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Abstract

Significance: In three-dimensional (3D) functional optoacoustic tomography (OAT), wave-
length-dependent optical attenuation and nonuniform incident optical fluence limit imaging
depth and field of view and can hinder accurate estimation of functional quantities, such as the
vascular blood oxygenation. These limitations hinder OAT of large objects, such as a human
female breast.

Aim: We aim to develop a measurement-data-driven method for normalization of the optical
fluence distribution and to investigate blood vasculature detectability and accuracy for estimating
vascular blood oxygenation.

Approach: The proposed method is based on reasonable assumptions regarding breast anatomy
and optical properties. The nonuniform incident optical fluence is estimated based on the illu-
mination geometry in the OAT system, and the depth-dependent optical attenuation is approxi-
mated using Beer–Lambert law.

Results: Numerical studies demonstrated that the proposed method significantly enhanced blood
vessel detectability and improved estimation accuracy of the vascular blood oxygenation from
multiwavelength OAT measurements, compared with direct application of spectral linear unmix-
ing without optical fluence compensation. Experimental results showed that the proposed
method revealed previously invisible structures in regions deeper than 15 mm and/or near the
chest wall.

Conclusions: The proposed method provides a straightforward and computationally inexpensive
approximation of wavelength-dependent effective optical attenuation and, thus, enables mitiga-
tion of the spectral coloring effect in functional 3D OAT imaging.
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1 Introduction

Optoacoustic tomography (OAT), also known as photoacoustic computed tomography (PACT),
is an emerging imaging modality that shows promise in sensitivity for breast cancer detection,
especially in dense breasts.1–4 OAT images exhibit greater detection sensitivity for highly vas-
cularized, i.e., aggressive, breast tumors,5 and greater diagnostic specificity for all tumors over
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other modalities, such as x-ray mammography and ultrasound.1,5,6 Another advantage of OAT
over x-ray mammography is that OAT does not involve ionizing radiation.1,2 Due to advances in
OAT systems design and image reconstruction, a three-dimensional (3D) volumetric scan of the
entire breast is now possible.3,5,7 At a single near-infrared illumination wavelength, natural chro-
mophores in the breast tissue, such as hemoglobin, act as endogenous OAT contrast agents. From
external ultrasound measurements of the pressure induced by the laser pulses, the spatial dis-
tribution of the chromophores can be estimated; this provides a qualitative, anatomical measure
of the blood vasculature.3,5,7–10 Measurements from multiple illumination wavelengths matching
the local maximum, minimum, and isosbestic point of deoxy- and oxyhemoglobin can be recon-
structed into quantitative estimates of the blood oxygen saturation.5,11–16 This technology
referred to as quantitative OAT (qOAT), also known as quantitative PACT, when combined with
ultrasound, provides both anatomical and functional information of the breast that can facilitate
detecting tumor angiogenesis and hypoxia.1

In 3D OAT breast imaging, it is not feasible to deliver the optical fluence uniformly through-
out the whole breast volume, due to optical attenuation in tissue and design constraints of the
imaging systems.5–7,9,13,17 Whereas distributions of the optical absorption coefficient are deter-
mined by tissue types and physiological status, initial pressure distributions decay with depth in
the tissue because of light attenuation. Furthermore, the attenuation is wavelength-dependent.
Therefore, direct application of spectral linear unmixing methods to reconstructed OAT images,
which correspond to the estimated initial pressure distributions, results in inaccurate estimates of
blood oxygen saturation.14,15,18,19

To improve visualization of the reconstructed volumetric images, the optoacoustic imaging
community has utilized a commercial tool, AMIRA (Thermo Fisher Scientific),20 and open
source, interactive tools such as ImageJ (Wayne Rasband),21 ParaView (Kitware),22 and 3D
Slicer (Kitware).23 Also, a 3D PHOVIS (POSTECH, Korea)24 has been recently released that
is developed specifically for optoacoustic imaging. However, these tools do not provide physics-
informed image processing for contrast enhancement at depth in reconstructed OAT volumes. In
addition, these visualization tools are semi-automatic and require substantial manual intervention
by the user. Pattyn et al.25 proposed a model-based method to compensate for the optical fluence
distribution within a heterogeneous physical phantom that mimics a breast. Monte Carlo (MC)
simulation was employed, and known optical properties of the phantom were assumed.
However, in practice, the distributions of optical properties within the breast are generally
unknown.

