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Abstract. Invasive brain cancer cells cannot be visualized during surgery and so they are often not removed.
These residual cancer cells give rise to recurrences. In vivo Raman spectroscopy can detect these invasive
cancer cells in patients with grade 2 to 4 gliomas. The robustness of this Raman signal can be dampened
by spectral artifacts generated by lights in the operating room. We found that artificial neural networks
(ANNs) can overcome these spectral artifacts using nonparametric and adaptive models to detect complex non-
linear spectral characteristics. Coupling ANN with Raman spectroscopy simplifies the intraoperative use of
Raman spectroscopy by limiting changes required to the standard neurosurgical workflow. The ability to detect
invasive brain cancer under these conditions may reduce residual cancer remaining after surgery and improve
patient survival. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.21.9.094002]
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1 Introduction
Gliomas are a type of brain tumor that invade the normal brain,
making it difficult for a surgeon to precisely identify which tis-
sue is cancer especially when operating close to the margins that
are radiographically defined with magnetic resonance imaging
(MRI). This is very important clinically because 80% of recur-
rences originate from residual cancer remaining after surgery.1

Moreover, due to the eloquence of brain tissue, the removal of
normal brain close to the margins could have dire consequences
including impairment of cognitive functions.2,3 Standard imag-
ing techniques using MRI and intraoperative visual inspection
do not detect the full extent of glioma invasion into normal
brain, motivating the need for rapid invasive cancer detection
during brain tumor resection. Optical techniques are seeing
increased use for disease detection and surgical guidance.4 In
particular, Raman spectroscopy gives molecular information
at the tissue surface based on the vibrational modes of molecular
species and has been used for cancer detection in a number of
organs.5–10 We have previously developed a hand-held sponta-
neous Raman near-infrared (IR) spectroscopy probe system
capable of intraoperative brain cancer detection in patients with
grade 2 to 4 gliomas with >90% sensitivity and specificity.11

During brain cancer resection procedures, the level of ambient
light can usually be kept to a minimum in order to minimize its
impact on optical signals obtained with instruments operating in
the near-IR. However, clinical translation and routine use of sur-
gical guidance optical systems could be facilitated by reducing

their sensitivity to the effects of ambient light sources in the
operating room (OR) such as OR lights, neuronavigation sys-
tems, and light from windows.12 To address this issue, we
have used supervised machine learning with artificial neural net-
works (ANNs) to accurately distinguish cancer from normal
brain tissue in vivo from Raman spectroscopy data. ANN
uses a nonparametric model, which is suited for handling the
inconsistent effects of light artifacts on the Raman spectra. It
is able to adapt to nonlinear changes in optical signal caused
by sources of lights in the OR. This improves the robustness
of the Raman spectroscopy technique for brain cancer detection,
making it easier to integrate into the neurosurgical workflow.
Reducing the volume of residual cancer improves patient prog-
nosis,13,14 and radiographically complete resection can help
reduce the recurrence rate and increase patient survival.15,16

2 Methods
Our previous 17-patient dataset11 was used to assess the ability
of ANN to distinguish cancer from normal brain tissue under the
presence of light artifacts from OR sources. The Raman spec-
troscopy system was used at the Montreal Neurological Institute
and Hospital on patients undergoing brain tumor resection
for grade 2 to 4 gliomas. Informed consent was acquired for
all patients, with oversight provided by the Montreal
Neurological Institute ethics review board. The Raman spectros-
copy system is described previously,11 consisting of a hand-held
fiberoptic probe (EMVision LLC, Florida), a 785-nm excitation
laser (Innovative Photonic Solutions, New Hampshire), and a
high-resolution charge-coupled device spectroscopic detector
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(ANDOR Technology, Belfast, UK). Seven fibers are used for
detection and one central fiber is used for laser excitation. The
probe samples tissue with a 0.5-mm surface diameter and a sam-
pling depth up to ∼1 mm, with the majority of the signal coming
from approximately the first 500 microns depth of tissue.11 The
probe was used during surgery to measure 5 to 15 tissue loca-
tions per patient, with an emphasis placed on areas of invasive
cancer toward the periphery of the tumor. Each acquisition
consisted of one background measurement with the laser off,
and three averaged measurements with the laser on, for a
total acquisition time of 0.2 s. Neuronavigation tracking was
performed for each measurement using a StealthStation
(Medtronic, Minnesota), to colocate the measurements on pre-
operative MRI. Biopsy samples were taken superficially at each
location for neuropathology assessment based on hematoxylin
and eosin staining. Sources of light in the OR include the neuro-
surgical microscope, which provides a white light source as well
as a blue light source typically used for fluorescence detection
(OPMI Pentero, Zeiss, Germany), the IR source of the tracking
unit for the neuronavigation system (StealthStation, Medtronic,
Minnesota), and the overhead surgical lights (Model 380, Dr
Mach, Germany), hereafter referred to as OR lights. Note how-
ever that for all of the acquired in vivo spectra, the light on the
neurosurgical microscope was turned off. MATLAB®

