phase level < background threshold, or rising edge). Green line shows a RW path origi-
nating from the center, gray marked pixel which terminates at a known-good pixel. Red lines show paths
terminating as a known-bad pixel. Based on the five shown paths, the pixel in question would have a
probability of 4∕5 of belonging to the “bad” (phase-wrapped) group. (c) Algorithm performance as a func-
tion of background threshold with jump threshold fixed to π rad [based on operating point from panel (d)],
used to determine when a pixel is too far below the background level to represent data from a biological
sample. (d) Algorithm performance as a function of jump threshold with background threshold fixed to
0.16 rad [based on operating point from panel (c)], used to determine when a given edge is rising or
falling.
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algorithm to segment the LDA class probability images. We
performed genetic optimization of the input LDA coefficients,
which improved the performance moderately and defines
the receiver operator characteristic (ROC) with AUC ¼ 0.923
[Fig. 1(g)].

3.2 Random Walker Segmentation

For most cells imaged in aqueous media ncell > nmedia (for
example, Ref. 40) and so the phase shift relative to the back-
ground will be greater than zero. This assumption, plus the
observation that, in our manually corrected datasets, most
residual phase unwrapping errors involve phase being one wave-
length (2π rad) too low, enable us to define boundaries of good
and bad regions in the partially wrapped phase data [Figs. 2(a)
and 2(b)]. We used a method based on simulating a random walk
to use these assumptions to automatically mask phase-wrapped
regions.

Two methods were used to perform the random walk. In the
first, a RWagent method, 20 RWagents were released from each
pixel with initially unknown status. Each agent then performed a
random walk until it hit a known-good or known-bad pixel
[Figs. 2(a) and 2(b)]. The status of the initially unknown
pixel was determined by the ratio of “bad” paths to total
paths, with a threshold of 0.3 to 0.9 typically used to phase-
unwrap images. In the five example paths shown in Figs. 2(a)
and 2(b), four out of five RW agent paths terminate at a known-
bad pixel, thus the probability that the start pixel is phase
wrapped and this pixel would be classified as “bad” is
4∕5 ¼ 0.8. This method, however, is slow, typically requiring
40 to 90 s∕image with 20 RW agents on a single 2.4 GHz
Intel Xeon core and potentially inaccurate as it relies on a lim-
ited number of random samples.

A faster and more accurate method is to use the random
walk image segmentation method presented by Grady.30 This
method uses the fact that the RW problem is exactly the solution
to the Dirichlet problem with boundary conditions at the initially
known pixels to solve the RW problem with a single matrix
equation solution. This method can also be modified with
weights at each pixel based on the intensity of an input image
to effectively separate regions with very different intensity val-
ues.30 Including preclassification of known-good and known-
bad regions, this approach requires ∼1.5 s∕image on a single
2.4-GHz Intel Xeon core relative to 40 to 90 s∕image with the
RW agent approach.

The main controlling parameter for RW image segmentation
is the threshold for how far below the background a pixel has to
be to be considered a “bad” pixel [Fig. 2(c)]. If this value is set
too low, the false positive rate increases rapidly. Best results
(minimized misclassification errors) were achieved with a back-
ground threshold of 0.16 rad. The other parameter is the jump
threshold, which determines howmuch of a jump from one pixel
to the next is considered a phase unwrapping artifact [Fig. 2(d)].
This value was set to π rad, but moderately larger or smaller
values do not have a large effect on the number of false positive
errors.

Fig. 3 Combination of LDA and RW methods. (a) Phase image.
(b) LDA image. (c) LDA image with superimposed, automatically
determined known-good (green) and known-bad (red) regions.

Fig. 4 Receiver-operator characteristics for phase unwrapping meth-
ods. The application of a GA to optimize the hybrid RWþ LDAmethod
gives the best results, with an AUC of 0.999. AUCGAþ LDA ¼ 0.923,
RWþphase¼0.945, unbiased RW ¼ 0.947, RWþLDAðHRLÞ¼0.984,
GA of RWþ LDA ðHRLÞ ¼ 0.999. The chosen operating point, which
minimizes total error rate, is shown in black.
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3.3 Linear Discriminant Analysis + Random Walker

The Grady RW algorithm can be “biased” to follow natural
edges in an image, with edge weights based on a Gaussian
weighting function.30 We tested three inputs to the RW weight-
ing function: (1) no input (unbiased random walk), (2) the raw
phase image, and (3) the LDA class probability image. The
edges of phase wrapped regions in the LDA image are high-
lighted much more clearly than in the raw phase image
(Fig. 3), indicating that LDA class probabilities may serve as
effective weights for image segmentation. We find that the
raw phase image actually results in worse segmentation than
the unbiased RW algorithm (Fig. 4) with an AUC of 0.945
for the ROC when the background threshold is varied, compared
to 0.947 for the unbiased RW. As expected, the use of the LDA
class probability image (Fig. 3) to bias the RWalgorithm results
in a significant improvement, with an AUC of 0.984.