A straightforward physics-informed image processing method is proposed to compensate for
both the nonuniform incident optical fluence at the breast surface and the wavelength- and depth-
dependent optical attenuation within the breast, and the impact of the proposed method on accu-
racy of the linear unmixing of deoxy- and oxyhemoglobin is investigated. The contributions of
this paper are twofold. First, this study establishes an implementation of the linear unmixing
method for use with a large object such as a female breast. Second, the proposed method
improves sensitivity of the 3D OAT breast imaging by improving contrast at depth.

The paper is organized as follows. Background materials, including existing illumination
systems in 3D OAT breast imaging and spectral linear unmixing, are provided in Sec. 2.
The proposed method is explained in Sec. 3, and the study description and evaluation metrics
are provided in Sec. 4. Results from computer-simulation and experimental studies are presented
in Sec. 5, and a discussion is given in Sec. 6. The conclusions of the study are provided in Sec. 7.

2 Background

In OAT imaging, a short laser pulse is employed to irradiate an object at time t ¼ 0 and con-
version of the absorbed optical energy into the thermal energy results in the generation of an
initial pressure distribution p0ðr; λÞ, where r ¼ ðx; y; zÞ ∈ R3 and λ is a wavelength. The pres-
sure distribution subsequently propagates and is measured by multiple ultrasonic transducers
located on a measurement aperture Ω0 ⊂ R3 that partially or completely surrounds the object.
The propagated pressure wavefields, i.e., the optoacoustic signals, at time t > 0 are denoted
as pðr; tÞ.
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By solving the associated acoustic inverse problem,26 an estimate of the absorbed energy
density distribution within the object can be obtained. Functional quantities such as the vascular
blood oxygenation can be reconstructed via qOAT from multiwavelength measurements.5,11–15,27

In most implementations of 3D OAT breast imaging, the patient lies prone on a bed with their
breast located inside a water-filled bowl just below the surface plane of the bed. The breast is
illuminated at a near-infrared wavelength with a short laser pulse.3,5,7,9,17,28 The induced pressure
waves pðr; tÞ propagate out of the breast and are measured with the ultrawide-band ultrasonic
transducers.16

2.1 Illumination in 3D OAT Breast Imaging

Several different 3D OAT breast imaging systems have been proposed and established, but their
data-acquisition principles are similar.3,5,7,9,17,28 Existing systems for 3D OAT breast imaging are
equipped with two subsystems: an illumination system and an optoacoustic signal detection
system. The focus here is on the illumination system. A common feature in the existing illumi-
nation systems is that the light is delivered in a radially symmetric pattern to the breast surface
from either single3,7,9,17,28 or multiple5 light sources. The laser fluences involved are well below
the maximum permissible exposure for skin defined by the American National Standards
Institute (ANSI).29

Table 1 presents salient design features of the light-delivery systems employed by the five
OAT breast imaging systems shown in Fig. 1. These systems deliver the light to the entire breast
surface. However, less optical energy per unit area (optical fluence) is delivered to regions near
the chest wall compared with the center of the breast, and this imbalanced distribution of the
incident optical fluence causes lower voxel brightness near the chest wall in the reconstructed
OAT images.

Table 1 Light-delivery systems employed by the five OAT breast imaging systems in Fig. 1.

Ref. λ (nm) Salient design features

7,9 755, 795 • A conical laser beam is emitted from below and then reflected through a
planoconvex lens and a holographic diffuser [Fig. 1(a)].

• The breast is contained by a 0.5-mm-thick polyethylene terephthalate
glycol-modified (PETG) cup which is optically and acoustically
transparent.

3 1064 • A donut-shaped laser beam is emitted from below and then reflected
through an axicon lens and an engineered diffuser [Fig. 1(b)].

• An agar pillow is used to slightly compress the breast.

28 755, 1064 • A laser beam is split into a bottom beam and side beams, and then
those are diverged via concave lenses [Fig. 1(c)].

• The side beams are emitted slightly upward from nine optical fiber
bundles that rotate around the breast in discrete steps.

17 532 • A ring-shaped light beam is formed via a cone-shaped reflector,
stationary conical reflector, and mobile conical reflector [Fig. 1(d)].

• The mobile conical reflector vertically moves together with the ring-
shaped detector array during the scan.

