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Abstract

Significance: Monte Carlo (MC) light transport simulations are most often performed in regu-
larly spaced three-dimensional voxels, a type of data representation that naturally struggles to
represent boundary surfaces with curvature and oblique angles. Not accounting properly for
such boundaries with an index of refractivity, mismatches can lead to important inaccuracies,
not only in the calculated angles of reflection and transmission but also in the amount of light that
transmits through or reflects from these mismatched boundary surfaces.

Aim: A new MC light transport algorithm is introduced to deal with curvature and oblique
angles of incidence when simulated photons encounter mismatched boundary surfaces.

Approach: The core of the proposed algorithm applies the efficient preprocessing step of cal-
culating a gradient map of the mismatched boundaries, a smoothing step on this calculated 3D
vector field to remove surface roughness due to discretization and an interpolation scheme to
improve the handling of curvature.

Results: Through simulations of light hitting the side of a sphere and going through a lens, the
agreement of this approach with analytical solutions is shown to be strong.

Conclusions: The MC method introduced here has the advantage of requiring only slight imple-
mentation changes from the current state-of-the-art to accurately simulate mismatched bounda-
ries and readily exploit the acceleration of general-purpose graphics processing units. A code
implementation, mcxyzn, is made available and maintained at https://omlc.org/software/mc/
mcxyzn/.
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1 Introduction

The propagation of photons in a Monte Carlo (MC) simulation can be broken down in a few
standard steps: propagation (hop), absorption (drop), scattering (spin), and the Fresnel phenom-
ena of transmission and reflection at boundaries, where the refractive index changes.1 When
using a rectangular grid structure, the representation of curved, smooth, or slanted boundaries
is discretized into voxels, also referred to as a Cartesian grid.2 The drawbacks are not only aes-
thetic in nature but also represent important deviations from the modeled structure. The use of a
finer grid can partially minimize the differences between the voxel-based representation and the
modeled geometry. This works particularly well to improve the precision of the propagation,
absorption, and scattering steps; the trade-off being higher memory requirements to store the
information and slower simulation performances due to the larger number of elements involved.
The deviation addressed in this work is the representation of the surface boundary between
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mismatched materials, having different indices of refractivity, being simplified to the facets of
the voxels located at the boundary. No matter how small the voxels, the normal angles to those
boundary facets are intrinsically limited to being one of the facets of these voxels. This is of
particular importance when dealing with reflection and transmission using Fresnel equations
because the normal angle to the surface not only plays a key role in determining the amount
of light that is to be reflected or transmitted but also determines the altered angles for the tra-
jectories of these photons during the propagation process.

This problem of correctly modeling the curvature or orientation of the object geometry has
been a recurrent theme in the MC simulation of light transport literature.2,3 Efforts to address
this issue have been generally categorized into three methodologies: tetrahedron-based MC,
geometry-based MC, and surface-based MC.3 Tetrahedron-based MC addresses the problem
by creating a labeled tetrahedral mesh of the voxelated volume. The propagation is very similar
to voxel-based MC except that the curvature on surface boundaries can be better approximated
through triangular surfaces. The usual drawbacks are the challenges and efforts associated with
creating a high-quality tetrahedral mesh,4 but also that different mesh generation algorithms will
produce different mesh volumes that may not correspond well with the starting volume as well as
requiring more complex ray tracing of the photons. This is currently the preferred method when
dealing with this problem with popular software, such as TIM-OS,5 MMC,6 and recently, a
GPU-accelerated version of this approach, FullMonteCUDA.7 A hybrid methodology using
tetrahedron-based MC but saving the outputs inside a voxelated grid was also proposed.8 When
the geometry can be well described mathematically, geometry-based MC has been proposed9–13

with the limitation that it is very problem-specific and lacks versatility to address the usual
complexity of biological tissues. This is mainly because complex tissue structures need to
be approximated by geometries for which an analytical boundary surface can be derived, such
as a sphere, an ellipse, or a cylinder. The last approach, surface-based MC, combines a surface,
usually triangular, of the mismatched boundaries and the usual voxel-based propagation
algorithm.14,15 The propagation volume and saved fluence volume are the same as the voxel-
based approach, but at each propagation step, there is an additional calculation that checks and
handles the possible crossing of a mismatched boundary surface. The generation and handling of
this boundary surface to calculate reflection and refraction is very similar to the tetrahedron-
based MC methods. This was also translated in a GPU-accelerated environment.16