The final refinement performed was to run a genetic optimi-
zation on the LDA coefficients and background threshold for the

HRL method. This resulted in the best overall AUC (0.999) for
the training data set, achieving a very high true positive rate with
a very low false positive rate. The optimal operating point based
on these results, which minimizes the total misclassification
error, achieves a true positive rate of 0.965, a false positive
rate of 0.006, and an overall misclassification rate of 0.6%
on the training dataset.

3.4 Final Results

We applied the optimized HRL method to a set of 50 manually
unwrapped test images separate from those used for classifier
training (Fig. 5). The results show good overall correction of
phase errors [Figs. 5(a) and 5(b)]. The RW algorithm returns
the probability that a given pixel is phase wrapped [or, as in
Fig. 5(c) the complement of this, the probability that a pixel
is not phase wrapped]. This conforms well with the expected
manual results with a threshold probability of 0.5. Results for
all images in the manually corrected training and test datasets

Fig. 5 Final results of hybrid random walk-linear (HRL) algorithm. (a) Sample original phase image and
(b) final HRL output image. (c) Pixelwise probability, p, of an LDA-biased RW agent reaching a known-
good pixel (i.e., probability that a given pixel is not phase-wrapped). (d and e) sample original and final
HRL output images showing low false positive rate when there are few errors in the input image. Inset in
(e) shows the same pixelwise probability, p, presented in panel (c). (f) Error rates for all 50 individual
images in the manually phase-unwrapped training dataset used to train the classifier and for 50 individual
images used to test the classifier performance. GA results for aggregate of all training data set images are
shown for reference. Final overall results for both test and training datasets are each marked with an x .
Scale in (b), (d), and (e) is the same as shown in (a).
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show good overall performance with the optimally chosen
parameters from the GA, including background threshold ¼
0.16 rad. The test data results compare well with the results on
the training dataset, with a true positive rate equal to 0.956, a
false positive rate equal to 0.005, and an overall misclassifica-
tion rate of 0.6%.

Finally, we applied the HRL method to a separate data set
consisting of QPI data of M202 human melanoma cells. As
shown in Fig. 6, performance with this cell type was comparable
to performance on the L-cell fibroblast dataset, with AUC ¼
0.998 after genetic optimization on a training data set of 50
images. Performance on the test dataset of an additional 50
images was also high, with a true positive rate of 0.947, a false
positive rate of 0.014, and an overall misclassification rate
of 1.4%.

4 Discussion
We have demonstrated that the HRL method after genetic opti-
mization has the best phase unwrapping performance with a
high final AUC of 0.999 (Fig. 4). The overall low error rate
was reproduced well on a second test data set (Fig. 5) and
on a second cell type (Fig. 6), showing that the HRL algorithm
is a consistent, reliable method for phase unwrapping of biologi-
cal QPI data. This method is primarily useful for biological sam-
ples on flat substrates, but the general approach would be
applicable for any phase sample where the standard algorithms
have failed and pixels can be automatically labeled based on a
set of image features. Future work will examine how the HRL
algorithm could be made more efficient by utilizing other clas-
sifiers and/or reducing the statistic set used for the LDA clas-
sifier to further reduce the computational time.

The general procedure of the HRL method can be adapted to
phase unwrapping of other datasets. The general method is to
(1) choose image statistics to use in the LDA, giving preference
to those that will emphasize the edges of phase-wrapped regions
(e.g., phase quality,41 fringe modulation,31 or edge detection fil-
ters34), (2) perform manual phase unwrapping for use as a train-
ing dataset, (3) perform LDA to separate edges of marked
regions from all other pixels, (4) use image features as pre-
marked inputs to RW segmentation,30 biased by the weights out-
put by LDA, and (5) as an optional last step, tune LDA
coefficients, for example, using a genetic search algorithm. We
also note that different components of the HRL algorithm
described here can be repurposed for other data processing
tasks. For example, the combination of LDA plus a biased ran-
dom walk would be an effective general method to segment
images automatically, for example, to segment cells from back-
ground as an alternative to the widely used watershed algo-
rithm.34 In this case, the LDA probability image would be used
to combine multiple image features to enhance the precision of
finding object or cell edges, eliminating the necessity for time-
consuming manual image segmentation. As in the present study,
a GA could then be used to further refine the classifier perfor-
mance for the system of interest. Therefore, we expect that the
HRL approach presented here is generally applicable to a variety
of image classification problems, beyond phase unwrapping of
biological QPI data.
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