5 755 to 1064 • Laser beams are emitted from five fiber-optic segments that are
constrained to the surface of a light paddle that rotates around the breast
in discrete steps [Fig. 1(e)].

• The PETG breast cup is 0.1 mm thick.

Park et al.: Normalization of optical fluence distribution for three-dimensional functional optoacoustic. . .

Journal of Biomedical Optics 036001-3 March 2022 • Vol. 27(3)



2.2 Spectral Linear Unmixing

Several qOAT methods have been proposed to estimate the optical absorption coefficient μaðr; λÞ
and/or oxygen saturation distribution.13–15,30–37 Among them, a two-step spectral linear unmixing
approach has been widely used.5,13,18,30–36 The first step of the method is OAT image reconstruc-
tion (i.e., acoustic inversion) to estimate the initial pressure distribution p0ðr; λÞ that is induced
via the optical absorption and subsequent nonradiative relaxation of electronic energy into heat.
The second step is to approximate the oxygen saturation distribution from the estimates of
p0ðr; λiÞ ¼ Γμaðr; λiÞϕðr; λiÞ11,38 acquired at multiple wavelengths (i ¼ 1; : : : ; n; n ∈ N).
Here, Γ is the dimensionless Grüneisen parameter that can be considered constant for soft
tissues.11,38,39

In unmixing methods, reconstructed estimates of p0ðr; λiÞ are considered as surrogates
of μaðr; λiÞ. Unmixing procedures are predicated upon the relationship μaðr; λiÞ ¼
ϵHbðλiÞCHbðrÞ þ ϵHbO2

ðλiÞCHbO2
ðrÞ, where ϵHb and ϵHbO2

are known wavelength-dependent
molar extinction coefficients and CHb and CHbO2

denote molar concentrations of deoxy- and
oxyhemoglobin, respectively.11–13,18 The molar concentrations of CHbðrÞ and CHbO2

ðrÞ are
computed as

EQ-TARGET;temp:intralink-;e001;116;284

�
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ðrÞ
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where ϵþ is a pseudoinverse of the molar extinction coefficient matrix ϵ. Given CHbðrÞ and

CHbO2
ðrÞ, the oxygen saturation distribution is computed as sO2ðrÞ ¼ CHbO2

ðrÞ
CHbðrÞþCHbO2

ðrÞ × 100%.

The distribution of the total hemoglobin concentration is calculated as CtHbðrÞ ¼
CHbðrÞ þ CHbO2

ðrÞ, and subsequently the blood vasculature can be detected.
In practice, the distribution of the optical fluence ϕðr; λÞ in breast tissues is not constant

because of nonuniform illumination and optical attenuation. Once the light reaches the breast,
the optical fluence decreases approximately exponentially with depth; this is described by the
well-known Beer–Lambert law: ϕðd; λÞ ¼ ϕ0 expð−μeffðλÞdÞ. Here, ϕðd; λÞ denotes optical flu-
ence at a depth d and a wavelength λ, ϕ0 is the incident optical fluence to the breast surface
(d ¼ 0), and μeffðλÞ is an effective attenuation coefficient at the wavelength of λ that reflects both
the scattering and absorption of light in tissues.6,12,40 In addition, it is challenging to uniformly
deliver the light to the breast surface in 3D OAT imaging. Hence, the reconstructed p0ðr; λÞ

Fig. 1 Illumination in 3D OAT imaging systems for the breast: (a) Kruger et al.9 and Toi et al.,7

(b) Lin et al.,3 (c) Schoustra et al.,28 (d) Alshahrani et al.,17 and (e) Oraevsky et al.5
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exhibits undesirable variations in the voxel brightness according to design of the illumination
system.5,6 This limits the visible depth and field of view in the reconstructed p0ðr; λÞ.

Most significantly, the effective attenuation coefficient μeffðλÞ is wavelength-dependent,
which is known as the “spectral coloring effect.”41 Thus, in the linear unmixing employing multi-
ple wavelength estimates of p0ðr; λÞ as surrogates of μaðr; λÞ, the oxygen saturation distribution
cannot be accurately estimated without compensation for μeffðλÞ.14,15,19,42 Besides, p0ðr; λÞ is
exponentially attenuated with depth, so the compensation for μeffðλÞ is more important for large
organs such as a female breast, that usually has the maximum depth larger than 20 mm, com-
pared to relatively small organs such as skin with the maximum illumination depth of just a few
millimeters.

