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Abstract

Significance: 5-Aminolevulinic acid (5-ALA)-based fluorescence guidance in conventional
neurosurgical microscopes is limited to strongly fluorescent tumor tissue. Therefore, more sen-
sitive, intrasurgical 5-ALA fluorescence visualization is needed.

Aim: Macroscopic fluorescence lifetime imaging (FLIM) was performed ex vivo on 5-ALA-
labeled human glioma tissue through a surgical microscope to evaluate its feasibility and to
compare it to fluorescence intensity imaging.

Approach: Frequency-domain FLIM was integrated into a surgical microscope, which enabled
parallel wide-field white-light and fluorescence imaging. We first characterized our system and
performed imaging of two samples of suspected low-grade glioma, which were compared to
histopathology.

Results: Our imaging system enabled macroscopic FLIM of a 6.5 × 6.5 mm2 field of view at
spatial resolutions <20 μm. A frame of 512 × 512 pixels with a lifetime accuracy <1 ns was
obtained in 65 s. Compared to conventional fluorescence imaging, FLIM considerably high-
lighted areas with weak 5-ALA fluorescence, which was in good agreement with histopathology.

Conclusions: Integration of macroscopic FLIM into a surgical microscope is feasible and a
promising method for improved tumor delineation.
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1 Introduction

In brain tumor therapy, the key factor for improved patient outcome is complete resection.1

Even though fluorescence-guided surgery using 5-aminolevulinic acid (5-ALA)-induced proto-
porphyrin IX (PpIX) allows the surgeon to locate malignant tissue, its use is mostly limited to
high-grade tumors.2 As a consequence, current research has focused on more sensitive detection
schemes to visualize fluorescence that is not visible to the surgeon’s eye. However, most of the

*Address all correspondence to Marco Andreana, E-mail: marco.andreana@meduniwien.ac.at
†Mikael T. Erkkilä and David Reichert contributed equally to this work.

LETTER

Journal of Biomedical Optics 071202-1 July 2020 • Vol. 25(7)

https://doi.org/10.1117/1.JBO.25.7.071202
https://doi.org/10.1117/1.JBO.25.7.071202
https://doi.org/10.1117/1.JBO.25.7.071202
https://doi.org/10.1117/1.JBO.25.7.071202
https://doi.org/10.1117/1.JBO.25.7.071202
https://doi.org/10.1117/1.JBO.25.7.071202
mailto:marco.andreana@meduniwien.ac.at
mailto:marco.andreana@meduniwien.ac.at
mailto:marco.andreana@meduniwien.ac.at
mailto:marco.andreana@meduniwien.ac.at


proposed in vivo methods rely on endoscopic platforms with limited field of view (FOV).3

Hence, visualization methods with increased FOV and working distance (WD) are needed to
inspect larger areas. More sensitive detection of PpIX fluorescence is limited among others
by tissue autofluorescence. Therefore, spectrally resolved fluorescence imaging3 has been pro-
posed to detect nonvisible PpIX accumulations. However, it relies on the knowledge or parallel
measurement of the optical tissue properties. This requires additional measurement channels
making these devices more complex. On the other hand, fluorescence lifetime imaging (FLIM)
relies on the time delay between the excitation and subsequent fluorescence emission and is
thereby intrinsically independent of any intensity variations due to altered scattering or absorp-
tion in the tissue.4

To enable surgeons to use FLIM methods in a clinically familiar manner, we developed a
frequency-domain and raster-scanning FLIM system incorporated into a commercial surgical
microscope. We describe the overall architecture of our device and characterize the system in
regard to future intraoperative use. Finally, we validate our method by imaging human brain tumor
samples and compare the results to conventional PpIX fluorescence imaging as well as histology.

