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Abstract. Obtaining accurate quantitative information on the concentration and distribution of fluorescent mark-
ers lying at a depth below the surface of optically turbid media, such as tissue, is a significant challenge. Here, we
introduce a fluorescence reconstruction technique based on a diffusion light transport model that can be used
during surgery, including guiding resection of brain tumors, for depth-resolved quantitative imaging of near-infra-
red fluorescent markers. Hyperspectral fluorescence images are used to compute a topographic map of the
fluorophore distribution, which yields structural and optical constraints for a three-dimensional subsequent
hyperspectral diffuse fluorescence reconstruction algorithm. Using the model fluorophore Alexa Fluor 647
and brain-like tissue phantoms, the technique yielded estimates of fluorophore concentration within �25%
of the true value to depths of 5 to 9 mm, depending on the concentration. The approach is practical for integration
into a neurosurgical fluorescence microscope and has potential to further extend fluorescence-guided resection
using objective and quantified metrics of the presence of residual tumor tissue. © 2015 Society of Photo-Optical

Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.20.3.036014]
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1 Introduction
Modalities such as magnetic resonance imaging (MRI) and
x-ray computed tomography (CT) enable tumor detection and
surgical planning for patients with brain cancer, so that the sur-
geon then navigates through a combination of visual cues from
the surgical field and these coregistered images. However,
residual tumor frequently remains following surgery, and reduc-
ing the volume of this unresected tissue has a significant impact
on progression-free and overall survival of glioma patients.1–4

Various optical imaging and spectroscopy techniques, beyond
the white-light operating microscope, have been developed to
enhance intraoperative guidance by providing increased sensi-
tivity and specificity to the presence of malignant tissue in
the surgical field.5–9 Fluorescence-guided surgery using proto-
porphyrin IX (PpIX) that is endogenously synthesized in
tumor cells following systemic (e.g., oral) administration of
5-aminolevulinic acid (5-ALA) has demonstrated significant
survival benefits for glioblastoma patients.10–14 In previous
work, we have shown that fluorescence and reflectance point
spectroscopy can be used for quantitative fluorescence (qF)
measurements, where the tissue absorption and scattering spec-
tra are derived from the diffuse reflectance spectrum and then
used to correct the measured fluorescence spectrum for the
effects of wavelength-dependent attenuation of the excitation
and emission light.14,15 The efficacy of this approach in

increasing the sensitivity and specificity of residual tumor detec-
tion compared with qualitative visualization of the fluorescence
has been reported for several different types of intracranial
tumors,13,15 and multicenter clinical trials are currently under-
way. The accuracy for quantifying the local fluorophore concen-
tration in tissue is �10% for PpIX levels down to ∼10 ng∕ml.
Subsequently, we have reported initial studies extending this
concept to wide-field quantitative fluorescence imaging (qFI),
where the fluorophore concentration is estimated at every
point (pixel) on the tissue surface in the surgical field-of-
view,14,16,17 and have shown that it enables imaging of clinically
relevant fluorescence that is below the detection threshold of
standard visually evaluated fluorescence imaging through the
neurosurgical microscope.

The availability of other tumor-specific fluorescent contrast
agents for human use has been a limitation in general for fluo-
rescence-guided surgery, but new near-infrared (NIR) probes are
being developed by several groups for this purpose, so that
extending qFI into the NIR domain is likely to be of value.18,19

The use of NIR light is advantageous because it can penetrate up
to several centimeters into biological tissue, allowing detection
of molecular targets lying below the immediate surgical resec-
tion surface.

