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Abstract

Significance: Although the clinical potential for Raman spectroscopy (RS) has been anticipated
for decades, it has only recently been used in neurosurgery. Still, few devices have succeeded in
making their way into the operating room. With recent technological advancements, however,
vibrational sensing is poised to be a revolutionary tool for neurosurgeons.

Aim: We give a summary of neurosurgical workflows and key translational milestones of RS in
clinical use and provide the optics and data science background required to implement such
devices.

Approach: We performed an extensive review of the literature, with a specific emphasis on
research that aims to build Raman systems suited for a neurosurgical setting.

Results: The main translatable interest in Raman sensing rests in its capacity to yield label-free
molecular information from tissue intraoperatively. Systems that have proven usable in the clini-
cal setting are ergonomic, have a short integration time, and can acquire high-quality signal even
in suboptimal conditions. Moreover, because of the complex microenvironment of brain tissue,
data analysis is now recognized as a critical step in achieving high performance Raman-based
sensing.

Conclusions: The next generation of Raman-based devices are making their way into operating
rooms and their clinical translation requires close collaboration between physicians, engineers,
and data scientists.
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1 Introduction

Neurosurgery can be used to treat a multitude of disorders ranging from brain tumors and cancers
to traumatic brain injury, epilepsy, and Parkinson’s disease (PD). 13.8 million neurosurgical
procedures are carried out worldwide every year, and it is estimated that an additional 5 million
neurosurgical conditions go untreated annually.1 Neurosurgeons face many challenges that are
unmet by modern surgical techniques: incomplete tumor resection, inaccurate surgical guidance,
expensive and inefficient intraoperative diagnostics, and a relatively high risk of adverse events.
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Optical technologies have gained considerable traction in neurosurgery over the last few
decades. The use of 5-aminolevulinic acid-induced cancer fluorescence in glioblastoma surgery
for margin detection has become common.2,3 More recently, a variety of other techniques are
being investigated for tumor margin detection including quantitative exogenous fluorescence,4,5

endogenous fluorescence lifetime imaging,6–8 optical coherence tomography (OCT),9 hyper-
spectral imaging,10 and Raman spectroscopy (RS).11 Optical techniques are also showing prom-
ise when applied to other neurosurgical procedures. For example, deep brain stimulation (DBS)
for PD could be optically guided using laser Doppler flow (LDF) measurements,12 diffuse reflec-
tance spectroscopy (DRS),13–15 and coherent Raman (CR) spectroscopy.16 During epilepsy sur-
gery, hyperspectral imaging is being investigated to help guide resection. 17 Finally, in closed
biopsies, OCT has been used to image blood vessels to minimize hemorrhage rates18 and RS has
shown promise in effective tumor targeting.19,20

Here we focus on the potential of RS to improve several neurosurgical workflows. RS is an
advantageous modality for biomedical applications because it can provide label-free, molecular-
specific information from tissue within safe limits of optical power. By analyzing this infor-
mation with effective data science models, RS can be used to provide real-time discriminatory
feedback and guidance to neurosurgeons. RS-based tools could be used to discriminate tumor
and nontumor tissue for cancer resection, to detect blood vessels for safe biopsy acquisition, and
to detect novel biomarkers for disease diagnosis. However, there remain a number of challenges
when applying RS clinically. The Raman scattering effect is a weak phenomenon; interference
from other optical processes can affect the measurable signal. Moreover, analysis of large spec-
tral datasets obtained from complex biological mixtures can be a daunting and time-consuming
task. Herein, we provide an outline of RS utility during neurosurgical procedures, a summary
of spontaneous and coherent RS techniques, and a thorough review of the leading-edge systems
and data analysis techniques already being deployed in, or in development for, a neurosurgical
setting. All of this is provided so that future endeavors in this arena can be undertaken with clear
objectives.

2 Clinical Challenges in Neurosurgery

The primary objectives of neurosurgeries involving brain tumors are (1) procuring quality biopsy
tissue for accurate diagnosis and (2) achieving maximal cancer resection while minimizing
injury to the normal brain.21,22 Extensive multimodal imaging [e.g., magnetic resonance imaging
(MRI), x-ray computed tomography (CT) scans, and positron emission tomography scans] is
used preoperatively to characterize the location of the tumor, its relationship within the brain,
and the imaging features of the tumor. These images are also used by neuronavigation tracking
devices during surgery. However, due to poor resolution and sensitivity, none of the preoperative
imaging techniques can visualize the full extent of invasive brain cancer, limiting surgical plan-
ning. In addition, neuronavigation is highly susceptible to the shifting of the brain once the dura
has been opened and tumor and cerebrospinal fluid are removed.23,24

For certain brain lesions, a closed biopsy for tissue diagnosis is most appropriate. Studies
have shown that brain biopsies may be nondiagnostic in up to 10% of cases, and even if a diag-
nosis is achieved, it is found to be inexact in as many as 23% of cases.25

In functional neurosurgery, the aim is to relieve patients suffering from chronic neurological
or neurodegenerative disorders such as PD, chronic pain, epilepsy, or dystonia. DBS consists of
the surgical implantation of electrodes deep inside the brain where they modulate specific brain
nuclei to correct dysfunctional brain circuits. Although many conditions can benefit from DBS
surgery, its most common application is for alleviating motor symptoms of PD. The main chal-
lenge of DBS in this application is the accurate positioning of the electrode inside the target
nuclei.26 Again, electrode placement accuracy is dictated by the quality of the preoperative im-
aging used and the precision of the neuronavigation tracking devices.

RS has shown great promise in overcoming these challenges. In brain tumor surgery, it pro-
vides real-time, molecularly specific information to neurosurgeons, accurately predicting the
nature of the probed tissue prior to its resection. For closed brain biopsies, it can increase diag-
nostic yield and minimize harm by targeting cancer tissue before the biopsy sample is harvested.
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And, in functional neurosurgery, RS can guide electrode placement to improve safety, accuracy,
and clinical outcomes. RS is only beginning its utility in neurosurgery compared with other
domains. Neurosurgeries are relatively rare and less accessible than procedures for breast, lung,
and gastro-intestinal oncology.1,27 Moreover, there is no room for error in brain tissue: minor
inaccuracies might translate to major deficits for the patient. Therefore, in neurosurgery, the
clinical translation of a new modality requires a particularly high confidence in its safety and
clinical utility.

3 Raman Spectroscopy Techniques: A Short Primer

Although it is not the objective of this review to provide theory on the Raman effect, it is impor-
tant to have an idea of the signal generation with respect to the sample and the optical power
used. Furthermore, the wavelength of the generated signal can be an important design factor
given operating room lighting, microscope illumination, and background signals. Finally, spec-
tral content is a critical aspect of the diagnostic ability associated with a clinical system and so
the techniques for spectral acquisition are also discussed. For more complete details of Raman
theory, abundant resources exist.28–31 The modalities that have been used in neurosurgical studies
include spontaneous Raman (SR) scattering, coherent anti-Stokes Raman scattering (CARS),
and stimulated Raman scattering (SRS).

3.1 Spontaneous Raman Scattering

Since its discovery by Sir C. V. Raman in 1928, Raman scattering of light has been widely
adopted as a molecular probing tool in the fields of biology and chemistry. The main feature
of RS is the concept of vibrational energy: molecules in a sample vibrate. At room temperature,
most molecules are in their ground state, i.e., the lowest energy level. When excited by electro-
magnetic radiation, the molecules will either absorb or scatter the excitation photons. Most of the
scattering is elastic (Rayleigh scattering) in which the molecule is transiently raised to a virtual
energy level by a photon of specific energy and almost immediately returns to the ground state by
emitting a photon of the same energy. In approximately one out of 10 million scattering events,
however, the energy of the emitted photons will have changed relative to the incident light. This
phenomenon is called the Raman effect or inelastic scattering. Inelastically scattered photons that
are of lower energy than the exciting light source is known as Stokes scattering. Scattered pho-
tons that gain energy relative to the incident light is known as anti-Stokes scattering. The Raman
spectrum is a mapping of the intensity of scattered light as a function of its shift in frequency or
Raman shift. It is in essence a vibrational profile of the molecules present in the interrogated
sample subject to the partial volume effect.32

In SR, the detected spectra are a linear combination of signals from all of the molecules in the
illuminated sample. Furthermore, the Raman intensity increases linearly as a function of exci-
tation power and exposure time, facilitating spectral analysis. SR suffers from two limitations in
biological tissue: low Raman signal (in absolute terms and relative to background) and high
contamination from autofluorescence (AF) signals from tissue and instrument components
(i.e., fiber optics). Most vibrational spectroscopy techniques aim to overcome these challenges.33

3.2 Coherent Anti-Stokes Raman Scattering

CARS is a multiphoton spectroscopy technique that uses two excitation wavelengths—a “pump”
and a “Stokes” beam. When the difference between the two excitation frequencies is equivalent
to a target vibrational mode, resonance occurs, generating strong nonlinear anti-Stokes signal.
Although it is less practical as a means to acquire data at macroscopic scales, CARS has several
advantages over SR imaging: (1) it can be more sensitive to a specific vibration, (2) it provides
intrinsic optical sectioning due to nonlinear signal generation, and (3) signal generation is blue-
shifted, removing the need for single-photon AF removal.34

In 1999, Zumbusch from the Xie group35 revived CARS imaging for biological tissues.
Subsequently, groups continued to apply CARS to a multitude of biological structures in which
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it provided contrast from vibrations in DNA, lipids, proteins, and water.36–39 In 2005, Wang
et al.40 presented the first imaging of myelin in ex vivo guinea pig spinal cord. Soon after, the
landmark study by Evans et al.41 reported CARS imaging of in vivo tissue at video rate speeds,
and since then, many others have followed in refining and optimizing CARS for in vivo imaging
of nervous tissue.42–47

The signal generation for CARS is proportional to the quadratic intensity of the pump field
multiplied by the Stokes field. CARS also scales quadratically with the number of oscillators in
the sampled volume, making it specifically useful for interrogating high-density substances. In
brain tissue, myelin (wrapped around many axons) is the main contrast agent due to its abun-
dance of CH2 moieties.