2 Methods

Based on the feedback from neurosurgeons, we opted for a minimumWD of 200 mm. We modi-
fied the assistant’s surgeon port of the surgical microscope (OPMI Visu 200, Carl Zeiss Meditec,
Germany) for integration of the FLIM system and designed a compact scanner block, where we
integrated the fiber port for the excitation laser as well as the beam steering and collimation
optics. The object-sided numerical aperture (NA) computed using Code V was 0.013, implying
a theoretical diffraction-limited resolution of 19 μm. Due to the low NA, we attached the detector
directly to one of the camera ports of the surgical microscope instead of coupling the fluores-
cence light through the scanners back into a fiber. This nondescanned detection scheme is often
found in multiphoton microscopy.5

In brief, the FLIM system is based upon laser scanning an amplitude-modulated 405-nm
laser (phoxX-405, Omicron Laserage, Germany) for excitation and performing a nondescanned
homodyne detection using a sensitive photomultiplier (PMT) as detector (H11901-20,
Hamamatsu, Japan). As shown in Fig. 1, a lock-in amplifier (HF2LI, Zurich Instruments,
Switzerland) generated a 10-MHz sine wave, which was used as analog modulation input for
the laser. The laser was coupled into the scanner block and the galvanometer scanners (Saturn

Fig. 1 Sketch of FLIM surgical microscope. BF, bandpass filter; DAQ, data acquisition card; PMT,
photomultiplier. A figure of the modified microscope head is provided in Supplemental Fig. S1.
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1B, ScannerMax, Orlando, Florida) steered the beam across the sample covering a squared FOV
of 6.5 × 6.5 mm2. Sampling of the field was performed with 512 × 512 pixels. This corresponds
to a step size of 9 μm, which is close to the step size required for Nyquist limited sampling.
Although the FOV could be enlarged to up to 20 × 20 mm2, the larger FOV would require longer
acquisition times of around 10 min when sampling with the same step size. The incident laser
power on the sample was 3.9 mW. Excited fluorescence was blocked by a 590- to 740-nm band-
pass filter (665/150 BrightLine HC, Semrock, Rochester, New York) and detected by a PMT.
The signal was then preamplified (C6438-01, Hamamatsu, Japan) and filtered by a 10-MHz
bandpass (BBP-10.7+, Mini-Circuits, Brooklyn, New York) before detection by a lock-in ampli-
fier. Using this homodyne detection scheme, the periodic signal was demodulated with the exci-
tation wave as reference to obtain the modulation depth as well as the relative phase shift. Prior to
any measurement, the system was referenced using a glass cuvette filled with allura red (CAS
No. 25956-17-6, Sigma-Aldrich, St. Louis, Missouri) diluted in water to 5 mM. This food dye
has a very short fluorescence lifetime of around 10 ps.6 Hence, it was used to compensate for the
intrinsic time-of-flight path length of our system and to set the initial phase to 0.

For comparative wide-field imaging, a consumer grade color camera (EOS 5D Mark II,
Canon, Japan) was attached to the other camera port. Two camera settings were used. First,
an image under white-light illumination was acquired. Subsequently, the white-light illumination
was switched off and the 405-nm laser was scanned over the sample repeatedly. During the laser
scan, the camera was set to a long exposure (10 s). The pixel dwell time was set such that
the laser was scanned over the full FOV four times during the exposure time of the camera.
A 430-nm longpass filter (FF01-430/LP-25, Semrock, Rochester, New York) was used to block
the excitation laser and detect the fluorescence only. The integrated color fluorescence image
was then overlaid on the white-light image in postprocessing.

The fluorescence lifetime acquisition was controlled through an open-source microscopy
suite (ScanImage, Vidrio Technologies, Ashburn, Virginia7) in which we implemented an
on-the-fly processing routine. This included the conversion of the measured voltage into the
phase and computing the lifetime τ according to

EQ-TARGET;temp:intralink-;e001;116;400τ ¼ −
1

2πf
· tan Φ; (1)

where f is the modulation frequency and Φ is the measured phase. The processing and visu-
alization required (8.3� 0.8) ms on average for a 512 × 512 pixels frame.