As indicated above, quantitative fluorescence-guided surgery
is confounded by the interplay of heterogeneous tissue attenu-
ation with the variable depths and concentrations of potential
fluorescent sources.20 Thus, for example, it is challenging to

*Address all correspondence to: Frederic Leblond, E-mail: frederic.leblond@
polymtl.ca 1083-3668/2015/$25.00 © 2015 SPIE

Journal of Biomedical Optics 036014-1 March 2015 • Vol. 20(3)

Journal of Biomedical Optics 20(3), 036014 (March 2015)

http://dx.doi.org/10.1117/1.JBO.20.3.036014
http://dx.doi.org/10.1117/1.JBO.20.3.036014
http://dx.doi.org/10.1117/1.JBO.20.3.036014
http://dx.doi.org/10.1117/1.JBO.20.3.036014
http://dx.doi.org/10.1117/1.JBO.20.3.036014
http://dx.doi.org/10.1117/1.JBO.20.3.036014
mailto:frederic.leblond@polymtl.ca
mailto:frederic.leblond@polymtl.ca
mailto:frederic.leblond@polymtl.ca
mailto:frederic.leblond@polymtl.ca


distinguish between a high concentration of fluorophore at
depth and a low concentration near the tissue surface. In general,
diffuse optical tomographic methods can be combined with
structural information from preoperative imaging modalities
(such as CT, MRI, or ultrasound) in order to improve the per-
formance (optical contrast, spatial localization) of subsurface
reconstruction.21–24 However, for most surgical guidance appli-
cations, tomography techniques have to be implemented in an
epi-illumination geometry rather than using transillumination of
the tissue volume.23,25–27 Hence, the fluorescence images are
heavily surface-weighted.28 Fluorescence molecular tomogra-
phy (FMT) with an array of light source-detector pairs that sam-
ple multiple photon paths can be used to improve subsurface
quantification,28,29 in some cases exploiting photon time-of-
flight acquisition to increase the accuracy of the recovered fluo-
rescence concentration.30–33 However, FMT is not easily imple-
mented into a neurosurgical microscope and is extremely
sensitive to instrumentation alignment. Studies have demon-
strated the inability of fluorescence tomography to be quantita-
tive at depth due to the effects of fluorescence depth sensitivity
and fluorophore concentration.34,35 Kepshire et al. investigated
the use of FMT for subsurface fluorescence imaging, with errors
>50% in recovered fluorescence concentration for depths
>4 mm, even for higher fluorophore concentrations.36 A need
exists for depth-resolved quantitative fluorescence imaging that
can be easily integrated into the established neurosurgical envi-
ronment. The ability to both localize and quantify residual cancer
beneath the immediate surface of the surgical cavity could reduce
the volume of tumor remaining after surgery and thus, improve
intermediate and potentially the long-term survival.

To address this clinical need, we report here a technique for
depth-resolved quantitative reconstruction of NIR fluorescent
markers that is integrated into a commercial neurosurgical
microscope. Quantitative reconstruction at depth uses a novel
two-step algorithm. First, the effective fluorophore depth of
each image pixel is estimated using the ratio of the fluorescence
intensity at two emission wavelengths,17 exploiting the distortion
(redshift) of the detected fluorescence spectrum due to depth-
dependent attenuation of the emitted fluorescent light.13,17

This depth information is then used as a prior spatial constraint
to reduce the ill-posed nature of the inversion procedure of the
second step, in which a three-dimensional (3-D) hyperspectral
fluorescence reconstruction algorithm separates the convolved
effects of fluorophore depth and concentration in order to maxi-
mize the accuracy of the reconstruction.9,37–40 While the appli-
cation presented here is focused on neurosurgery, the algorithm
is broadly applicable to fluorescence-guided resection using
NIR fluorescent markers.

2 Materials and Methods

2.1 Quantitative Fluorescence Image
Reconstruction

2.1.1 Depth estimation using spectral distortion

Separating the fluorophore depth and concentration is critical for
accurate quantitative subsurface fluorescence recovery. It has
been shown that the logarithm of the ratio of fluorescence inten-
sities detected at two different wavelengths,17 Γ, varies approx-
imately linearly with fluorophore depth (with Γ defined as
the ratio of the intensity at the longer wavelength divided by the
intensity at the shorter wavelength). Thus, an estimate of the
effective fluorophore depth, d, at each image pixel is given by17

d ¼ lnðΓÞ − ln
�
Dλ2

Dλ1

�
�

1
δλ2

− 1
δλ1

� ; (1)

where Dλ1 and Dλ2 are the diffusion coefficients at the selected
wavelengths (λ2 > λ1) used for Γ and δλ1 and δλ2 are the corre-
sponding effective penetration depths, given by41