(Mathworks, Inc.) was used for analysis. All spectra, with or
without ambient OR light sources, were preprocessed using
background subtraction (laser off) to minimize the impact of
ambient light contributions, for normalization by laser power,
and for autofluorescence removal based on an iterative polyno-
mial fit.17 Tissue classification based on Raman spectra was per-
formed using feedforward ANN, a supervised machine learning
technique inspired by the function of biological neurons.18 ANN
constructs a network consisting of layers of neurons, where each
neuron in one layer is connected to each neuron in the next layer
(Fig. 1). The neurons in the first layer are also connected to the
input data (Raman spectra), and the neurons in the last layer are
connected to the output, in this case determining the tissue type
as cancer or normal brain. Connections between neurons have
weights, which are learned based on training data using back-
propagation. Each neuron also applies a transfer function to the
weighted sum of inputs, which is what makes ANN able to
model complex nonlinear interactions if the transfer function
is nonlinear. Once the ANN model is trained using known
data, it can be used to predict classes (tissue types) for test
data. The Neural Network Toolbox in MATLAB® 2016a was
used for ANN classification, using the “feedforwardnet” func-
tionality. The ANN was created with 30 total neurons in the hid-
den layers: 20 neurons in the first hidden layer and 10 neurons in
the second hidden layer. The number of neurons and layers in a
network control the complexity of the model and optimizing
these parameters is essential; too many neurons and/or layers
may cause overfitting to the training data, while too few may
lack sufficient complexity to distinguish spectrally distributed
differences between tissues. More than one layer also allows
the model to assess different levels of detail in the data (narrow
versus wide peaks for instance). In practice, these parameters
can be chosen using optimization functions such as grid search
(used for this data), random search, or genetic algorithms. The
tangent sigmoidal transfer function was used for both hidden
layers and a linear transfer function was used for the output
layer. Levenberg–Marquardt backpropagation was used to
train the network weights. The choice of transfer function

and training method determines network training properties
(training speed, robustness to noise, and so on) as well as
what the network is able to model. We have chosen default
parameters that allow us to model nonlinear effects, but there
are a variety of different transfer functions (linear, log-sigmoid,
tan-sigmoid, hard-limit, rectified linear unit, and so on) and
training methods (conjugate gradient, Levenberg–Marquardt,
resilient backpropagation, Broyden–Fletcher–Goldfarb–Shanno
quasi-Newton, and so on) which can be used.19–23 Performance
metrics of accuracy, sensitivity, and specificity were determined
using leave-one-out cross-validation, where each sample is in
turn considered the testing set, with the remaining data being
the training set.