3 Results and Discussion

In the first step, we characterized the lifetime accuracy for integration times of the lock-in ampli-
fier ranging from 10 μs to 2 ms. We first referenced the system using allura red with 10-ms
integration time and set the initial phase and lifetime to 0. As shown in Fig. 2, higher time
constants led to an increased lifetime accuracy, which followed a square root-like behavior (see
fitted curve). When scanning, we found a pixel dwell time of half-the-time constant to be the best
compromise between a fast acquisition and the settling of the lock-in amplifiers output. In this
case, the step response of the lock-in amplifier reaches ∼1∕e (36.8%). This was found to be
sufficient, as intensity differences between adjacent autofluorescent and higher fluorescent areas
in our samples were in the range of 60% to 70%. The corresponding acquisition times are plotted
in Fig. 2. Although higher integration times improved the accuracy, it came at the cost of
increased acquisition time. Therefore, we found the best compromise at a time constant of
500 μs where the lifetime showed <500 ps standard deviation and a single frame took ∼65 s.
To validate our observations, we measured the fluorescence lifetime of three selected fluorescent
dyes. Fluorescein (CAS No. 2321-07-5, Sigma-Aldrich) was dissolved in phosphate-buffered
saline and diluted to a concentration of 4 μM. The pH was measured to be 7.0. Furthermore,
coumarin 153 (C153, CAS No. 53518-18-6, Sigma-Aldrich) was dissolved in ethanol absolute
(CAS No. 64-17-5, VWR International, Fontenay-sous-Bois, France) with a concentration of
10 μM. For PpIX, a custom-made reference sample embedded in polymethylmethacrylate
(Starna Scientific Ltd., Ilford, United Kingdom) was measured.8 The measured lifetimes agreed
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within the range of error margins with reported literature values for the dyes in the respective
solvent (Table 1). The strongest measured lifetime deviation respective to literature (0.2 ns) was
measured for fluorescein, which could be caused by the pH dependence of fluorescein lifetime.9

Lifetime standard deviations were computed according to the law of error propagation as a sum
of the errors induced through the referencing process and the actual lifetime measurement.
Furthermore, the lateral resolution was determined using a positive fluorescent USAF 1951 tar-
get and oversampling the FOV. The second element of the fifth group (35.9 line pairs∕mm) was
still resolvable with >20% contrast for the fast and slow scanning axes (Supplemental Fig. S2).
This is in good agreement with the theoretically expected resolution of 19 μm.

Imaging with the FLIM system was performed ex vivo on human tumor samples within an
ongoing study approved by the ethics committee of the Medical University of Vienna (EK419/
2008—Amendment 04/2018). We show two representative samples from two patients under-
going tumor resection of suspected low-grade gliomas after obtaining informed and written con-
sent. A detailed study design can be found in our previous publication.8 Tissue samples were
imaged within an hour after resection and kept moist using artificial cerebrospinal fluid. For
the first patient, the surgeon did not report any visible PpIX fluorescence. However, when we
imaged the sample, we observed very weak red spots as well as blue streaks in the wide-field
fluorescence image as shown in Fig. 3(a). Note that the camera captured all fluorescence
>430 nm. This led to the additional detection of blue fluorescence, which could be induced
by nicotinamide adenine dinucleotide or other endogeneous fluorophores. However, in the fol-
lowing, we concentrated on measuring the PpIX fluorescence only as our system was conceived
with a 590- to 740-nm bandpass filter in front of the PMT. Although one can identify several hot
spots of higher brightness in the fluorescence intensity image in Fig. 3(c), FLIM offers a much
better contrast [Fig. 3(d)] and identifies accumulations of PpIX with lifetimes up to 8 ns, which
are neither visible in the laser scanning nor the wide-field fluorescence intensity images. These
high fluorescence lifetimes suggested the presence of a high-grade focus. Indeed, in the diag-
nostic work-up, the tumor was confirmed to be a focally anaplastic isocitrate dehydrogenase
(IDH)-mutant astrocytoma (WHO grade III) with marked cellular pleomorphism, increased
proliferative activity, and myxoid-cystic degeneration [Fig. 3(b)].

Table 1 Fluorescence lifetimes (τmea:) measured for
selected fluorophores. τrep:: reported literature values.