D ¼ 1

3ðμa þ μ 0
sÞ
; (2)

δ ¼
ffiffiffiffiffi
D
μa

s
; (3)

where μa is the absorption coefficient and μ 0
s is the reduced scat-

tering coefficient. These computed d values correspond to an
effective depth which depends on the optical sensitivity and the
true fluorescence distribution. We recently showed in tissue-
simulating phantoms that fluorescence ratio images, combined
with the use of Eq. (1), generated topographic maps of NIR flu-
orophore distribution for depths of up to several millimeters.42

2.1.2 Forming fluorescence topography maps to constrain
image reconstruction

The above fluorophore depth information is used as a spatial
constraint in the 3-D hyperspectral fluorescence reconstruction
algorithm, as described below. However, as recently demon-
strated,42 these effective depth values may be compromised
in regions of low fluorophore signal relative to the tissue auto-
fluorescence background or ambient light leakage. Hence, we
apply a threshold, dt, equal to the mean effective depth across
the field-of-view to obtain the most robust region of positive
fluorescence signal, assuming, of course, that the fluorophore
concentration in tumor is higher than in normal surrounding tis-
sue. This threshold, dt, is the mean of the d values from Eq. (1)
across all image pixels in the field of view. The d values are
estimates of fluorophore depth at each pixel, so the threshold
will depend on the inclusion depth and topography near the tis-
sue surface, allowing us to exclude depth values that do not
correspond to the fluorescence inclusion. Regions in the field-
of-view in which d < dt are not used in constraining the hyper-
spectral fluorescence reconstruction. The remaining depth map
(d ≥ dt) is then referred to as the partial topography of the
tumor, Tpt. This represents the dominant regions of high fluo-
rophore concentration and is considered a first approximation to
the subsurface tumor region. Henceforth in this work, all depth
estimates are made using the wavelength pair λ1 ¼ 670 nm and
λ2 ¼ 720 nm, which were found to provide the most robust
depth estimates using PpIX for a range of bulk optical properties
consistent with brain tissue, as demonstrated in Ref. 42.

2.1.3 Constrained 3-D hyperspectral fluorescence
reconstruction algorithm

A 3-D hyperspectral fluorescence reconstruction method was
then developed that incorporates Tpt as a constraint as follows.
First, a 3-D tetrahedral volume mesh is constructed representing
the interrogated tissue domain. A diffuse-light transport model
is then applied iteratively to find the best fit between the exper-
imental data and the model-based predictions for the hyperspec-
tral fluorescence images. At each iteration, the latter are made
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using numerical solutions to the diffusion equations based on
the finite-element code NIRFAST,43 with the bulk optical prop-
erties (absorption and reduced scattering) fixed and varying the
fluorophore concentration and distribution. Regularization was
used in the optimization problem that comprises a modified
Tikhonov minimization inverse-problem approach.44

Seventeen wavelengths from 650 to 730 nm in 5 nm incre-
ments were used and the experimental bulk tissue optical prop-
erties (absorption and scattering) were used as input parameters
in the diffusion model for optical reconstruction. The partial
topography map, Tpt, served as a spatial prior to construct a
Laplacian regularization matrix L,45 and the weight of the spatial
priors can be varied throughout the tissue volume. Laplacian
regularization uses the structural information about tissue in
order to improve quantification in optical reconstruction. L is
a filter matrix that affects the penalty term in the modified
Tikhonov approach, using the structural information of tissue
as smoothness constraints. The matrix encodes the relationship
between each node in a mesh to all other nodes and uses these
values to smooth predefined tissue structure. The addition of
prior structural information has been shown to improve fluores-
cence concentration recovery in optical tomography.45 Here we
determine the entries of L from an estimated confidence map of
the fluorescence spatial distribution that corresponds to the like-
lihood that a given location (mesh node) actually belongs to the
subsurface inclusion (tumor). Thus, L alters the reconstruction
to use the prior spatial information in order to more accurately
recover the fluorescence distribution by specifying that certain
regions (e.g., the tumor) are more likely to have similar fluores-
cence values.