Although CR scattering is generated at both Stokes (coherent Stokes Raman scattering,
CSRS) and anti-Stokes (CARS) frequencies, the anti-Stokes signal is more commonly detected
as it is stronger and unaffected by AF.

The main source of background signal in CARS is known as the nonresonant background; it
is independent of the Raman shift and the excitation wavelength. Due to this effect, CARS is
limited in sensitivity to sensing only high concentrations of molecules, in contrast to SRS which
is unaffected by nonresonant background sources.

3.3 Stimulated Raman Scattering

Just under a decade after the Xie group introduced CARS to biological imaging in 2008,
Freudiger et al.48 of the same group presented fast stimulated Raman spectroscopy (SRS) im-
aging of biological tissue in vivo. Although this was not the first use of SRS in microscopy, it was
the first study to use optical powers that were safe for live animal imaging, enabled by phase-
sensitive lock-in detection. The potential for SRS was rapidly demonstrated by several groups,
displaying an ability to image DNA mitosis,49 protein dynamics,50 and even measure neurotrans-
mitter concentrations.51 Due to its increased sensitivity over CARS for molecules at low con-
centrations, SRS is ideal for imaging nuclear contrast in neuropathology.52,53

As for CARS, the signal generation for SRS is nonlinear. However, the SRS signal is propor-
tional to the product of the intensity from the pump field and the Stokes field. Furthermore,
unlike CARS, SRS has a linear dependence with oscillators density, making the detected signal
easier to correlate to molecular concentrations within the sample. The wavelength of signal gen-
eration for SRS can correspond to a stimulated Raman gain or a stimulated Raman loss depend-
ing on the frequency of the probe (i.e., which is modulated for detection). Laser noise, shot noise,
and electronic noise are all sources of noise in SRS imaging. Minimizing them is especially
important as small changes in the excitation laser must be measured due to the modulated aspect
of SRS. The main sources of background for SRS are Raman-independent pump–probe effects.
These include transient absorption, cross-phase modulation, and photothermal effects, all of
which are negligible in CARS.24 A theoretical review of the signal-to-noise-ratio (SNR) for
CR techniques is provided by Min et al.30

3.4 Spectral Imaging with Coherent Raman Techniques

CR imaging has historically been used for single-frequency imaging, creating contrast from the
coherent vibration of only a few molecular bonds. However, this is limited in spectral informa-
tion and therefore in diagnostic capability. In an effort to achieve rapid hyperspectral image
acquisition, strategies to produce CR spectra have been developed. These techniques and their
implementations are reviewed in detail by Alfonso-Garcia et al.29 Briefly, such strategies include
the followings.

1) Multiplex or broadband CR in which one narrowband pulse and one broadband pulse are
combined to create a simultaneous spectrum.

2) Spectral focusing wherein spectrally chirped pump and Stokes pulses are temporally
swept, creating complete Raman shift spectra.

3) Temporal sweeping of two replicas of a broadband pulse, resulting in temporal
interferences.
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The technique deployed for hyperspectral CR imaging is outside the scope of this review;
however, in designing a clinical system, the economic impact and technical difficulty of its
implementation should be considered.

4 Spectroscopy Systems for Tissue Characterization in Neurosurgery

In recent years, both SR and CR have shown potential for improving safety, accuracy, and extent
of resection for neurosurgical procedures. In SR, more readily available micro-optical compo-
nents and more sensitive detectors have greatly increased probe efficiencies. Now, even small
form-factor probes are able to detect enough SR signal for high-accuracy tissue classification at
clinically relevant acquisition speeds, leading to a surge in clinical translation. For CR, the clini-
cal adoption can primarily be traced back to breakthroughs in compact pulsed fiber-laser sources.
The drastic decrease in laser size and increase in robustness has allowed for the development of
portable CR microscopy systems capable of being transported into the operating room on a
single cart.54

The exploitation of the Raman effect in neurosurgery can be divided into three main system
types: (1) single-point RS probes for intact tissue assessment (mainly SR systems); (2) portable
Raman microscopes for rapid histopathological evaluation after tissue resection (mainly CR sys-
tems); and (3) endoscopic imagers for intact tissue histopathology and surgical guidance (SR and
CR prototypes). This section provides an overview of the hardware and technical considerations
required for clinical implementation of these systems.

4.1 Intact Brain Tissue Interrogation Using Point Probes

RS does not require sample preparation and is thus able to interrogate intact and unlabeled tissue.
Although there have been many pioneering studies in the field of neuroscience using RS, few
have bridged the gap from fundamental research to clinical utility. The first in vivo RS used in
brain cancer patients was reported in 2015. In vivo implementation of CR imaging in the human
brain has not yet been reported. Tables 1 and 2 summarize the relevant clinical work using point
probe systems; they will also be briefly described here.

In 2005, Santos et al.58 from the Puppels group first implemented high-wavenumber (HWN)
RS for fiber-optic brain tissue sensing. By measuring only the Raman shift distant from the
excitation wavelength, they showed that the probe needed no distal optics to remove contami-
nating Raman or fluorescence background from the silica fibers. They followed this with two
more studies with and without the fiber-optic probe in ex vivo porcine brain tissue, demonstrating
the ability of HWN RS to classify brain regions.55,59

Another system for brain tissue sensing with an SR probe was reported by Beljebbar et al.56

in 2010, which included an analysis of Raman spectra taken from an in vivo mouse model of
glioblastoma. The probe was compact, designed professionally (SEDI, France) and acquired data
in the fingerprint region. For reference, there has been extensive work in the biomedical optics
field to develop optimal probes for spectroscopic sensing.60–62

An important advancement of Raman systems in neurosurgery was presented by Jermyn
et al.11 in 2015, marking the first use of RS in living human brain tissue. They succeeded in
acquiring SR spectra from glioma patients in the operating room, and the system successfully
discriminated normal brain tissue from cancer with 90% accuracy. Much of the system’s success
was enabled by a professionally designed optical probe (EmVision LLC) to maximize photon
collection and high-level data analysis procedures. Moreover, the design of the probe facilitated
clinical use: it was hand-held, ergonomic, and durable and had a flexible fiber. Furthermore, the
probe used neuronavigation markers on the back-end to register locations of measurements in the
surgical planning suite [Fig. 1(b)].

Since then, the same group has pushed for clinical translation of this system. They have better
characterized the system’s operating conditions in the operating room,63 improved data analysis
to minimize ambient light contributions,64 and compared tumor margin localization between
MRI and SR.65 The system has been commercialized [ODS Medical, Fig. 1(b)] and is currently
in clinical trials to quantify the clinical improvement of its use.
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In 2017, a similar probe was presented with multiple modalities allowing it to perform SR,
AF, and DRS detection for increased classification accuracy.57 This system used a different
data analysis procedure and was translatable to other cancers (colon, melanoma, and lung).
In 2018, Desroches et al. followed up on the work by the Puppels group by using only the
HWN region to interrogate human brain tissue intraoperativeley.13,58 Probes were used in both
ex vivo porcine tissue and in vivo human tissue, with the goal of being a proof-of-principle
device for HWN tumor classification. In the HWN setup, the Raman background from
silica is minimal, negating the requirement for filters at the probe tip and facilitating probe
miniaturization.