Classification was used in distinguishing measurements of
cancer tissue from normal brain. Under normal Raman spectros-
copy probe operation, measurements were made with overhead
OR lights pointing away from the surgical cavity and with the IR
source of the neuronavigation system turned away. However,
despite the use of background subtraction for all measurements,
a subset of measurements was nevertheless affected by those
sources of ambient light. This can be attributed to the variation
of ambient light signal from different sources and changing con-
ditions in the OR (movement, shadows, modulated light,
probe position and orientation, and so on), as well as the impact
of ambient light on methods for removing background
fluorescence.24,25 The effects of ambient light sources can be
automatically detected based on assessment of the acquired
spectra, leading to the exclusion of the measurement for surgical
decision-making. The spectral effects of these light sources on
the background and raw spectra are distinct (see Fig. 2 and
Sec. 3 for details), and it is based on these spectral signatures
in the raw spectra that we are able to easily identify spectra with

Fig. 1 Illustrating the structure of the ANN used for classification of
Raman spectra (bottom). Each node applies a nonlinear function to
the weighted sum of inputs. The final output layer determines the tis-
sue classification. Note that more neurons (30) were used than what is
pictured here for the final model.
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substantial light artifacts, where the effects of light sources are
clearly visible based on these spectral signatures. Classification
with ANN was performed both on the original dataset (n ¼ 161
measurements), where samples with substantial light artifacts
were excluded, as well as on the larger dataset with those sam-
ples included (n ¼ 177measurements, 16 of which had substan-
tial light artifacts). Classification was also performed using the
boosted trees method, as described previously,11 for comparison
with the performance of ANN. Boosted trees uses an ensemble
of decision trees to distinguish between classes, with each tree
operating on the residual of the previous tree.26,27 In this tech-
nique, each decision tree operates on the residual of the previous
tree, applying threshold decisions to Raman spectral bands.
Ambient light artifacts can produce offsets in intensity and non-
linear distortions in the acquired Raman spectra, due to tissue
optics and strong spectral signatures produced by these light
sources. Boosted trees uses decision trees, which apply thresh-
old values at particular spectral bands. Because these threshold
values are fixed, it is unable to adapt to nonlinear spectral dis-
tortions, making it unsuitable for handling the effects of ambient

light sources. Basically, boosted trees is unable to encode infor-
mation about variations in intensities at particular spectra bands.
This motivates the use of ANN, which is able to model nonlinear
processes due to the use of nonlinear transfer functions, and can
also encode variations in intensities since each neuron stores this
information (weighted sum of its connections).

The analysis of spectra from in vivo brain tissue in humans
provided only a limited number of measurements affected by
ambient light artifacts. To insure sufficient statistics, further
comparative analysis was performed on spectra from ex vivo
calf brain tissue to validate the effectiveness of ANN for tissue
classification under the presence of light artifacts. Three calf
brains were used with a total of 330 measurements taken in
the OR (161 from white matter and 169 from gray matter).
The probe was placed in contact with the brain tissue for each
measurement. Each acquisition consisted of one background
measurement with the laser off, and three averaged measure-
ments with the laser on, for a total acquisition time of 0.2 s.
Spectra were measured under different light conditions: no
lights; high and low intensity OR lights (maximum and minimum

Fig. 2 (a) Hand-held Raman spectroscopy probe. (b) Mean preprocessed Raman spectra acquired on
calf brain tissue for white matter (light and dark red) and gray matter (light and dark blue), under no lights
(dark red and dark blue) and with high intensity OR lights (light red and light blue). (c and d) Raw spectra
acquired on (c) white matter and (d) gray matter in calf brain, with no preprocessing applied, under differ-
ent light conditions: no lights (black), microscope white light on high intensity (purple), microscope blue
light on high intensity (blue), IR source of the neuronavigation system (red), and overhead OR surgical
lights on high intensity (turquoise).
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intensity); high, medium, and low intensity microscope white
lights (50%, 25%, and 5% intensity); high, medium, and low
intensity microscope blue lights (50%, 25%, and 5% intensity);
and the IR source from the neuronavigation system. Light
sources were aimed directly at the sampled tissue. In total 93
out of the 330 measurements were taken under no lights. See
Table 1 for details of how many measurements were taken
under different light conditions.