2.1.4 Computing the elements of the constraint matrix L

The next step consists in making a semiempirical prediction
about whether or not each voxel of the reconstructed volume
belongs to the actual 3-D fluorescent volume. Specifically, for
each node, ni, in the tetrahedral mesh, a confidence value is
defined quantifying the likelihood that the node is within the
fluorescence inclusion, based on the Tpt coverage. Here the
term coverage refers to whether or not the node is located
beneath Tpt, which is determined as follows. First, a ray is gen-
erated from ni to the closest illumination point on the tissue sur-
face (Fig. 1). If the ray intersects Tpt, then the distance, ki,
between ni and Tpt is computed. The ki values are then normal-
ized by the maximum across all nodes, so that k ranges from 0 to
1, and the smallest value is associated with elements closest to
the inner boundaries of the partial surface. If no intersection
occurs, a value of ki ¼ 1 is used; as shown below, this leads
to a zero confidence that the node is within the fluorescent
inclusion.

Near the edges of the depth map (near the boundary of the
fluorescent inclusion), it is difficult to ascertain which areas are
in the true fluorescence region and which are not. Light transport
yields imprecise boundaries, making it challenging to delineate
the inclusion border for spatial priors. In order to account for
this, a valuemi is computed as follows for each node of nonzero
confidence (ki < 1) as a measure of whether it lies near the edge.
For these nodes, their proximity to the edge of Tpt (as viewed
from the tissue surface) is calculated by constructing a sphere S
at the point of intersection between the ray and Tpt (Fig. 1). The
radius of S was chosen to be four times the mesh edge length at

Fig. 1 Conceptual diagram illustrating the use of Tpt to determine the confidence that a particular mesh
node is within the fluorescent inclusion.
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that location, this being large enough to capture many points in
Tpt while being sufficiently small so as to not oversmooth the
estimate of the edge. mi is the number of points within Tpt that
are inside S; a lower number will correspond to nodes closer to
the edge of Tpt. The value for mi is then normalized by its maxi-
mum across all nodes, so that m also ranges from 0 to 1.
Intuitively, this corresponds to how much of the fluorescent
inclusion surface is directly above the node relative to the inci-
dent light. The confidence, ci, that a node, ni, is in the fluores-
cence inclusion is calculated as

ci ¼ mið1 − kiÞ: (4)

This represents the likelihood that a given node is within the
fluorescent inclusion, based on the coverage of the fluorescence
surface, and with a correction term mi to account for positions
near the boundary. The value for ki represents the distance of a
node from the depth map Tpt, normalized to vary from 0 to 1, so
(1 − ki) will correspond to how close the node is to the depth
map. We are, therefore, saying that nodes closer to the depth
map have a higher confidence ci of being in the fluorescent
inclusion. Each regularization matrix element, Li;j, for the
pair of nodes ni and nj, is calculated as in Eq. (5):

Li;j ¼

8>>><
>>>:

i ¼ j∶ 1

ci ¼ cj ¼ 0∶ −g−1b
ci ≠ cj ¼ 0∶ 0

cj ≠ ci ¼ 0∶ 0

ci ≠ 0 ≠ cj∶ −cicjg−1f

; (5)

gb ¼
X
ci¼0

1; (6)

gf ¼
X
ci≠0

1: (7)