The objective of this work is to preserve most of the core voxel-based MC algorithm that was
outlined in earlier work17–19 as well as exploiting the simulation speedup acceleration brought
by the use of multicore and GPGPU architectures,20,21 while also addressing this issue of cur-
vature and slanted surface boundaries. The implementation of this algorithm was based on that
of mcxyz.c.22

2 Materials and Methods

When a photon propagates and traverses a boundary with mismatched indices of refractivity, it
needs to decide whether to reflect or to transmit. The angles of reflectance and transmittance and
the corresponding event probabilities are determined through Fresnel equations using the angle
of incidence as well as the normal angle to the boundary surface. If these angles are not handled
properly, significant problems will appear when dealing with light sources shining at an angle
with respect to the nonflat target or when encountering curvature.

2.1 Normal Vector Estimation and Smoothing

In an effort to better estimate the direction of the mismatched surface, an edge detection algo-
rithm, the Sobel filter,23 is applied to create a gradient map. By applying such filters to a 3D map
with each voxel containing its respective index of refraction, not only can the edges be calculated
but also the direction of change is specified. In addition, by applying a Sobel–Feldman type
operator, an additional smoothing effect is observed. More sophisticated algorithms to better
approximate the normal vectors to the surface certainly exist, but this report is limited to inves-
tigating the simple 3 × 3 × 3 Sobel filter to illustrate the usefulness of this approach and highlight
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the low computing cost of this additional step. In the 2D case, the Sobel operator can reduce from
a maximum angle error of 45 deg using the facet normal of a voxel down to an estimated maxi-
mum error value of 1.36 deg.24 The 3 × 3 × 3 Sobel filter is readily available in MATLAB
through the function imgradientxyz.

Figure 1 illustrates the method for specifying the boundaries and the unit vectors that are
normal to that surface in each voxel containing the surface. An expanded explanation containing
the implementation details is available in Sec. 5. The steps are (following the order of Fig. 1) as
follows.

1. Create a labeled 3D map for the refractive indices (n). The example shows a 3D map with
label values 1, 2, and 3, each used to represent one of the three unique values of n. This
map is used to delineate the mismatched boundaries, where the Fresnel equations are
applied.

2. Create a 3D binary map for each of the labels in step 1 (or equivalently, for each unique
refractive index value), labeling a voxel 1 if it matches the label of the map and 0 other-
wise. The example for step 2 shows three such binary maps for each of the labels in step 1.

3. Apply the MATLAB Sobel filter using imgradientxyz to each binary map in step 2.
This will yield the direction vectors contained inside of each of the labeled regions. These
direction vectors are normal to the mismatched boundaries in 3D (though represented in
2D in the example for simplicity).

4. Smooth each of the 3D gradient map separately in step 3, which is important to ensure that
vectors on opposite sides of a mismatched boundary do not interfere with one another (for
example, by canceling each other out). In this work, smoothn25,26 was used to smooth
each of the gradient maps. Visual feedback is recommended when attempting to determine
the appropriate smoothing factor in smoothn for a given problem. A value chosen to be
too high will likely deviate too much from the starting geometry.

5. Combine all the smoothed maps in step 4 into one aggregate 3D map with all the direction
vectors. The smoothing will likely lead to some overlaps between the 3D gradient maps. In
order to resolve this issue, each direction vector element of a smoothed 3D gradient map is

Fig. 1 Proposed algorithm to handle curvature and oblique angles in MC light simulations.
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multiplied by its corresponding element (0 or 1) in the 3D binary map of the same label
(calculated in step 2). This operation removes the direction vectors in the smoothed gra-
dient maps (by making them zero vectors) at the voxel locations, where the 3D binary map
of the same label or refractive index is 0. Once this is done, one simply sums these maps
together into an aggregate 3D map like the one shown in the illustrated example.