Spectra were preprocessed using background subtraction,
instrument response correction using measurements of an
SRM2241 reference standard (National Institute of Standards
and Technology, Maryland), autofluorescence removal, and nor-
malization (standard normal variate). ANN was used to classify
tissue as either white or gray matter. The ANN was created with
32 total neurons in the hidden layers: 22 neurons in the first
hidden layer and 10 neurons in the second hidden layer.
These parameters (number of neurons and number of layers)
were determined using grid search parameter optimization, iter-
ating over a range of possible values for each parameter. The
tangent sigmoidal transfer function was used for both hidden
layers, and a linear transfer function was used for the output
layer. Levenberg–Marquardt backpropagation was used to
train the network weights. Classification was also performed
using boosted trees for comparison. Cross-validation for classi-
fication was performed per-brain, where all of the spectra from
one of the brains were considered the testing data and the spectra
from the other brains were the training data. This was repeated
for each of the three brains.

3 Results
The hand-held fiberoptic probe was used to take intraoperative
measurements of Raman spectra during brain tumor resection
for 17 patients at the Montreal Neurological Institute and
Hospital [Fig. 2(a)]. Important spectral differences between
samples with cancer tissue versus normal brain are associated
with variation in cholesterol and phospholipids (700 and
1142 cm−1), proteins (1005 cm−1), and nucleic acid (1540 to

1645 cm−1).10,11,28 Details about the spectral areas affected by
different sources of light such as microscope lights, overhead
OR lights, LCD screens, and windows, can be found in our pre-
vious work.12 The spectral bands affected by these other light
sources can overlap with important Raman signals, impeding
the ability to properly use the available information for tissue
classification. In the in vivo dataset considered in this work,
however, the surgical microscope lights were turned off for
all measurements, and so it has been determined from their spec-
tral signatures that the main potential sources of ambient light
during neurosurgery were overhead OR lights and the IR source
of the neuronavigation system. OR surgical lights contribute
mainly in the visible part of the spectrum with a typical decaying
intensity in the near-IR while contributions from the IR source
of the neuronavigation system produce a signal across the spec-
tral range, though primarily in the near-IR and IR range.
Multivariate analysis was performed to make use of the avail-
able spectral data. Table 2 shows the classification performance
of boosted trees and ANN for distinguishing tissue types with or
without the presence of measurements with light artifacts.

All performance metrics are ≥89% for both methods when
excluding light artifacts. When measurements with light arti-
facts are included, boosted trees sees a substantial performance
drop in accuracy, sensitivity, and specificity. ANN continues to
perform at almost the same level despite the inclusion of light
artifacts, with 19% greater sensitivity and 7% greater specificity
when compared with boosted trees. This is because ANN can
model nonlinear effects and encodes information about varia-
tions in intensities at particular spectral bands, which is essential
for modeling the offsets and spectral distortions caused by light
sources. Boosted trees does not encode this type of information.
ANN uses nonlinear transfer functions applied to the weighted
sums of network connections at each neuron, allowing it to
model complex nonlinear effects. In contrast, boosted trees
employs an ensemble of decision trees, in which each decision
tree does not transmit any information to subsequent decision
trees other than whether the Raman signal at particular spectral
bands is above or below thresholds. The actual intensity value at
a spectral band is lost in the boosted trees model, making it
extremely difficult to account for the contribution of con-
founding signals in the spectra.

Further validation was performed on ex vivo calf brain
tissue (three calf brains with a total of 330 measurements).
Multivariate analysis was used to assess the capabilities of

Table 1 Number of measurements of calf brain tissue taken under
different light conditions, for gray and white matters.

Gray matter White matter Total

No lights 47 46 93

OR lights (high) 45 39 84

OR lights (low) 45 44 89

Microscope white light (high) 5 5 10

Microscope white light (medium) 5 5 10

Microscope white light (low) 5 5 10

Microscope blue light (high) 5 5 10

Microscope blue light (medium) 5 5 10

Microscope blue light (low) 5 5 10

IR neuronavigation 2 2 4

Total 169 161 330

Table 2 Classification performance of boosted trees and ANNs for
distinguishing cancer from normal brain in datasets where those mea-
surements with light artifacts are excluded and included, respectively.