Here, gb is the number of nodes with confidence ci of 0, and
gf is the number of nodes with nonzero confidence ci. These
correspond to the expected number of nodes in the nonfluores-
cent region and fluorescent region, respectively. When two
nodes are both in the nonfluorescent region [entry 2 of Eq. (5)],
they are assigned a fixed value in L, resulting in homogenous
smoothing across the nonfluorescent region. When two nodes
are both in the fluorescent region [entry 5 of Eq. (5)], they
are assigned a value based on the confidence for both nodes
being in the fluorescent region. The more the confidence that
both nodes are in the fluorescent region, the greater is the
smoothing that will be applied. Therefore, nodes with high con-
fidence of being in the fluorescent inclusion will be more likely
to have similar fluorescence concentrations recovered. If two
nodes are not in the same region [entries 3 and 4 of Eq. (5)],
they are assigned a value of 0 in L and no smoothing occurs.
The diagonal of L is 1 [entry 1 of Eq. (5)], corresponding to the
relationship between a node and itself. This is the standard
construction for the L matrix, with the fluorescent region incor-
porated as a scaling factor (based on the confidence ci).
Equation (5) implies that, for nodes likely to be in the fluorescent
inclusion, the regularization matrix is scaled by the confidence,
so that during the reconstruction, it will be more likely that the
recovered fluorescence values for such nodes will be similar.
Hence, L reduces the variation in recovered fluorescence

concentration within the fluorescent inclusion by assigning non-
zero values to pairs of nodes that are in the same region.

Without the prior structural information from Tpt, the diffuse
fluorescence reconstruction is ill-posed with multiple equivalent
solutions. Using Tpt reduces the number of equivalent solutions
by favoring those that are the most consistent with the geometry
of the subsurface tumor and the actual concentration of fluores-
cent markers.

2.2 Tests in Tissue-Simulating Phantoms

The hyperspectral fluorescence imaging system [Fig. 2(a)] as
described previously14 is integrated with a commercial neurosur-
gical microscope (Carl Zeiss Meditec) through a custom optical
adapter (TrueTex) to ensure alignment of the fluorescence field-
of-view with the standard microscope image. It comprises a
liquid crystal tunable filter (LCTF; VIS-7-20, Varispec, Cri),
a 650-nm longpass filter (ET650lp, Chroma), a 632-nm laser
diode (7400 series, Intense Co.) for fluorescence excitation,
and a CCD camera (PixelFlyUSB, PCO). The LCTF selects
detection wavelengths from 650 to 720 nm with a 5-nm spectral
resolution. A 635-nm bandpass filter (ZET635/20X EX,
Chroma) and collimator (F220SMA-B, Thorlabs) reduce the
bleed-through of excitation light to the detector.

A liquid phantom comprising 1% Intralipid (Intralipid 20%,
Patterson Veterinary Supply), 0.4 mg∕mL methemoglobin
(H2500, SigmaAldrich), and water was created with optical
properties of approximately μa ¼ 0.001 mm−1 and μ 0

s ¼
1 mm−1 at 700 nm, representative of brain tissue.15 Absorp-
tion was calculated based on literature values for the methemo-
globin extinction coefficient,46 and scattering was estimated
from the concentration of Intralipid.47 The phantom container
was a cylinder 7 cm in diameter and 4 cm in height. The inclu-
sion was also cylindrical (2 cm in diameter and 1 cm in height)
and was filled with the same diffusive medium but with the addi-
tion of Alexa Fluor 647 (AF647) as a fluorophore. The inclusion
was placed in the center of the larger container and diffusive
liquid was added until flush with the top of the inclusion. A
hyperspectral fluorescence image [Fig. 2(b)] was recorded in
this position and referred to as the 0 mm depth. 3.85 mL of
bulk liquid was incrementally added to increase the depth of the
inclusion in 1-mm increments to a maximum depth of 10 mm.
Bulk liquid was added based on the volume needed to increase
the depth by 1-mm increments and was verified by ruler mea-
surements.42 Images were acquired at each step. This was
repeated for a range of AF647 concentrations (0.3125, 0.625,
1.25, 2.5, 5, and 10 μg∕ml). All spectroscopic images were
recorded with a total integration time of 2 s.

3 Results
The accuracy of the reconstruction algorithm was evaluated in
phantom experiments for a range of fluorophore concentrations
and inclusion depths, and Fig. 3 shows examples of the fluores-
cence-ratio images calculated from the phantom images for two
different concentrations as a function of depth.