Sample τmea: (ns) τrep: (ns)

Fluorescein 3.8� 0.2 4.09

Coumarin 153 4.9� 0.2 4.810

PpIXRef:sample 5.5� 0.3 5.5� 0.28

Fig. 2 Fluorescence lifetime accuracy (dye: allura red) and imaging time (512 × 512 pixels) as
a function of the lock-in amplifier integration time. The pixel dwell time was set to half of the
integration time.
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In the second patient, the surgeon excised a focal fluorescent area, which was then further
characterized using FLIM. Although the fluorescence was clearly visible in the camera image
[Fig. 3(e)] and exhibited an increased fluorescence intensity [Fig. 3(g)], the fluorescence lifetime
map [Fig. 3(h)] was more specific on the infiltrative tumor borders in regard to the adjacent
physiological parenchyma, where fluorescence lifetimes <2 ns are expected due to tissue
autofluorescence.11 Contrarily, regions with high lifetimes of up to 12 ns were indicative for
a high-grade tumor. This suspicion was confirmed by the diagnostic work-up, in which the tumor
was classified as IDH-mutant and 1p/19q-codeleted anaplastic oligodendroglioma (WHO grade
III) with partly clear-celled appearance, brisk mitotic activity, and early vascular proliferations
[Fig. 3(f)]. Note that the upper right corner of the lifetime map [Fig. 3(h)] shows increased life-
times in an area that lies outside of the sample. Here, the artificial cerebrospinal fluid surround-
ing the sample diffusely scattered the laser beam into the tissue, thus exciting the highly
fluorescent sample. As the PMT records the whole FOV, this fluorescence is also detected.

Our first results seem promising for enhanced tumor detection. Both specimen imaged with
our system showed areas with lifetimes <2 ns, which corresponded well to the range of reported
autofluorescence lifetimes of tumor-adjacent physiological brain parenchyma.11 Increased life-
times clearly indicated the accumulation of PpIX,8,11 which enabled more sensitive tumor delin-
eation than fluorescence intensity. This was supported by the fact that both tissue samples either
had blood vessels or hemorrhages. When blood is covering tissue, it hinders the excitation of
PpIX by absorbing the excitation light. Hence, the fluorescence intensity was lower in these
areas. In contrast, FLIM of PpIX enabled imaging of those regions with only minor loss in
contrast and therefore seemed to be less affected by the blood absorption. However, caution
in interpreting those areas has to be taken, as even lower signals can lead to a higher lifetime
variability, which could be confused with increased lifetimes. A metric for future application
could be to highlight regions with increased lifetime variability to avoid false conclusions.
Nonetheless, this is remarkable as the only alternative solution we are aware of is to avoid blood
absorption using excitation of PpIX at 633 nm,12 where the fluorescence yield is ∼50 times
lower.

At present, the acquisition time of around a minute limits the potential for real-time surgical
guidance. Future studies should focus on increasing the imaging speed. Due to the stereoscopic
design and the long WD, the NA of commercial surgical microscopes is currently limited to
∼0.02. This could be improved by introducing a beam splitter before the stereo path, thus making
use of the full opening angle of the microscope objective. Another option would be to operate the
system with a reduced integration time as well as with more sparse sampling. Fluorescence life-
time maps with reduced spatial and temporal resolution could still be of use to the surgeon when
overlaid on the white-light image of the surgical field. In addition, increasing the laser power

Fig. 3 Brain tumor samples. (a)–(d) WHO grade III astrocytoma and (e)–(h) WHO grade III oli-
godendroglioma. Conventional white-light image by a consumer grade camera with fluorescence
overlay. (a), (e) The white rectangle indicates the area of the scan; (b), (f) representative histo-
pathological section; (c), (g) fluorescence intensity (rel.) acquired with the PMT; and (d), (h) fluo-
rescence lifetime map (ns).
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would allow for faster acquisition. While the power on the sample in this work was 3.9 mW, the
maximum permissible exposure for skin according to ANSI Z136.1 permits 19.2 mW. However,
our current laser throughput is limited by the reduced reflectivity of standard silver coatings
found on the scanner mirrors. In future, we plan to upgrade our system to mirrors optimized
for 405 nm. It should also be noted that this study has been performed such that images were
acquired in the laboratory under low-light conditions. Additional studies are needed to evaluate
the performance with the ambient light present in a surgical theater.

4 Conclusion

We presented the characterization and validation of a modified surgical microscope with inte-
grated FLIM capability. While surgical microscopes have been equipped with alternative modal-
ities such as spectroscopic imaging,3 to our knowledge, we are the first to integrate FLIM of
PpIX. In contrast to conventional intensity imaging, the lifetime contrast allows to visualize
pathological areas, which would otherwise be invisible. The integration of the technology into
a surgical microscope favors the potential translation toward clinical applications.
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