The next intraoperative SR milestone was spectral acquisition from deep within the brain
by Desroches et al. in 2019 [Fig. 1(b)].20 Here the mandrin of a biopsy needle was replaced
by a probe (EmVision LLC) that was optically similar to that used by Jermyn et al. in 2015,
with the significant differences being its smaller size and its angle-facing detection.11

The probe had some spectral discrepancies from the original, probably due to the magnesium

Fig. 1 Stages of translational systems for neurosurgery. (a) Preclinical and research-oriented sys-
tem for ex vivo human surgery. Presented here is a portable CARS spectroscopy system for per-
forming optical measurements during a DBS electrode implantation in human cadavers (Côté lab).
The system consists of (A) an encased fibered laser source, an external photon counting detector,
and a computer for processing. The optical probe is inserted within the DBS electrode as shown
in (B); however, the tip of the electrode has been cut off to allow the probe to be in contact with
the tissue (C). (b) Clinical and commercial system for in vivo human surgery. Presented here is
a handheld contact fiber-optic probe for SR spectroscopy, commercialized by the company ODS
Medical. The system consists of (A) a 785-nm laser, a high-resolution CCD spectroscopic detec-
tor, and a computer for processing, as well as (B) a professionally designed and sterilizable con-
tact probe for clinical use. The probe is used to interrogate live brain tissue during neurosurgery
as shown in (B).
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fluoride prism used for side reflection. Although this work was preliminary, it did present
the first intraoperative deep brain SR measurements (both fingerprint and HWN) and opened
the door for Raman-guided biopsy sampling. A variety of other probes have been implemented
on ex vivo tissue. In 2016, Stevens et al.66 presented a probe design that used a collimated
beam through an empty biopsy needle to measure signal from ex vivo porcine tissue. This
probe is unlikely to be brought into the clinic in its current form due to the free-space optics
involved and the long integration times required. However, it succeeded in acquiring the signal
from low wavenumbers below 700 cm−1—routinely ignored due to the background signal
from silica.

In 2018, DePaoli et al.16 presented a CR probe to investigate ex vivo primate brain tissue
using a previously designed wavelength-sweeping system.45 The system was composed of a
compact fiber-based pulsed laser source [Halifax Biomedical, Fig. 1(a)], a sensitive photon
counting detector, and traditional silica fiber-optic probes. Rather than being measured using
a spectrometer, the spectra were encoded in time using the fast wavelength-tuning lasers.
The major implication of this system was the short integration time required (10 ms for
low-resolution HWN spectra) given the small size of the probe. Importantly, the probe’s form
factor allows it to be placed within a DBS electrode hollow core for functional neurosurgery
guidance [Fig. 1(a)]. However, more work is required to minimize the optical irradiance in brain
tissue before iterations of this system can be used in humans. Technical information about the
systems mentioned in this section can be found in Tables 1 and 2.

4.2 Strengths and Limitations of in situ Raman Spectroscopy in
Neurosurgery: Spontaneous versus Coherent

There are currently a number of advantages of SR systems over CR systems for clinical spec-
troscopy use. Specifically, since SR is a linear process, it allows for several leniencies in the
system design, such as:

1) The use of a continuous laser source rather than a pulsed laser, allowing for a smaller, less
expensive system.

2) The use of standard silica optical fibers for transporting optical energy from the laser
output to the patient. Pulsed laser systems (required for CR) are plagued by pulse-
deteriorating nonlinear effects occurring during their transport through a dispersive media
(such as silica optical fiber).67 Therefore, pulsed laser systems are often equipped with
expensive, specialty optical fibers designed to decrease nonlinear effects. This greatly
increases the cost and fragility of a system.

3) The linear nature of SR signal generation means that the light does not need to be focused
to produce the SR spectra. Resolution aside, this is an advantage as a larger excitation
spot-size decreases the overall irradiance on the tissue.

4) SR is linearly proportional to the concentration of molecules, allowing for direct molecular
quantification. SRS shares this advantage. However, there are techniques to achieve linear
proportionality with CARS.48,68

CR is best exploited in imaging systems due to its intrinsic optical sectioning and rapid con-
trast at a single molecular vibrational mode. However, there may be niche uses for CR spec-
troscopy independent of the imaging capability. Due to the small excitation volume (<10 μm
diameter), CR spectroscopy can provide high-resolution sensing, allowing for the delineation of
small tissue structures, such as deep brain nuclei. Furthermore, due to the optically sectioned
signal, probes can be designed so that excitation occurs far from the fiber tip, even on the other
side of protective materials, without sacrificing collection efficiency (as would be the case for
confocal SR). This is especially useful if the probe must be placed within a biocompatible sleeve
having its own Raman signal at the interrogation wavelength.69,70 Although the small excitation
volume also means that the optical energy must be focused and confined to a small volume
(therefore limiting the translational value), improved fiber lasers may decrease the required
irradiance dramatically.
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4.3 Rapid Spectroscopic Blood Vessel Detection: An Unmet Clinical Need

There is a clinical risk of hemorrhage when performing closed neurosurgical procedures (i.e.,
DBS and biopsy) since the surgeon cannot see oncoming blood vessels. Although other optical
systems have been presented to fill the clinical need, Raman technologies have not yet been fully
exploited for this task. Recently, a translational success was presented using intraoperative OCT
for accurate blood vessel detection and size estimation from within a standard biopsy needle
during neurosurgery.18 Other optical technologies that have investigated blood vessel detection
in neurosurgery are LDF and DRS; however, the ability to measure blood vessel size using OCT
is a significant advantage for risk assessment.12,71,72

To minimize the number of optical probes used during a single procedure, it would be ideal
to have a probe capable of both blood vessel detection during needle descent and tumor margin
detection. Such a probe could be either Raman or OCT, or size permitting, a multimodal
combination.

4.4 Rapid and Portable Raman Microscopes for Operating Room
Histopathology

Histology is time-consuming, requiring fixation, sectioning, and staining of freshly excised tis-
sue. Furthermore, stains require interpretation that can prove challenging or ambiguous even to
trained pathologists. Raman technologies, however, provide molecular information with minimal
tissue preparation. This would be particularly beneficial in cases where delayed diagnosis could
lead to possible repeat surgery because of residual cancer tissue. In this section, we will overview
the work that has been done toward vibrational imaging systems for intraoperative ex vivo neuro-
pathology, typically with the objective of providing rapid point-of-care pathology information
during surgical interventions.

SR microscopes have proven fundamental to dissecting Raman differences in neuro-
pathology;73–76 however, they are traditionally too slow to be used intraoperatively, requiring
hours to provide images of tissue slides at microscopic resolution. On the other hand,
CR systems built upon the molecular knowledge acquired using SR have shown potential for
clinical translation.

The first use of rapid CARS imaging for healthy and cancerous mouse brain tissue delin-
eation was by Evans et al. in 2007.77 This was implemented ex vivo on an orthotopic human
astrocytoma mouse model, and the tumor boundaries were defined by the reduced CH2 signal in
the tumor regions. Since then, there has been a considerable push for CARS-based histology.
In 2014, Uckermann et al.78 demonstrated a reduction in lipid signal in infiltrative tumor regions
in an orthotopic glioblastoma and brain metastasis mouse model using CARS. By combining
CARS with modalities such as two-photon excited fluorescence (TPEF) and second harmonic
generation (SHG), detailed images of tissue with structures such as extracellular matrix, blood
vessels, and cell bodies could be created. Other groups have further demonstrated the ability of
intrinsic TPEF and SHG to aid CARS in brain cancer histology.79 Galli et al.80 also performed
multimodal imaging on excised human tissue samples after 5-aminolaevulinic acid (5-ALA) was
preoperatively administered and showed that it did not interfere with the CARS signal. In 2019,
the group used the same multimodal approach in an endoscopic setup and demonstrated that the
findings were comparable to those in situ.81

The main issue with using CARS for histology applications is the low vibrational contrast
from proteins, usually represented by CH3 contrast. This somewhat limits the ability of
CARS images to be directly compared with the gold standard of hematoxylin and eosin
(H&E) staining for pathology.82 SRS, on the other hand, does not suffer from this shortcoming.
In 2012, Freudiger et al.82,83 first used SRS to create images with H&E type information using
the vibrational contrast from only CH2 and CH3 bonds. A year later, the group showed a high
correlation between SRS histology and H&E staining (κ ¼ 0.98) for glioma detection in
mouse brain tissue.52 Using a backward-illumination and detection SRS microscope, the group
guided the resection of a mouse brain tumor in vivo (Fig. 2).52,84 In 2015, the group reported
continued progress in using SRS histology to accurately detect and automatically classify
tumor infiltrated tissue sections with high accuracy in human brain.53 This suggested the
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feasibility of pathologist-free interpretation of tumor margins for rapid-feedback in the oper-
ating room.