Figure 4 shows the corresponding surfaces representing the
partial topography of the inclusion beneath the tissue surface,
which provides the spatial priors for constraining the reconstruc-
tion. The recovered inclusion depths support previous work dem-
onstrating millimeter accuracy for depths up to 5 to 10 mm.39

The average of Γ in a 3 × 3 pixel window (pixel size on the
surface ∼0.1 mm at the center of the inclusion was calculated
and the expected linearity between lnðΓÞ and inclusion depth
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[Fig. 5(a)] and its independence of the fluorophore concentra-
tion was verified. The fluorophore concentration was then
recovered with the constrained hyperspectral fluorescence
reconstruction algorithm and compared with the true concentra-
tion to assess the accuracy of the method: this is summarized
in Fig. 5(b), which shows the percentage error between these
as a function of the inclusion depth. The recovered concentra-
tions are presented alongside the depth maps in Fig. 6 and

demonstrate the ability to estimate the fluorophore concentra-
tion at varying depths. While Figs. 5 and 6 contain results
for three concentrations of AF647, concentration estimates
were determined for all six levels (0.3125, 0.625, 1.25, 2.5,
5, and 10 μg∕ml), and the estimation error was <25% for inclu-
sion depths up to 5 mm beneath the phantom surface. Moreover,
for concentrations >2.5 μg∕ml, the estimation error was <25%
for inclusion depths up to 9 mm.

Fig. 2 (a) Schematic diagram of the hyperspectral fluorescence imaging system, (b) fluorescence emis-
sion image at a single wavelength of a phantomwith a fluorescent inclusion, and (c) examples of detected
fluorescence emission spectra for different inclusion depths (depth of top surface of inclusion), measured
in a 3 × 3 pixel window at the center of the inclusion in the camera image and normalized to the maximum
emission.

Fig. 3 The dual-wavelength fluorescence emission ratio over the camera image (cropped to an area in
the vicinity of the inclusion), for two different concentrations of Alexa Fluor 647 and multiple inclusion
depths (odd-valued depth values not shown).

Journal of Biomedical Optics 036014-5 March 2015 • Vol. 20(3)

Jermyn et al.: Macroscopic-imaging technique for subsurface quantification. . .



4 Discussion
The depth-dependent information from dual-wavelength fluo-
rescence emission ratios [Fig. 3(a)] provides spatial priors
which can be used to separate the effects of fluorophore depth
and concentration in the diffuse-light reconstruction. The tech-
nique has been investigated in phantoms and the fluorophore
concentration was recovered within �25% for inclusion depths
up to 5 mm beneath the surface for a range of concentrations
between 0.3125 and 10.0 μg∕ml of AF647 [Fig. 3(b)]. For con-
centrations of 2.5 μg∕ml or greater, this accuracy was main-
tained to a 9 mm depth.

The reconstruction algorithm uses a diffusion-based light
transport model, which has limitations when measurements
associated with subdiffusive light paths are used (< ∼ 3 to 5
reduced scattering lengths).44,48 Light transport models that are
more accurate near the tissue surface, such as Monte Carlo

modeling,49,50 or higher-order solutions to radiation transport51

could further improve the ability to quantify fluorescence con-
centration, especially relatively near the tissue surface.

With biomarker-targeted fluorophores (e.g., antibody- or
peptide-fluorophore conjugates), the strength of binding to
the tumor cells/tissue may also limit the accuracy of this tech-
nique if a fraction of the marker does not bind to the target but
instead generates a fluorescent background signal. Note that this
is not a major concern using ALA-induced PpIX fluorescence,
since the concentration of PpIX in normal brain, at least in white
matter wherein most adult gliomas arise, is very low (typically
<0.1 μg∕ml).15 The use of dual tracers that allow this back-
ground to be subtracted would address this issue as long as the
detected signals are not limited by the dynamic range of the
camera.52 The presence of significant endogenous (auto)fluores-
cence would likewise alter the contrast-to-background ratio and

Fig. 4 Partial surfaces corresponding to Fig. 3, representing the first-stage estimate of the topography of
the fluorescent inclusion beneath the tissue surface.