6. The final step is to normalize all the direction vectors and to store these direction vectors in
such a way that they can be used as normal vectors in the Fresnel equations when a photon
is attempting to cross a mismatched boundary during the MC simulation.

The justification for the smoothing is that when calculating direction vectors, the Sobel filter
is local in scope and suffers from the staircase pattern that forms when discretizing into a regular
grid. Thus, the smoothing helps the algorithm to estimate curvature more realistically as it gives a
dependence of each direction vector on its neighbors.

These normal vectors that are calculated near the edges, where a refractive index mismatch
occurs, are then saved into a storage matrix that can be consulted by the MC software. In Fig. 1,
to illustrate the concept, the x, y, and z directions of the normal vectors for each voxel of the
simulation domain were saved into three 3D cubes. The implementation of the gradient calcu-
lations and smoothing steps was made in MATLAB and the smoothed gradient map was then
saved in a binary file that was subsequently read by mcxyzn. It is important to note that this map
is only consulted when a photon is about to cross a boundary with a refractive index mismatch,
thus, it only alters the performance of the MC software when this normal vector needs to be read
from memory. If memory is an issue, it is trivial to create a 3D hash table, a data structure that
maps keys to values, that would be associated with a matrix that would only store the direction
vectors for the nonzero vectors. Each entry of the hash table would give the index (or key) cor-
responding to the direction vector in the look-up table. As a photon crosses a boundary into a
new voxel with a different refractive index, the hash-table pointer of the new voxel would point
to the hash table to find the surface normal vector. The benefit being that the 3D storage of one
key value at each voxel uses less memory than having to store a triplet of vector values at each
location.

2.2 Level of Details in Calculating Fresnel Equations

In Fig. 2, we show two methods: the facet normal approach, where only the normal vectors to the
facets of voxels are considered, and the surface normal approach, where the normal estimate to

Fig. 2 Using virtual surface that lies at a 45 deg angle for simplicity, various transmission and
reflectance examples are shown for (a) the facet normal approach and (b) the surface normal
approach. In the facet normal approach, small variations in the angle of incidence at which a photon
hits a mismatched boundary can lead to dramatic changes in the reflected and transmitted angles.
Using very similar scenarios under the surface normal approach corrects for these errors in angles.
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the mismatched boundary is being used in the propagation of photons. It is important to note that
the facet normal approach can lead to significant errors in the angles of transmittance and reflec-
tance but also can create large discrepancies in the proportion of light that transmits versus
reflects at the mismatched boundaries. The surface normal approach reduces these errors
significantly.

When a photon is at the mismatched boundary, simply using the normal gradient calculated
from the Sobel filter already represents a significant improvement over the facet normal
approach. A downside of this approach is that when modeling a curvature in a low-scattering
medium (e.g., light “bouncing off” the surface of a spherical object in water), the change in angle
direction is still discrete in nature and not gradual as one might expect. To further enhance the
proposed algorithm, the interpolated surface normal approach is introduced in the next section to
deal with curvature.

2.3 Intermediate Angle Interpolation Approach

To model gradual changes in normal angles, the use of the trilinear interpolation27,28 is intro-
duced. The basic method interpolates the values of gradient at the eight voxels surrounding the
photon, applying separately to the x, y, and z gradients. In the modification used in this work, the
interpolation only considers the voxel gradients on the side of the surface from which the photon
is propagating. The interpolated normal vector is then normalized. The details on how to apply
this interpolation are provided in Sec. 5.2.

This interpolated normal approach has a higher computational cost than the simple surface
normal approach in the previous section. Instead of having to read the values of one direction
vector, the interpolated surface normal algorithm is now required to read the gradient direction
values of the eight closest neighbors to this intersection point as well as their respective index of
refractivity, and then apply the interpolation scheme to these values.