In 2016, Lu et al.85 took the translatability a step further by analyzing fresh human samples,
showing that some additional discerning features seen on SRS images were lost in the tissue
preparation phase of H&E staining. A particularly innovative aspect of this work is that the
images are freely available to help improve diagnostic training in the future.86 Made possible
by advances in portable and robust fiber laser systems,87 the first true fruition of CR in situ
potential was presented by Orringer et al.54 in 2017, wherein the group reported a portable
clinical SRS system for intraoperative ex vivo neuropathology [Fig. 3(a)]. Using this system,
freshly resected tissue sections were compressed and imaged within the operating room. By
taking several small field of view (FOV) images, they created interpretable SRS histology
mosaics on the order of 2.5 min. In terms of output, the Raman information was used to digitally
recreate H&E type staining [Fig. 2(c)] and to perform automatic tissue classification using these
images. The optical characteristics of the system are presented in Tables 3 and 4. Furthermore,
the system has remained in use for over a year within the operating room without problems or
realignment, which speaks to its robustness. This is a point not often mentioned in optical reports
but imperative in clinical designs. In 2018, the group reported the use of this system for in situ
pediatric brain tumor classification with 100% accuracy.95

Fig. 2 SRS contrast in brain tissue: (a) Epi-SRS images of fresh brain slices from normal mice
brain in various brain regions. Lipids are shown in green and proteins in blue. Referring to the inset
subfigure labeling: (A) 2-mm coronal slice, (B) cortex, (C) hippocampus, (D) corpus callosum,
(E) choroid plexus, (F) hypothalamic nuclei, (G) habenular nucleus, and (H) caudato-putamen.52

(b) Brightfield and SRS imaging through cranial window, 24 days after implantation of human GBM
xenografts, for comparison of information. Referring to the inset subfigure labeling: (A) Same FOV
bright-field and SRS image of xenograft boundary. Brightfield appears normal, whereas SRS
microscopy within the same FOV demonstrates distinctions between normal and tumor-infiltrated
areas. (B)–(D) Higher-magnification views of tumor (B), at the tumor–brain interface (C), and within
normal brain (D). Taken from Ref. 52. Reprinted by permission from AAAS. (c) Comparative exam-
ples of processed SRH and H\&E images of gliotic brain tissue, medulloblastoma, anaplastic
astrocytoma, meningioma, glioblastoma, and metastatic carcinoma. These images were used
in a web-based survey to compare diagnostic outcomes using the two histological methods.
Taken from Ref. 54. Reprinted by permission from Springer: Nature.
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Finally, in 2018, Bae et al. presented an epi-illumination and detection hyperspectral SRS
system for the subtyping of glioblastomas using HWN spectra.91 Technical information about
the systems mentioned in this section can be found in Tables 3 and 4.

4.5 Toward Raman Endoscopes for Label-Free Imaging of Intact Tissue in
Neurosurgery

SR systems have dominated clinical implementation of fiber-delivered spectroscopy, whereas
CR systems are the more popular option for preclinical biological imaging applications.
This creates a crossroads at imaging endoscopy for the two types of modalities. On the one
hand, SR systems used for imaging (i.e., moving beyond single-point) are currently too slow
for in vivo imaging as the signal is intrinsically weak and dispersed spectrally. On the other hand,
CR systems traditionally require bulky lasers and complicated optical transport methods for the
high-peak power pulses and provide restricted spectral information. However, there have been
considerable technological advances in the past decade for both system types showing that vibra-
tional endoscopy in neurosurgery is close to a reality.

To date, there are few SR imaging endoscopes reported and none have been deployed for
neurosurgical improvement. There have, however, been attempts at handheld systems for meso-
scopic Raman imaging. St-Arnaud et al.89,96 presented two iterations of a macroscopic wide-field
Raman imaging system with ∼1 cm FOV and <400 μm resolution using a multicore imaging
fiber for image transport and a tunable filter in the detection path for temporally encoded Raman
spectra [Fig. 3(c)]. Although the system required ∼1 min of integration time and relatively high
average optical power, the wide-field illumination kept the irradiance levels low. In the future,
specific Raman bands could be selected for imaging to decrease imaging time.

CARS endoscopes have been under investigation since 2006, when Légaré et al.97 presented
backward imaging of polystyrene beads using a single-mode fiber for both illumination and
collection. Subsequently, other studies have improved our understanding of the inherent limi-
tations of traditional silica-based CARS endoscopes.98,99 Due to these limitations, specialty fiber
optics for pulse delivery with reduced dispersion and background Raman signal have been
investigated.100–102

Fig. 3 Translational Raman imaging systems. (a) On cart SRS microscope for intraoperative im-
aging of freshly resected brain tissue. Taken from Ref. 54. Reprinted by permission from Springer:
Nature. (b) Fiber-delivered, Handheld SRS microscope. Taken from Ref. 88. Reprinted by per-
mission from American Chemical Society. (c) Handheld widefield SR imager with large FOV.
Taken from Ref. 89. Reprinted by permission fromWiley. (d) Multimodal CARS, TPEF, SHG endo-
scope used to image human colon. Taken from Ref. 90. Reprinted by permission from Springer:
Nature.
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However, CARS endoscopes with the possibility for clinical translation have only recently
been reported. Although none of the systems have been used in vivo or in brain tissue, these
promising candidates for neurosurgical use will be included here. In 2017, Lukic et al.93

presented a multicore imaging fiber system that allowed for multimodal CR imaging with no
moving parts at the 8-mm outer diameter probe tip. Using this system, they imaged a skin tissue
sample with 300-μm FOV and a 10-s acquisition time. Although the probe is quite large for
neurosurgery, considerable downsizing could be possible with micro-optical components. In
2018, Lombardini et al.90 reported a high-performance CARS endoscope with <1 μm resolution,
capable of producing CARS images of a 310 × 310 μm FOV in only 0.8 s [Fig. 3(d)].The outer
diameter of this probe is 4 mm, and images were presented on fresh colon tissue. This system is
also capable of variable FOVs and multimodal imaging. The high performance achieved is
mainly due to the sophisticated design, using specialty optical fibers (double clad, Kaggome
lattice) and a precision-spliced microlens. Although this may seem fragile for the clinic, it is
part of the trade-off for high-performance imaging systems. Finally, also in 2018, Zirak et al.
presented a 2.2-mm outer diameter rigid CARS endoscope (187-mm in length) for neurosurgery
applications. The endoscope was shown to be capable of high resolution, fast CARS imaging
with the smallest outer diameter to date.94 The technology is enabled by recent advances in
GRIN lens technology, whereby long versions of the image-conserving fibers (previously used
for in vivo CARS endoscopy in mice46) are now capable of being manufactured. However,
the system still uses large free-space lasers and an optic table for alignment. Therefore, while
it is promising, some engineering is required to make the system fibered and ready for the
clinic.

In 2010, Saar et al.84 presented the first report of fast epi-detected SRS with acquisition times
of ∼100 ms using 50 mW for both the pump and Stokes wavelengths. However, the detection
scheme in the report used a 10 × 10 mm photodiode with a hole drilled in the center, through
which the excitation lasers were focused. A year later Saar et al.103 presented a scanning-fiber-
endoscope version of the system using ∼130 mW total power for excitation and the same
detection apparatus; in vivo work using the device has not been presented since. In 2018, build-
ing on earlier work in delay-line tuning, Liao et al.88,104 presented a handheld hyperspectral
SRS microscope capable of HWN spectroscopic images (15 cm−1 spectral resolution) on the
order of 3 s [Fig. 3(b)]. Using this system, the team imaged sections of healthy and cancerous
canine brain tissue, but did not go into much detail on the ability to distinguish the two sam-
ples. Technical information about the systems mentioned in this section can be found in
Tables 3 and 4.

4.6 CARS or SRS Endoscopy

SRS has improved nuclear contrast in comparison with CARS due to a reduced nonresonant
background that allows for faster imaging speeds of molecules at low concentrations.48,83,105

However, successful systems imaging in the backward (epi) direction using SRS are scarce
in comparison. In microscopy, this is likely because CARS can be more easily incorporated
into traditional laser scanning microscopes used for TPEF and SHG. In clinical applications,
however, the main hurdle for SRS is the increased complexity of signal detection, made even
more complicated with the push for portable fibered lasers. Gottschall et al.106 provide a good
resource for understanding the benefits of each CR modality in their review on advances in laser
concepts for multiplex CARS.

Another factor that can play a considerable role in clinical applications is the operability of
the system under ambient lighting. SRS has an advantage here for two reasons: (1) the modu-
lated signal can easily be distinguished from background contributions and (2) the wavelength
of detection is further into the near-infrared region. Although traditionally considered an ad-
vantage of CARS in microscopy, the blue-shifted signal generation is a burden in the clinic as
the detected signal is often near the visible region where there are strong surgical lighting
contributions. This could be circumvented by pushing CARS sources further into the NIR
region.
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5 Optical Exposure to Brain Tissue

There are limits to the amount of optical irradiance that can be introduced into a biological
system without causing serious cellular damage. The maximum permissible exposure (MPE)
of continuous-wave (CW) optical radiation for tissues such as the retina and the skin can be
calculated from international standards.107,108 There is also an inherent danger of laser light acci-
dentally being shone directly into an eye at any point during a laser’s operation. Although this is
a serious challenge in designing clinical laser instruments for ethics approval and eye-safety, here
we speak more about the dangers of deliberate laser–tissue interactions and assume that the
proper safety eye-wear, or other appropriate risk mitigation strategies (e.g., laser activation only
upon tissue contact with an imaging probe), are being used in the operating room.