Fig. 5 Fluorescence quantification at depth from phantom measurements: (a) log of Γ versus inclusion
depth for three different fluorophore concentrations, computed from a 3 × 3 pixel window in the center of
the inclusion and (b) percentage error in the estimate for fluorophore concentration versus inclusion
depth; the estimated concentration is based on the average value within the true inclusion region.
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reduce the accuracy of the quantitative imaging of the admin-
istered fluorophore. This is of less concern in the use of NIR
fluorophores, since tissue autofluorescence generally decreases
in this region.

In the above phantom studies, uniform bulk tissue optical
properties were used as the initial estimates in the optical
reconstruction. Actual spatial mapping of the tissue absorption
and transport scattering coefficients at the fluorescence excita-
tion and emission wavelengths could be obtained from spatial
light modulation imaging,53,54 which could be integrated onto
the neurosurgical microscope. Alternatively, the previously
reported point reflectance spectroscopy probe could be used
to sample the tissue properties.15 Due to the diffuse nature of
light transport in optically turbid media, blurring is observed
toward the edges of fluorescence inclusions in the camera
images. This, therefore, affects our estimates of fluorescence
depth42 and, subsequently, the reconstructed fluorescence con-
centration maps. It will primarily limit the ability to delineate
inclusion boundaries, rather than affect bulk fluorescence con-
centration and depth estimates. Studies have investigated the use
of spectroscopic excitation data in combination with spectral
emission to improve the ability to extract fluorescence depth
information and reduce the ill-posedness of the inverse prob-
lem.40,55 This exploits the spectral depth dependency at the exci-
tation wavelength range to provide more depth-dependent

information. It may be valuable to explore the use of excitation
spectroscopy in combination with the proposed technique for
improved quantification of fluorescence at depth.

In conclusion, we have demonstrated that the two-step
reconstruction algorithm is able to map fluorescence concentra-
tion at depth with an accuracy that is likely to be clinically use-
ful, depending on the tumor localization properties of the
particular fluorophore used.39,56,57 The information could be pre-
sented to the surgeon as in Fig. 6, with one map showing the
fluorophore depth distribution and the other indicating the fluo-
rescence concentration at that depth. The depth information
would then be used by the surgeon to decide if it is technically
possible and safe to continue resection, while the concentration
would serve as a metric of the probability of the fluorescence
being tumor-associated: for example, multicenter clinical trials
are in progress using our point spectroscopy probe instrument to
determine the relationship between tumor probability and mea-
sured PpIX concentration. These depth and concentration maps
could be overlaid with the view from the operating microscope
for easy integration with surgical workflow. Residual and resect-
able cancer tissue can extend beyond what is delineated by the
current standard-of-care (visual inspection and coregistered
MRI), leading to recurrence and negatively impacting patient
outcomes. This situation has been improved by the introduction
of intraoperative fluorescence imaging. However, the current

Fig. 6 Depth maps (in hot/red) show the result of using the dual-wavelength fluorescence emission ratio
to determine the depth of fluorescence at each point in the camera image for the phantom (cropped to
show the inclusion). Reconstructed concentration maps (in modified jet) are shown as the maximum
intensity projection of the three-dimensional recovered concentration volume onto the two-dimensional
tissue surface. The true boundary of the fluorescent inclusion is indicated by the white circle.
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approach using subjective interpretation of qualitative fluores-
cence images is suboptimal and the added capabilities to both
determine the depth of any subsurface residual tumor and the
concentration of the fluorophore within it should allow the sur-
geon to make more informed decisions according to an objective
risk-benefit assessment. The detection of residual cancer tissue
at depths up to 5 to 10 mm beneath the surgical surface may
result in a reduced volume of residual disease left behind post-
operatively, which should impact positively on patient survival.
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