3 Results and Discussion

Three examples showcase the strengths and weaknesses of the proposed method: (1) a beam
hitting a sphere surface, (2) light transmission through a lens, and (3) light hitting the forehead
of a mouse. In the first two cases, simulations not involving scattering are shown and compared
to the analytical solutions for which the expected behavior is known. The reported simulation
speeds are for a GPU-accelerated OpenCL implementation of mcxyzn running on a NVIDIA
RTX 2080 graphics card and an i7-7820X Intel processor (8 cores and 16 threads). The fluence
rate φ has the units of W∕cm2∕W delivered, assuming a source power of 1 W. This normalized
quantity can be scaled proportionally to the amount of W being delivered by the source.

3.1 Laser Beam Hitting the Surface of a Sphere

In this first example, Fig. 3(a) shows the expected reflected angles from hitting the side surface of
a sphere. The facet normal approach in Fig. 3(b) has reflectance directions going back against the
laser beam. Here, the error in angle orientation is as high as 80 deg, but the error in reflected
angles can be up to 180 deg. The deficiencies of this approach become evident as one deviates
from simulating layered models.

On the other hand, the reflected angles in Fig. 3(c) (surface normal method) and Fig. 3(d)
(interpolated surface normal method) mimic almost identically the analytical trajectories shown
in Fig. 3(a). The differences in reflected and transmitted angles between the analytical solution
and the facet normal method are drastic. In contrast, the difference between the analytical sol-
ution and that of the surface normal method, interpolated or not, is small, with less than 5 deg
error when juxtaposing the edges of the reflected beams. When comparing the interpolated sur-
face normal approach to the simpler surface normal approach, we show that the use of inter-
polation alleviates almost completely the problem of bunching observed in Fig. 3(c). There are
very small gaps observed and that are believed to be due to the approximations made by the
proposed approach (as opposed to the detailed approach mentioned in Sec. 2). While the angles
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are accounted appropriately, the intersections of the photons with mismatched boundary surfaces
remain on the faces of the boundary voxels. The observed discontinuities are likely resulting
from not performing additional calculations to move the intersections onto the “virtual surface”
(illustrated in Fig. 2), a small trade-off in accuracy to preserve fast performances during the
simulation.

3.2 Lenses

In this second example, a laser beam hitting a lens in a water medium is considered. Figure 4(b)
shows that the algorithm is able to specify the focusing of the incoming light by the lens. The
algorithm shows excellent agreement with the analytical solution presented in Fig. 4(a). The
surface normal approach, either with or without interpolation, adds the ability to properly focus
light, which does not occur when using the facet normal approach. Note that the fluence rate
inside the lens is increased due to reflectance from the lens surface when using the interpolated
surface normal method. The difference in using the facet normal approach as opposed to the
interpolated surface normal approach is quite significant. Differences of over 90% in fluence
rate are observed near the bottom and the sides of the lens. Large sections of the fluence map
also show differences of about 20%.

While it is relatively easy to measure the simulation performance (photons/min), the impor-
tant alterations that this new, more realistic algorithm has on the photon trajectories make it
nontrivial to compare to existing approaches such as the facet normal approach or the simplified
approach of ignoring the differences in refractive index. Performance values are reported in
Table 1 for the lens examples involving scattering. Speeds (photons/min) were found to be

Fig. 3 Example of a beam hitting the side surface of a sphere of radius 1 cm. (a) Photon trajec-
tories calculated by Fresnel law, (b) the facet normal method, (c) the surface normal method, and
(d) the interpolated surface normal method. The refractivity indices are n ¼ 1.00 outside the
sphere and n ¼ 1.33 inside the sphere. The values of μs, μa, and g are picked such that there
is no scattering and negligible absorption along the photon paths. The voxel length is 0.01 cm.
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comparable between the surface normal approach and no Fresnel approach. A significant per-
formance drop is not expected going from a facet normal approach to a surface normal approach
unless the photon trajectories are significantly altered, which can be the case when dealing with
curved and oblique surfaces. This is because the only additional operation that the surface nor-
mal approach requires is reading a set of three values indicating the surface normal at the current
voxel whenever it encounters a mismatched boundary. The interpolated surface normal
approach, on the other hand, drops to about 37% of the speed of its noninterpolated counterpart
due to the additional global memory reads and calculations required to perform the interpolation.