Although the international standards provide a convenient calculation for the MPE of CW
radiation, they should not necessarily be used as a guideline for Raman systems investigating
brain tissue. The optical and thermal properties of skin and retina differ considerably from brain
tissue, and the higher water content of the brain results in a lower conversion of photon energy to
thermal energy.109–111 Moreover, the standards themselves are not designed for deliberate laser
exposure during medical procedures.107,108 To make matters more complicated, brain sensitivity
to thermal damage is somewhat unclear. Reports of minor local temperature changes of only 2°C
have been shown to cause thermal damage to metabolically active brain cells.111 However, it has
also been shown that the awake animal brain naturally fluctuates in temperature within this range
of 2°C.112 Furthermore, in terms of photothermal damage at the cellular level, it has been shown
that injuries are reversible for temperatures that have increases of 6°C.113

The photo-induced effects of CR systems are particularly complicated due to (1) high-power
density, (2) focal point scanning, and (3) nonlinear damage such as photochemical ablation and
optical breakdown.114–116 Due to short-pixel dwell times in rapid focal point scanning, instanta-
neous heating through linear absorption is often considered negligible in comparison with non-
linear damage for multiphoton systems.114,115 However, continuous scanning of the same FOV
can produce a volumetric heating effect that must be accounted for, as shown in Refs. 72 and
117. In 2001, Hopt et al. described a general formula for the tissue damage rate D that was
proportional to the optical intensity raised to the n’th power (Pn), the repetition rate (frep), and
the pulse width (τpulse) of the laser. Using this information, Hopt and Neher explained an optimal
CR system that can maximize signal while minimizing damage.114 Such a system for clinical CR
would operate in the NIR (pump and stokes ¼ 1000 to 1500 nm), have a relatively low repeti-
tion rate near 1 MHz, and use pulsewidths between 1 to 10 ps, operating at about 30 mW total
average power.114

6 Data Analysis for Spectroscopic Information

Working with Raman data presents multiple challenges: Raman signal is intrinsically weak, and
complicating factors such as excess blood, surgical lighting, and device manipulation can
exacerbate this. Furthermore, living tissues are complex and dynamic systems, composed of
thousands of interacting molecules that are heavily influenced by external factors.118–120

Competencies at the intersection of signal processing (spectral, image-based, or a combination
of both), data mining, and machine learning (ML) are essential to the design of cutting-edge
biomedical RS systems.

6.1 Spectra Data Processing

Raw Raman acquisitions are characterized by low Raman signal, high amounts of shot noise, and
intense signal from background sources (e.g., AF and ambient light in SR, coherent background
in CARS).63 Signal processing aims to maximize the Raman component of the acquired signal
while minimizing the contribution of these other processes. As an example, in SR, a complete
signal processing pipeline generally includes truncation of the signal to the desired spectral
range, correction for ambient light, cosmic ray removal, correction of the spectra for the system
response with a standard measurement, background removal, smoothing of the spectra to remove
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high-frequency signal associated with shot noise, normalization, and data quality assessment
(Fig. 4).119

Following cosmic ray removal and correction for system response, the most important
remaining signal contribution in SR is AF, a spontaneous process resulting from the emission
of light from endogenous tissue fluorophores including elastin, tryptophan, and nicotinamide
adenine dinucleotide.121 Even with proper hardware, AF intensity can be orders of magnitude
higher than that of Raman scattering.122 AF results in a broad spectrum that can underlie the
narrow Raman peaks, making baseline estimation a critical step in the signal processing rou-
tine. Many techniques exist to mathematically estimate and remove the background in SR,
leveraging the smooth and predictable decay of its contribution throughout the spectral range.
Polynomial fitting of the spectra is the most widely used technique, but it heavily relies on
expert knowledge to select the proper parameters and avoid over- or under-fitting the
signal.119,123 To create completely automated routines, more recent algorithms that rely on
iterative fitting of the signal with sophisticated cost functions ensuring an improved fit while
minimizing expert intervention have surfaced.124–127 Nevertheless, in biological experiments,
the background-generating processes are not always clearly identified, resulting in a correction
that is based more on spectral morphology than exact comprehension of the underlying
phenomenon. Some authors even argue against this step to avoid altering the spectral shape
in unpredictable ways.128

(a)

(b)

(c)

(d)

Fig. 4 Spectral processing of raw Raman signal in biological tissue. (a) Raw Raman measure-
ment (blue): during the acquisition, a background measurement is also recorded with the laser
turned off to correct for ambient light. After each experiment, an acquisition on a Raman
Standard with known Raman response is used to correct for artifacts from the acquisition system.
(b) Baseline correction: a curve fitting algorithm (pictured here: rolling ball algorithm) is used to
estimate the shape of the baseline signal, which mainly consists of tissue autofluorescence. This
baseline curve is then subtracted from the acquired signal. (c) Truncation to desired spectral
range: spectral regions with poor Raman information or exhibiting artifacts from the experimental
design (e.g., silicate substrate) or correction algorithm are removed. (d) Smoothing and
normalization: high-frequency noise is removed from the signal and the spectra are expressed
in normalized units so that they can be compared across samples and experiments. A.U., arbitrary
units.
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6.2 Data Analysis Methods

Although RS has historically relied on the visual assessment of the spectra, the complexity of the
signal acquired in living tissue has necessitated the reliance on automated algorithms.129 Most
clinical applications of RS for neurosurgery rely on three types of analytical tasks: supervised
ML (classification), spectral imaging, and biomolecular interpretation of spectral features.

6.2.1 Supervised machine learning

Supervised learning consists of training an algorithm, for example, to recognize tissue phenotype
from its spectral signature. A data matrix Xn×p containing n spectra represented each by p var-
iables or features (e.g., the signal intensity value for each wavenumber) is associated with a
vector of labels y (e.g., the tissue diagnosis from the neuropathologist) [Fig. 5(a)]. The algorithm
or function f for which fðXÞ ¼ ŷ is optimized to minimize the loss function Lðy; ŷÞ, where ŷ
is the model-predicted tissue label. The result of the loss function is called the training error.
The testing error is calculated from predictions on new data not used for training. Common
supervised learning algorithms are described in Table 5.

Feature engineering is the transformation of the processed signal into a set of variables that
will be used as representation for the learning task. It ranges from selecting a subset of all avail-
able intensities associated with different wavenumbers to generating new variables and perform-
ing complex mathematical transformations of the data to unveil properties not necessarily
conveyed by the original spectrum. In RS, this transformation is critical because of two proper-
ties of the data: high dimensionality and sparsity of the feature space.130 High dimensionality
refers to the large number of available features (e.g., between 500 and 1000 spectral bands in SR)

(a) (b)

(c) (d) (e)

Fig. 5 ML for RS. (a) The initial data matrix is composed of n spectra and p1 variables, where each
variable represents an intensity at a particular wavelength. A standard, processed Raman spec-
trum can contain between 500 and 1000 variables. Each spectrum is associated with a label (e.g.,
high-grade glioma versus normal tissue). (b) Feature engineering algorithms. These algorithms
are designed to change the representation of the initial spectra matrix into one that will enhance
performances of the ML predictions. From left to right: PCA, feature filtering, and feature extraction
(peak fitting). Each method is described in the main text. (c) The engineered data matrix. Each
spectrum now contains p2 variables, which are the results of the previously applied feature engi-
neering methods. These variables could be PC scores, intensity at specific Raman shifts, peak-
fitted peak height, etc. (d) Supervised learning algorithms. Different mathematical functions can be
trained to separate the spectra with distinct labels based on the values of their variables. From left
to right: LDA, SVM, and decision tree. (e) Testing of the ML model. The different ML pipelines
(including feature engineering) are trained on a subset of the data and tested on an independent
subset. The predictions of the models are compared with the true labels of the testing set, and
prediction performance is evaluated. A ROC curve can be drawn to estimate the performance of
the prediction at varying levels of sensitivity and specificity. The best performing threshold is
the point on the curve closest to the left upper corner (red star). PC, principal component;
PCA, principal component analysis; and AUC, area under the curve.
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Table 5 Feature engineering and supervised ML algorithms for classification of RS in brain tissue

Task Technique Description Pros Cons

Feature
engineering

PCA Unsupervised algorithm.
Extracts the projection of
the data matrix onto a set of
linearly uncorrelated principal
components.

Agnostic to tissue
classes (unbiased)

Expert intervention is
impossible

Effective feature
reduction

Agnostic to tissue classes
(can reduce classification
performances)

Fast

Removes correlated
(redundant) features

Susceptible to features
unrelated to the
classification task (e.g.,
noise and artifacts)Effective visualization

technique

Feature
extraction

Generate new variables from
the spectra (e.g., band fitting)
or by transformation of already
available variables (e.g., peak
ratios).

Increases the
information content
of the data

Requires expert knowledge

Interactions are
accounted for

Time and effort intensive

Better captures
molecular processes

Requires high data quality

Feature
selection

Identification of the variables
that show highest correlation
with class (filter method). Can
be performed as a second
feature-engineering step, after
PCA or feature extraction.

Simple Biased

Task specific Prone to false positives

Supervised
learning

LDA Estimates a set of multivariate
normal distributions that better
explain the data and assigns
new observations to the class
with highest likelihood.