Classification
method Dataset

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Boosted trees Excluding light
artifacts

92 93 91

Including light
artifacts

71 84 51

ANNs Excluding light
artifacts

92 94 89

Including light
artifacts

90 91 89
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ANN for distinguishing white matter from gray matter in the
presence of light artifacts. To illustrate these differences,
Fig. 2(b) shows the mean Raman spectra for white and gray mat-
ter, with no lights and white high intensity OR lights. Raw spec-
tra (before preprocessing) are provided in Figs. 2(c) and 2(d) for
a number of light conditions. The neuronavigation IR source
and the OR lights produce spectrally broad contributions to
the acquired spectra, whereas the microscope lights contribute
a signal that is spectrally sharper at a number of different band
ranges. The OR lights produce a notably larger contribution for
gray matter than for white matter, which may be because less
light is reflected compared with white matter. For the processed
Raman spectra, it is evident from Fig. 2(b) that many of the
spectral features and peaks remain despite the presence of
light artifacts but are offset or deformed by the polluted signal,
particularly for gray matter tissue. This motivates the use of
ANN for tissue classification, which is able to adapt to nonlinear
distortions. Table 3 shows the classification performance of
boosted trees and ANN for distinguishing gray matter from
white matter in calf brain with or without the presence of mea-
surements with light artifacts.

ANN continues to perform at almost the same level (97% to
100% accuracy) despite the inclusion of light artifacts, whereas
boosted trees sees a substantial drop in accuracy. This is con-
sistent with the in vivo findings, suggesting that ANN is better
suited to handle the nonlinear effects of ambient light sources on
spectra. The ability to detect cancer tissue in a manner that is
robust to the effects of light artifacts is critical for improving
the ease of clinical use of Raman spectroscopy in vivo. There
are often numerous potential sources of ambient light in an
OR that may interfere with the acquisition of spectra during sur-
gical operations. Thus, the use of ANN for tissue classification
can help facilitate clinical translation of Raman spectroscopy
techniques.

4 Discussion
Raman spectroscopy is able to detect invasive brain cancer in
glioma patients. We have developed a system using a hand-
held probe that can be used for rapid intraoperative cancer detec-
tion. Raman spectra are acquired to provide molecular informa-
tion that can be used to distinguish between normal brain and
cancer tissue, based on supervised machine learning algorithms.
Gliomas typically recur at tumor remnants in the resection

cavity, and so the ability to detect this cancer during surgery
may improve the completeness of resection, and thus impact
patient survival. Approaching radiographically complete resec-
tion can yield substantial survival advantages,16,29 particularly
for low-grade gliomas.13,30–32 Sources of light commonly
found in the OR can limit the detection capabilities of Raman
spectroscopy if their impact is not properly managed either
physically by controlling the intraoperative light environment
or through automated exclusion of the measurements during sur-
gery for decision-making. Here, we have demonstrated that
ANNs can be used to circumvent these issues by better modeling
the nonlinear interactions of extraneous light sources. The non-
linear and adaptive nature of ANNs makes it suitable to model-
ing these kinds of interactions. Moreover, this technique can be
used with existing Raman spectroscopy systems, without the
need for complex system hardware implementations such as
for wavelength-modulated Raman spectroscopy or filtering
techniques.24,25 Although we have demonstrated in the past
that Raman spectroscopy can be achieved in the presence of
ambient light background during neurosurgery, some light
sources are necessary for other standard operating procedures,
and so making the use of Raman spectroscopy more robust to
ambient light helps improve clinical integration into the surgical
workflow. Here, we have demonstrated that an ANN classifica-
tion technique can be used to circumvent those limitations asso-
ciated with overhead OR light levels and other sources such as
IR light from a neuronavigation system. We have also presented
preliminary results suggesting that by using ANN, the surgical
microscope lights did not prevent the detection of gray versus
white matter in ex vivo calf brain tissue. Further studies would
be needed to assess the ability to distinguish cancer versus nor-
mal brain in vivo under the surgical microscope lights. Although
the application presented in this study is for brain tumor resec-
tion, this methodology could be applied to any clinical use of
Raman spectroscopy where ambient light is a consideration.
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