Fig. 4 Example of a beam hitting a lens (n ¼ 1.52) with the lower half being either water (n ¼ 1.33)
or aqueous scattering solution (n ¼ 1.33, μs ¼ 100 cm−1, g ¼ 0.90) using the interpolated surface
normal approach (ISN). (a) Problem setup; (b) lens and water (no scattering) using ISN approach;
(c) lens and scattering aqueous solution using ISN approach; (d) lens and scattering aqueous
solution using the facet normal (FN) approach; (e) percent change caused by mismatched voxel
refractive indices, φISN−φmatched

φmatched
× 100%, with scattering present; and (f) percent change caused by

using the FN method, as opposed to ISN approach, φFN−φISN
φISN

× 100%. The voxel length is 0.01 cm

and absorption is assumed to be negligible.
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3.3 Biological Tissues: Mouse Head

The mouse example shown in Fig. 5 represents a typical example of biological tissue simulation,
where a beam hits the air/tissue surface boundary at an angle. Figure 5(e) compares the error in
the simulation results between using the interpolated surface normal method and the simplified
approach that ignores the differences in refractive index. There is a noteworthy weaker overall
diffusive reflectance using the interpolated surface normal method as photons that have entered
the tissue media have a harder time escaping due to the internal reflection at the mismatched
boundary. Also, photons that have entered the tissue remain there longer, leading to a higher
fluence rate near the air/tissue boundary. When comparing the interpolated surface normal
approach to the facet normal approach, Fig. 5(f) shows that the facet normal handles poorly
the reflected fluence and the fluence transmitting out of the mouse body. There are also signifi-
cant differences between more than 30% in the areas near the inside boundary of the mouse.

Table 1 Reported GPU performance for lens simulations.

Simulation type Simulated photons/min

Scattering and no Fresnel calculations 46.737 millions

Scattering and facet normal approach 46.565 millions

Scattering and surface normal approach 45.761 millions

Scattering and interpolated surface normal approach 16.707 millions

Fig. 5 Example of a beam hitting a mouse head. The shape is taken from the Digimouse seg-
mentation.29 The inside is simplified to be standard tissue (n ¼ 1.33, μa ¼ 1 cm−1, μs ¼ 100 cm−1,
g ¼ 0.90). (a) Problem setup, (b) fluence rate without Fresnel calculations, (c) fluence rate using
the facet normal approach, (d) fluence rate using the interpolated surface normal approach, (e) per-
cent change in ϕ caused by mismatched voxel refractive indices, and (f) percent change caused
by using the facet normal as opposed to interpolated surface normal approach. The voxel length is
0.01 cm.
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4 Conclusion

A surface normal approach to light transport is proposed to deal with curved and slanted surfaces
when simulating light transport. Across various examples of a beam hitting the side of a sphere,
light traversing a lens, and a laser beam hitting the head of a mouse, the proposed methodology
leads to significantly more realistic results than the facet normal approach. The core modification
to the standard MC simulation was to introduce the use of a gradient map to find a better estimate
of the normal vector to the mismatched surface, the use of smoothing on this gradient map, and
the application of a trilinear interpolation scheme used to gradually interpolate between various
estimates of these calculated normal vectors. Improved accuracy is shown when approximating
the expected angles of reflectance and transmittance with a maximum observed error on the
reflected angles of less than 5 deg in the case of the sphere example when superposing with
the calculated analytical solution. Given the availability of the source code and the fast perfor-
mances shown on GPU, this approach should be readily applicable to the current state-of-the-art
tools, while not introducing a large amount of changes to the MC code. Through this work, an
emphasis is made on the importance of dealing with curved and oblique surfaces appropriately
along with a way to deal with the problem accurately and efficiently.

5 Appendix Detailed Workflow

This section details the steps in Fig. 1 by providing an example of implementation for the core
algorithm to calculate the normal vectors in Sec. 5.1 and then expanding on implementation
details in Sec. 5.2.