Simple Assumes normality of
distribution

Fast Assumes homoscedasticity

Low data
requirements

Requires independent
variables

SVM Finds a hyperplane that
maximizes the margin between
the support vectors, i.e., the
observations of each class
closest to the hyperplane.

Adaptable to
nonlinear feature
spaces

Performance is highly
dependent on
hyperparameters

Fast when N is small Requires engineered
features

Easily implemented

Decision
trees

Nonparametric model that
assigns a decision function to
each variable. Decision trees
can be aggregated to increase
stability by averaging (boosted
trees) or training over many
subsamples (random forests).

Intuitive Unstable by itself

Able to model
complex feature
spaces

Aggregation is time
consuming

ANN Connectionist model that
considers each variable an
input neuron. These neurons
are subsequently connected to
a predefined number of hidden
layers through an activation
function. These hidden layers
connect to an output layer that
generates the class prediction.
ANN with more than one
hidden layer are called deep
neural networks.

Adapts to any
nonlinear function

High data requirements

Highly customizable Performance is highly
dependent on
hyperparametersHigh performances

Does not require
feature engineering
(deep neural
networks)

Computationally intensive
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needed to describe a single observation. Feature sparsity means that most of this information will
be unhelpful in discriminating different tissue phenotypes: all tissues are composed in majority
of the same organic molecular compounds and many of the molecular markers are redundant
across the spectral range.

In the neurosurgical literature, the most common feature engineering algorithm is principal
component analysis (PCA).56,59,74,76,128,131–139 PCA iteratively finds the orthogonal vectors (or
principal components, PC) that maximize the variance in the dataset and then stores the pro-
jection of the data point upon each PC [Fig. 5(b)]. The PCs are ranked by their eigenvalues,
or amount of variance explained; therefore, most of the variance in the dataset can be expressed
in the first PCs. Subsequent PCs can be discarded, resulting in a compressed dataset. The number
of retained PCs ranges between 2 and 40 depending on either predefined criteria such as amount
of explained variance55,56,74,134–136,138,139 or post hoc criteria, e.g., selecting PCs that could better
differentiate the different tissue types.76,131–133 The popularity of PCA in RS can be attributed to
its unsupervised nature: as it is agnostic to labels, it is considered unbiased.140 Moreover, most
authors report that over 99% of the variance of their dataset is expressed in the first 2 to 40
PCs55,56,73,134–136,138,139 and the orthogonality of the extracted features can improve the efficiency
of classical multivariate linear models.141

Another feature engineering technique involves selecting a small subset of the best features
and discarding all others. These features can be identified by (1) simultaneously assessing their
individual correlation with the outcomes (called filter methods),142–145 (2) iteratively evaluating
changes in ML performances when excluding/including each feature into the model (wrapper
methods),146 or (3) adding penalization terms to the optimization of the training algorithm so
that some of the features’ contributions are reduced to zero (embedded methods).147 The features
are selected either directly from the processed spectra or from previously extracted features, as
part of a two-step feature engineering pipeline.131–133,136,148 Most studies involving brain tissue
rely on filter methods to identify important features,149,150 and in some cases, features are
selected manually.148,151,152 In proteomics and genomics studies, performance-based and opti-
mization-embedded have proven superior to filter methods in recovering truly important features
in sparse, high-dimensional datasets.153,154 Embedded methods have recently started to emerge
in the biomedical Raman literature to identify crucial features, but not as part of a supervised
learning task.155

The last feature engineering strategy is the generation of new features from the existing data.
For example, the height ratio of two peaks can carry important information such as summarizing
the lipid-to-protein content of a sample. Peak ratios have proven useful in discriminating white
and gray matter in the brain and in differentiating between normal, necrotic, and malignant tis-
sue. The shape of the Raman spectrum can also be used as marker of malignancy.148,155 In their
study, Stables et al. selected eight target bands, for each of which they calculated the centroid
(weighted mean of the signal in the defined region), skew (asymmetry of the intensity values),
and kurtosis (prominence of certain intensity values from the rest of the bands). From this, a
sequence of 10 to 30 contiguous variables within a Raman tissue band can be represented by two
or three features or parameters, resulting in enhanced ML performances [Fig. 5(b)]. Although
this approach to feature extraction is extensively used in the Raman literature,156 it is rarely use in
neurosurgery-related research.140,157 Opponents of band fitting for biological Raman signals
argue that the selection of target bands cannot be reliable in the case of low SNR signal exhibit-
ing a high number of potential peaks and that our knowledge of Raman generating processes in
tissue is not strong enough to limit our analysis to a few critical bands.140,157 Over time, more
authors may begin to incorporate band-fitting routines to the analytical pipeline as it is an effec-
tive way to summarize the vibrational profile of a tissue in a biochemically meaningful manner,
while allowing for easy statistical manipulation and even further feature engineering.155

6.2.2 Classification

The classification tasks comprise of the selection, training, and evaluation of an ML model that
will map the engineered feature matrix to a vector of observed tissue classes [Figs. 5(d) and 5(e)].
Linear discriminant analysis (LDA) is the most tried and tested Raman classification model in
RS. LDA assumes that all observations with the same label originate from multivariate normal
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distributions with equal covariance and assigns new observations to the label with highest like-
lihood. Because it is vulnerable to highly correlated features, LDA is often preceded by PCA.
Despite its widespread adoption, LDA relies on a set of assumptions that are not respected by
Raman data: multivariate normality of the distributions, independence of the predictors, homo-
scedasticity (homogeneity of covariance across labels), and few outliers.158 Furthermore,
because of the often inconsistent SNR characteristics of biological acquisitions, researchers need
algorithms that are robust, i.e., that are not overly sensitive to noise in the data. The complexity of
biological Raman data and easy access to ML libraries have motivated the reliance on more
flexible models for this problem.

The support vector machine (SVM) learning model finds the hyperplane that optimizes the
distance between itself and the closest point of each class it tries to separate.159 Using kernels,
SVM can adapt to a nonlinear feature space with minimal computational cost. Authors that have
used SVM were able to separate up to seven tissue classes with acceptable accuracy using SR
signal from ex vivo brain tissue.134,138,148,160 However, extensive feature engineering was neces-
sary in all cases. In the anticipation of the translation to clinical practice, other types of models
are being explored to further increase predictive performances of Raman-based systems.
Decision trees are nonparametric models in which each internal node represents a decision
function based on an input variable. Ensemble methods such as bagging and boosting, which
work by aggregating multiple decision trees trained on different subsets of the data, can signifi-
cantly improve the performances of decision trees.161 Boosted decision trees have shown success
in classifying between normal tissue and glioma without using any prior feature engineering.11,57

Artificial neural networks (ANN) have received the most attention in ML research over the last
few years due to their potential deep structure and their ability to adapt to virtually any possible
function.162 In neurosurgical applications, Jermyn et al.64 showed how a simple ANN could
reduce interference with surgical ambient light, while performance of other models was strongly
affected in such conditions. Deep neural network architectures such as convolutional neural net-
works (CNN) have shown great promises in biospectroscopy, with the additional benefit of being
less dependent on spectral preprocessing.163–169 Data requirements to train and optimize such
models are high because of the millions of parameters they contain;170–172 nevertheless, open
access to large Raman datasets and strategies such as transfer learning and novel data augmen-
tation methods (such as the simulation of Raman spectra for DRS analysis173) will make their
adoption possible for biomedical applications in the near future.174

6.2.3 Single band to hyperspectral imaging

Raman measurements acquired at regular intervals over a sample can be assembled into a Raman
image in which each pixel contains a Raman spectrum. Raman imaging can solve several lim-
itations of point probe systems as they can better resolve the heterogeneity of a sample and can
work across scales, from microscopic imaging to widefield, macroscopic imaging. Furthermore,
the contrast in these hyperspectral images can be tuned to contain varying levels of molecular
significance, depending on the way the spectra are processed and analyzed.

Unsupervised learning is a family of ML algorithms that does not rely on the prelabeling of
each observation; instead, they serve to unveil hidden patterns in the data. An example of unsu-
pervised learning is clustering: the dataset is divided into several groups or clusters in which the
similarities between spectra in a cluster are maximized compared with the dissimilarities with
spectra from other clusters. This method has the advantage of accounting for the entire spectral
information available and not just one or two defined bands. Early adopters of this technique
were Koljenovic et al.,136 who used PCA and clustering to assign each pixel to one of 70 to 72
distinct clusters. A supervised model was then trained to map a cluster to either necrotic or vital
tissue, on which the final contrast of the images was based. Other authors have used clustering,
with or without prior engineering, to assign each pixel to a specific cluster and generate the
contrast135,175,176 [Fig. 6(a)].