5.1 MATLAB Code to Calculate Direction Vectors

%% T is the tissue volume
%% nv is the vector/list of all the refractive indices contained

in the tissue list
%% Removing the repeated refractive index values
unique_nv = unique(nv);
%% Creating empty storage maps for the calculated direction

vectors
gradient_map_x = zeros(size(T,1),size(T,2),size(T,3));
gradient_map_y = zeros(size(T,1),size(T,2),size(T,3));
gradient_map_z = zeros(size(T,1),size(T,2),size(T,3));
%% Looping through each unique value of refractive index value
for j = 1:length(unique_nv)

%% Creating 3D binary map for the current unique refractive
index value

n_map = zeros(size(T,1),size(T,2),size(T,3));
for i = 1:length(n_map(:))

%% Setting voxel that matches refractive index of the map to 1
if nv(T(i)) == unique_nv(j)

n_map(i) = 1;
end

end
%% Finding the direction vectors for the current refractive

index value
[Gx, Gy, Gz] = imgradientxyz(n_map);
%% Smooth this direction vector map using smoothn
smooth_map = smoothn({Gx,Gy,Gz},2);
%% Selectively save the direction vectors contained within the

boundaries of each refractive index value domain
gradient_map_x(n_map == 1) = smooth_map{1}(n_map==1);
gradient_map_y(n_map == 1) = smooth_map{2}(n_map==1);
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gradient_map_z(n_map == 1) = smooth_map{3}(n_map==1);
end
%% Normalizing final direction vectors
gradient_magn = sqrt(gradient_map_x.^2+gradient_map_y.
^2+gradient_map_z. ^2);
gradient_magn(gradient_magn==0) = 1;
gradient_map_x = gradient_map_x./gradient_magn;
gradient_map_y = gradient_map_y./gradient_magn;
gradient_map_z = gradient_map_z./gradient_magn;

5.2 Explanation of the Implementation Details

The numbering in this section follows that of Fig. 1.

5.2.1 Creating a 3D map for the refractive indices

A 3D tissue structure is usually represented by a grid filled with integer or character labels that
can be used to look up tissue properties from a tissue list. The function “unique” in MATLAB
(or numpy.unique in Python) is applied to the list of refractive index values. This list of unique
refractive index (n) values will be used in the second step.

At this stage, there are two possibilities. One possibility is to fill a 3D array with the refrac-
tivity index value for each voxel. The other possibility is to use a different label for each of the
refractivity index values and create a 3D array with these labels. Either 3D representation works,
as only the shapes of the mismatched boundaries are of importance and not the actual magnitudes
of the n values.

5.2.2 Creating 3D binary maps for each refractivity index

Going through the list of unique n values (or corresponding labels), a 3D binary map is created
for each of the values in this list. Labeling a voxel 1 if it matches the refractivity index or label
value of the map and 0 otherwise.

In the illustrated example of Fig. 1, one can start by creating a binary map for n ¼ 1.00 or
label 1 by looping through each element of the 3D array created in step 1 and perform a Boolean
operation to check if the values of the map and voxel correspond (whether it is using the label or
refractive index) and assign the appropriate values of 1 if they correspond, 0 if they do not. Then,
repeat this step by creating binary maps for n ¼ 1.33 and n ¼ 1.42.

5.2.3 Applying the Sobel filter to obtain the gradient map

Once the binary maps are calculated in step 2, the function imgradientxyz in MATLAB is
applied to these maps to obtain the x, y, and z direction vectors.

This unidirectional Sobel filter provides the direction vectors going away from the mis-
matched boundary surface within the boundaries defined by the 1 values in the binary maps.
This is the orientation that is expected during the calculations of the Fresnel equations. By com-
bining all the maps of direction vectors at the end, the normal vectors on either side of all mis-
matched boundaries will be reconstituted. This aggregation occurs after the smoothing step.

We note that the standard Sobel filter can also be used similarly with the right modification,
the details of which are skipped here.

5.2.4 Smoothing the 3D gradient maps using smoothn and combining
the smoothed gradient maps

The next step is to apply smoothn 25,26 to the x; y; z directions calculated by the Sobel filter for
each of the labels or refractive index value (an implementation of smoothn in Python is also
available). It is recommended that an appropriate smoothing factor is specified rather than using
the default value (the smoothing factor equals 2 in the program listed in Sec. 5.1). If this
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parameter is chosen to be too small, the smoothing will not affect the direction vectors much,
while values of this parameter that are taken to be too high will likely lead to significant defor-
mations in the estimated mismatched surface orientations.

Since the objective of this step is to combine all these smoothed maps together, the overlaps
between these maps need to be resolved. This can very simply be done using the binary map of
each refractivity index (or label) and only saving the direction vectors for which the binary maps
indicate values of 1. We refer to the code in Sec. 5.1 for details on how this is done. The alter-
native way to remove overlaps is what was described in Sec. 2 in which a multiplication of the
direction vectors is performed with the corresponding elements on the 3D binary map of the
same label or refractive index value, then the sum of all these smoothed map is taken to calculate
the aggregate 3D map with all the direction vectors.

The last step of this process is to normalize the direction vectors such that the direction vec-

tors are of length 1. For each voxel, simply calculate the magnitude
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
and divide

each x, y, and z components of the direction vectors by this value.

5.2.5 Use of direction vectors during MC simulation and interpolation scheme
to calculate intermediate angles

The surface normal method is relatively straightforward as it simply provides the normal angles
when photons are attempting to cross a mismatched boundary and the Fresnel equations need to
be calculated during the MC simulation.

The adapted trilinear interpolation scheme starts by defining the difference coordinates xd,
yd, and zd. These calculations are most easily done assuming that the coordinate system used in
propagating the photons is using voxel coordinates. An assumption made is that each calculated
direction vector is calculated for the centroid of a given voxel. For example, voxel (0, 0, 0) will
contain the corners (0, 0, 0) and (1, 1, 1) and have a centroid of (0.5, 0.5, 0.5). In voxel coor-
dinates, the current position of the photon is defined as (xpos, ypos, zpos). To calculate the differ-
ence coordinates, the following equations are used:

EQ-TARGET;temp:intralink-;e001;116;394xd ¼ xpos − roundðxposÞ þ 0.5; (1)

EQ-TARGET;temp:intralink-;e002;116;350yd ¼ ypos − roundðyposÞ þ 0.5; (2)

EQ-TARGET;temp:intralink-;e003;116;327zd ¼ zpos − roundðzposÞ þ 0.5: (3)

When a photon is hitting the mismatched boundary, it is important to know on which side of
the boundary the photon is currently located. Instead of interpolating from eight vertices, the
vertices of the “interpolation cube” being defined as the centroids of the neighboring voxels, the
interpolation scheme presented here only applies to the centroids that have the same refractive
index as the current voxel from which the photon is crossing the boundary. Eight Boolean values
vxyz are introduced and take the values of 1 for the centroids that have a refractive index that
matches the current voxel value and 0 otherwise. We refer to Refs. 27 and 28 to visualize and
understand the general workflow of this approach.

The adapted trilinear interpolation equations are then given by

EQ-TARGET;temp:intralink-;e004;116;206c00 ¼ c000v000ð1 − xdÞ þ c100v100xd; (4)

EQ-TARGET;temp:intralink-;e005;116;163c01 ¼ c001v001ð1 − xdÞ þ c101v101xd; (5)

EQ-TARGET;temp:intralink-;e006;116;141c10 ¼ c010v010ð1 − xdÞ þ c110v110xd; (6)

EQ-TARGET;temp:intralink-;e007;116;119c11 ¼ c011v011ð1 − xdÞ þ c111v111xd; (7)

EQ-TARGET;temp:intralink-;e008;116;97c0 ¼ c00ð1 − ydÞ þ c10yd; (8)

EQ-TARGET;temp:intralink-;e009;116;75c1 ¼ c01ð1 − ydÞ þ c11yd; (9)
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EQ-TARGET;temp:intralink-;e010;116;723c ¼ c0ð1 − zdÞ þ c1zd: (10)

Here, cxyz represents the values at the vertices and c is the final predicted value using these
vertices. This set of equations needs to be applied three times to obtain each of the three com-
ponents ðx; y; zÞ of the estimated direction vector.

The final step is to normalize this interpolated direction vector and use this direction vector as
a normal vector when solving the Fresnel equations.
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