When more than two clusters (or colors) are used, clustering-based images can become chal-
lenging to interpret. Recent approaches attempt to overcome this limitation and create images
more amenable to visual interpretation. As SR signal is a linear combination of the individual
Raman signals of every molecular compound in a tissue, recovering the coefficients of this linear
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combination can uncover the relative quantity of important molecules from the tissue Raman
spectra. This approach has been referred to as hyperspectral unmixing. The different methods for
linear unmixing are based on three elements: the selection of the basic, reference substances or
endmembers, their spectral signature, and their relative abundance. In brain tissue, vertex com-
ponent analysis (VCA) and N-FINDR are two such algorithms. Both are unsupervised and differ
mostly in their definition of endmember spectra. In N-FINDR, reference spectra from pure
molecular substances are set by the user, and endmembers are set as the spectra with highest
correlation to those reference substances. In VCA, the endmembers spectral signatures are math-
ematically identified based on the variations in the dataset. Importantly, both methods assume
that signal from pure substances are present in the data and that the molecular compounds are
independent.177,178 Applied to brain tissue, VCA and NFINDR were used to create pseudocolor
images with RGB channels, with each channel representing the relative abundance of one of
three endmembers128 [Fig. 5(c)]. The number of distinct channels used to create images varied
from 3 to 9 in some studies, with higher numbers yielding images able to discriminate between
more different molecular components73,74 [Fig. 6(b)]. With this approach, researchers were able
to generate metrics such as nucleic acid content, lipid content, and lipid-to-protein ratio, which
correlated with malignancy in astrocytoma samples.74 An issue with the spectral unmixing of

Fig. 6 Spectral unmixing and clustering-based approaches to Raman imaging in which every pixel
consists of an entire processed Raman spectrum. (a) ML-based approach. A supervised ML
model was used to assign each spectrum acquired in glioblastoma tissue to one of two classes:
vital tissue and necrotic. Left: the Raman image, color-coded with the predicted class for each
pixel (red: vital, blue: necrotic, and yellow: background). Center: H&E image of the sample
(v: vital and n: necrotic). Right: The averaged spectra of the (A) necrotic and (B) vital samples,
with the (C) difference spectrum compared with (D) cholesterol, (E) cholesterol oleate, and
(F) cholesterol linoleate. Taken from Ref. 136. Reproduced by permission from Springer:
Nature. (b) Endmember-based approach. The N-FINDR unmixing algorithm was used to identify
a prespecified number of endmember spectra from a dataset acquired in glioma tissue. Each
spectrum in the dataset is then expressed as a linear combination of these endmembers. The
endmembers were assigned to cholesterol ester (1, magenta), phopsholipids (2, green), DNA
(3, blue), proteins (4 to 6, red), beta-carotene (7, yellow), unsatturated fatty acids (8, yellow), and
phophate buffer solution (9, cyan). Each pixel in the Raman image is then colored based on the
relative abundance of each endmember in its spectrum. Taken from Ref. 74. Reproduced by per-
mission from Springer: Nature. (c) Endmember-based approach. VCA was used to find three end-
member spectra in a dataset acquired in glioblastoma samples. Each endmember was assigned
to an RGB channel (spectra 1, 2, and 3). The relative abundance of each endmember in every
pixel is used to color-code the Raman image (A). The H&E image (B) is provided as a comparison.
Taken from Ref. 128. Reproduced by permission from the Royal Society of Chemistry. VCA:
vertex component analysis.
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Raman pixels is the difficulty in assessing the reliability and variance in both the endmembers
definition and the relative abundance estimation. Although spectral unmixing has the advantage
of harnessing information from the entirety of the Raman spectral range, more recent work set-
tled for extraction of specific, predefined spectral features such as band ratios and single-band
intensities to represent independent molecular information.75,179 Nonetheless, it demonstrated a
90% pixel-to-pixel classification accuracy between white matter, gray matter, and pathological
brain tissue (glioblastoma, necrosis, or infiltrating cancer).75

Raman images can help pathologists visualize molecular information not present in H&E
stained samples, but they could also be amenable to ML classification algorithms. This would
considerably reduce time-to-diagnosis during neurosurgeries, where the aggressiveness of the
resection can be dictated by a preliminary diagnosis provided by a neuropathologist from a
frozen tissue sample. Recently, Hollon et al.180 used a CNN to classify Raman-based images
of freshly excised brain tissue into one of 13 histologic categories. In a prospective, multicenter
study, they demonstrated a classification accuracy of 94.6%, whereas automated classification
based on conventional H&E staining was 93.9%.

6.2.4 Biomolecular identification of spectral features

Despite inferring a diagnosis for a tissue sample, Raman spectra can be interrogated to describe
the biochemical content of a sample. In a static system composed of a single molecular com-
pound acquired in perfect experimental conditions, the Raman features of the distinct vibrational
modes are directly observable, and subtleties such as a slight peak shift or peak widening can be
used to derive changes in the system.181 In biological tissue, computational strategies are needed
to deconstruct the more complex Raman spectra.163,182

A widespread approach is the comparison of specific spectral features (e.g., peak heights,
band intensities, and band-to-band ratios) between the averaged spectra of each tissue pheno-
types [Fig. 7(a)]. These bands are recovered either from the difference spectra between two tissue
phenotypes or by analyzing the relative importance of each Raman bands after applying PCA.
In brain tissue, Raman signal originates predominantly from nucleic acids (782, 829, and
1339 cm−1), lipids (1063, 1086, 1131, 1268, 1300, 1441, 1659, 1670, and 1739 cm−1), amide
I (1659 cm−1) and III (1268 and 1300 cm−1), and amino acids such as tyrosine and proline (829,
852, and 877 cm−1), tryptophan (877 cm−1), and phenylalanine (1004 and 1032 cm−1). For the
HWN region, the CH-stretching of lipids (2845 and 2885 cm−1) and proteins (2930 cm−1) are
the predominant molecular markers. As a result of its high cellularity and myelin content, lipids
are the brain tissue’s main constituents.175,183 The CH2─CH3 deformation at 1441 cm−1 often
dominates the spectrum. The signal from amide bands is also important, but it strongly overlaps
with lipid bands.56,131,184 Markers of glioma include the phenylalanine band at 1004 cm−1, the
nucleic acids/CH2─CH3/amide III band at 1339 cm−1, and the carotenoid bands at 1159 and
1523 cm−1.56,75,131,136,149,152,183–185 For other bands, studies show conflicting associations. In
some cases, the nucleic acid signal is strongest in tumor and necrotic tissue, whereas others
demonstrate a decrease in malignant regions. The disagreements on how Raman signal changes
as a result of pathological states stem from the multiple differences in experimental design from
one study to another (e.g., which types of tissue are compared, spatial resolution of the systems,
tissue processing before Raman acquisition, and analytical methods used to process and compare
the Raman signals), along with low sample sizes (often <10 patients).186

Peak ratios are also considered to effectively summarize the lipid-to-protein content of a
sample, with good discriminating power between white and gray matter and between nor-
mal brain and cancer. In these cases, involved bands included the 1442∶1662 cm−1 (or
1441∶1659 cm−1) peaks,75,187,188 the 1299∶1439 cm−1 peaks,56 the 1266∶1300 cm−1 peaks,189

and the 2930∶2845 cm−1 peaks.19,52 Although simple and easily interpretable, these methods of
spectral interpretation are limited by their inability to model complex interactions between the
molecular species present in the living tissues.

As presented in the previous section, Raman linear unmixing (estimating the relative con-
tribution of different pure endmembers to the total Raman signature) can help recover the tissue’s
biological content. Using VCA or NFINDR algorithms, authors concluded that cholesterol
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Fig. 7 Chemometrics analysis of Raman data. (a) Comparison of IDH mutation status in samples
of human glioma. (A), (B) the difference spectrum (green) between IDH-wt (blue) and IDH-mut
(red) averaged spectrum is used to identify important Raman markers. (A)–(D) Univariate analysis
of the distribution of Raman intensity values at different Raman shifts. Taken from Ref. 151.
Reproduced by permission from Springer: Nature. (b) Spectral shape analysis of normal brain,
glioma, and metastatic human samples. The target regions are selected (a). For each region,
parameters describing the shape of the distribution of Raman intensities inside the regions are
extracted and compared between the three classes (red: normal, green: metastatic, and
blue: glioma). Taken from Ref. 148. Reproduced by permission from the Royal Society of
Chemistry. (c) Analysis of importance of spectral markers between high-density and low-density/
normal brain samples from in vivo human brain tissue.155 (A) The coefficients of a multivariate
linear model are plotted. Features with a positive coefficient value are more prominent in samples
with high cancer density, while negative values are associated with low or absent cancer density.
(B) Visual representation of the spectral markers (peak height, peak width, peak-to-peak and
peak-to-patient-age interactions).
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esters, nucleic acids, collagen, and carotene contributions were higher in high-grade tumor while
general lipid content and both lipid-to-protein and lipid-to-DNA ratios were decreased in malig-
nant tissue.73–75,179 However, the reliability and consistency of this approach in unveiling the
relative quantity of the molecular compound in the interrogated sample has not been thoroughly
validated. It does rely on two important assumptions that may not hold true in biomedical appli-
cations: (1) the dataset of Raman spectra contains signal from pure molecular endmembers and
(2) the quantity of each molecular endmember is independent of the others.177,178

In reaction to this limitation, new approaches to the interpretation of biological Raman data
that embrace the complex structure of the data-generating process and integrate into their models
the uncertainties around the Raman signal and sample diagnosis have emerged. Stables et al.148

selected spectral regions with high discriminating yield between glioma and normal brain sam-
ples, for which they extracted markers of Raman intensity distribution [Fig. 7(b)]. These features
carry more biochemical significance and stability than a signal at a single Raman shift. The
authors also calculated the ratio between every pair of extracted features as an additional feature
ensemble, expanding the idea of interactivity between spectral information to all available var-
iables. Their results demonstrated that the 691- to 771-cm−1 spectral region associated with
phospholipids and amino acids had the highest discriminatory power, followed closely by
637- to 683-cm−1 (nucleic acids and amino acids) and 1073 to 1114 cm−1 (nucleic acids and
phospholipids). However, the samples were formalin fixed paraffin processed and Raman signal
was altered to remove the paraffin-associated bands, which could explain some discrepancies
between their findings and findings from fresh or frozen tissue. Nevertheless, this work was the
first to incorporate systematic interactions between spectral feature as a potential discriminator
between tissue classes, a key step in bridging the gap between classical Raman analysis and more
complex computational pipelines used in other data-driven technologies such as neuroscience,
genomics, and proteomics.

In Ref. 155, a feature engineering process integrating domain-specific knowledge, band-
fitting, and Bayesian optimization was applied to a dataset of in vivo human spectra to identify
key features that differentiated normal or low-cancer density tissue from dense glioma. These
features included nucleic acids and protein bands, mainly collagen, phenylalanine, and tryptophan.
Furthermore, features that were generated by the authors revealed important discriminating
power: pairwise band interactions and interactions between patients’ age and nucleic acid bands.
Importantly, they were able to quantify the uncertainty around the effect size of each feature; this
is especially valuable as chemometric analysis have shown many discrepancies between different
groups.

Other examples of complex analytical techniques include graph-network representations as
a tool to gain insight into the data’s hidden structure, Bayesian statistics to model uncertainty in
data acquisition and interpretation, and deep neural architecture to capture the complex hierarchy
of the data-generating processes. Applied to RS, these emerging techniques will likely expand
the yield and depth of this technology and offer richer information to researchers and clinicians.

7 Future Prospects in Neurosurgery and Neuroscience

7.1 Registering Optical Information in Neuronavigation Systems

In neurosurgery, optical measurement registration will be a critical aspect in the successful
integration of Raman into the treatment protocol. Neuronavigation with infrared trackers and
registration to preoperative MRI has been widely adopted by neuro-oncological surgeons.
Registration of the Raman measurement to MRI images is an important aspect of future develop-
ments in intraoperative vibrational spectroscopy. The potential combination of MRI markers
(such as distance to contrast enhancement, T2- or T1-weighted intensity, and apparent diffusion
coefficient) with Raman-based markers could enhance the navigating environment for the oper-
ating team. In addition, MRI markers could increase the clinically relevant information content
during the labeling phase of the Raman experiments. Spectroscopic measurements are meant to
complement a panoply of factors that influence the extent of resection and minimize damage to
normal brain; therefore, they should seamlessly integrate with the other available modalities.
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In functional neurosurgery, the challenge is different, and while similar to biopsy guidance, it
is more difficult due to the small target areas. In DBS, for example, as the probe descends along
a planned trajectory, the position of the optical measurement must be used to update the pre-
operative imaging to account for any head-frame movement or brain shift.190 Both of these steps
would require electronic drive tools to perform the physical descent to automatically correlate
probe depth with the optical measurement. Although these electronic drive systems do exist for
DBS surgery, manual drive screws are often used, instead, as they are faster. Since the infor-
mation would ideally be merged into the current technologies that surgeons use, partnerships
with commercial providers for stereotactic planning (i.e., Medtronic, Boston Scientific, Abbot)
would greatly facilitate implementation in the operating room.

7.2 Outlook: Neurosurgery

At the present time, we may be nearing a clinical revolution in which pathology no longer
requires visual confirmation by a trained clinician on site. We are seeing examples of this in
the ocular industry in which AI systems for diagnosing ocular pathologies are obtaining
FDA approval.191 Although these systems still remain tools for the physician to aid in locating
abnormalities, this may not always remain the case.

In the case of neuropathology, the diagnosis could soon be achieved intraoperatively using
optical techniques, greatly decreasing traditional diagnostic turnaround time. In such a situation,
optical modalities will compete for a share of the biomedical market and will aim to provide the
greatest advantage to the surgeon. Raman’s key advantage in this respect is the amount of infor-
mation it can provide. The fingerprint type spectra can be used to quantify molecular ratios and
discriminate tissue types in both a single spectrum format and in the form of content-rich hyper-
spectral images. Moreover, these capabilities are only beginning to be fully realized in intact
brain tissue. As measurements are accumulated and sophisticated data science systems evolve
for this application, a whole new Ramanomics field could emerge.192 To achieve this, data shar-
ing will becoming imperative. Properly labeled raw Raman spectra databases are extremely
scarce in comparison with other fields, and this is something that must change if the applied
data science is to advance at a similar rate as other “omic” fields.

Although H&E stained slices are employed as “gold-standard” for labeling of Raman data,
most recent guidelines on primary brain cancer classification are based on various other tissue
markers such as IDH mutation status, which has proven a unique and critical factor in establish-
ing a prognosis orienting treatment for glioma patients.193 Going beyond H&E staining and
understanding how Raman signal changes as a function of these new biomarkers will be an
important challenge of future Raman studies that aim to translate vibrational spectroscopy as
a clinically valid decision-making tool.

The display of information is also an integral discussion point. In the case of Raman spectra,
the raw optical data are much less important to the surgeon than what the optical information
means. In the case of tissue discrimination using a point probe, a simple formulated label may
suffice along with a metric for certainty. In the case of histology, SRH is already capable of
displaying information in a way that would be familiar to the pathologist.54 Although the infor-
mation may evolve to provide more than classical H&E staining, this step is absolutely man-
datory for clinicians to fully understand and accept the new technology.194 In the case of
functional surgery guidance, the live calculated position of the electrode overlaid on the preop-
erative MRI would likely be the ultimate goal.

7.3 Outlook: Neuroscience

The information that is acquired with RS is complex and difficult to interpret; therefore, there is
still much to be revealed from both fundamental and clinical neuroscience research. There are
a number of early stage studies showing the capacity of Raman to image or sense disease bio-
markers such as prion proteins, amyloid beta plaques (Alzheimer’s), alpha synuclein (PD),
and even neurotransmitters, which can be deficient in many neurological and psychiatric
disorders.51,195,196 This work has yet to be extended to human brain tissue in vivo.

DePaoli et al.: Rise of Raman spectroscopy in neurosurgery: a review

Journal of Biomedical Optics 050901-27 May 2020 • Vol. 25(5)



In the future of Raman guidance for functional neurosurgeries, we could imagine the ability
to measure the relative quantities of biomarkers, and therefore the stage of the disease, to help
guide treatment parameters. For instance in PD, the loss of dopaminergic neurons in the sub-
stantia nigra results in a decrease in neuromelanin.197 If Raman is used to guide DBS surgery in
the future, it could also be used to measure either dopamine or neuromelanin concentrations to
give information about the type and stage of the disease.198

Aging—more specifically brain-age—is another interesting topic for RS in neurosurgery.
Considerable research has gone into using MRI scans to show the relation between structural
changes and aging thanks to its noninvasive large-volume imaging.199,200 From this standpoint,
Raman could be useful for complementing and understanding these observed trends, especially
in the case of region-specific lipid changes associated with brain aging.201 Furthermore, as there
is likely an age-dependent change in Raman signatures, this type of data will be critical in age-
matching Raman measurements to make them even more accurate for discrimination.

Looking to the far future, if the ever-growing field of optogenetics is ever applied to humans,
this would imply the implantation of chronic fiber optics within a patient. If this was to come to
fruition, maintained acquisition of Raman measurements from within the brain during stimu-
lation could be possible. Although this would either require considerable downsizing of equip-
ment or an optical fiber port interface on the skin, this remains an enticing prospect for the future.

8 Conclusion

RS can provide label-free biomolecular information rapidly in a noninvasive manner and has the
potential to revolutionize both neurosurgery and neurological research. The laser-based nature of
Raman allows it to be incorporated into point probes, biopsy needles, and microscopes, enabling
its integration into multiple points of the neurosurgical workflow. Specifically, RS has the poten-
tial to improve treatment outcomes by aiding in the detection and delineation of healthy and
cancerous tissues, blood vessels, and perhaps even disease-specific biomarkers. Although this
is promising, designing a Raman system for neurosurgical applications demands significant
technical considerations both in terms of hardware implementation and data science methods,
as is summarized in this paper. It is our hope that this resource helps guide future developments
in RS systems for neurosurgery.
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