3 Normalization of Optical Fluence Distribution

The proposed method seeks to estimate and compensate for the nonuniform optical fluence
distribution. This is referred as normalization of the optical fluence distribution hereafter.
The method was designed based on a common feature of the existing illumination systems;
specifically, that radially symmetric light delivery to the breast surface is employed. In this sec-
tion, the details of the method are described based on the reference imaging system shown in
Fig. 2, where a patient lies prone on the examination bed and the patient’s breast is located inside
the breast cup. A spherical coordinate system is assumed, with the origin corresponding to the
center of the breast cup [see Figs. 2(a) and 3(d)]. Here, θ is defined to be a polar angle from the
positive z axis with 0 ≤ θ ≤ π.

In the proposed method, the nonuniform distribution of the optical fluence within the breast is
estimated from the voxel values in the reconstructed 3D OAT image α̂ that is an estimate of
p0ðr; λÞ discretized employing a uniform Cartesian lattice. The following reasonable assump-
tions are made:

A1. The distribution of the incident optical fluence varies along the polar direction (θ) and is
radially symmetric on x-y planes [see Fig. 3(a)];

A2. Blood vessels absorb more optical energy than other breast tissues do because deoxy- and
oxyhemoglobin of red blood cells are the only optically absorbing chromophores at near-
infrared wavelengths that are typically used in OAT breast imaging. Moreover, for wave-
lengths near 800 nm, artery and vein are nearly indistinguishable from each other in the
reconstructed image α̂12,44 [see Figs. 3(a)–3(c)];

A3. Anatomically, at least one voxel corresponding to a blood vessel near the skin layer exists at
any polar angle in the reconstructed image α̂ [see Figs. 3(a)–3(c)];

A4. The shape of the breast located inside a hemispherical stabilizer cup is a partial spheroid
and static [see Fig. 3(d)];

A5. The Beer–Lambert law6,12,40 can be used to approximate the optical fluence distribution
within the breast.

Fig. 2 3D OAT scan using LOUISA-3D: (a) breast scan schematic and (b) photograph of phantom
scan. (b) Nonuniform illumination is observed on the surface of the tissue-mimicking physical
phantom.
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The normalization of the optical fluence distribution is conducted in the following order:
(1) compensation for nonuniform incident optical fluence, (2) estimation of breast surface and
depth of each voxel relative to the breast surface, and (3) compensation for the effective optical
attenuation. The location of the breast surface must be known for optical attenuation compen-
sation, but breast surface detection is highly challenging because the top skin layer (epidermis)
can appear dimmer than the noise surrounding the breast due to the nonuniform incident optical
fluence [see Figs. 3(a)–3(c)]. Therefore, the incident optical fluence needs to be normalized in
advance of the breast surface detection.

In the proposed method, a hemispherical breast stabilizer cup is assumed, as it is employed in
several 3D OAT breast imaging systems.5,7,9 The cup is selected for each breast size, so it main-
tains the breast shape radially symmetric. Therefore, the only possible breast shape is a partial
spheroid, as shown in Fig. 3(d). Whereas the nipple and areola absorb more light than the other
breast tissues due to their high concentration of pigment, their impact on the optical fluence
distribution within the breast is insignificant because of their relatively small volume.45

Thus, in the proposed method, the region 160 deg < θ ≤ 180 deg, which was determined
by an average diameter ratio of the breast and areola,45 is excluded from consideration.

The flowchart of the proposed method is provided in Fig. 4, and the details of each step are
given in the following sections.

3.1 Compensation for Nonuniform Incident Optical Fluence

Under assumption A1, the distribution of the incident optical fluence is radially symmetric,
which means it can be interpreted as a function of polar angle [Fig. 3(d)]. If strong optical
absorbers that have similar μa values, such as blood vessels, are densely located near the object
surface (d ¼ 0), the spatial distribution of p0 on the surface is proportional to the distribution of
the incident optical fluence (p0 ∝ ϕ). As mentioned earlier, the blood vessels in subdermal
regions appear as the brightest voxels at any polar angle in the reconstructed image α̂
[assumption A3; see Figs. 3(b) and 3(c)]. Thus, the distribution of the incident optical fluence
can be approximated by the voxel brightness of the blood vessels near the breast skin layer
(subdermal), i.e., maximum voxel brightness projection (MVBP) at discretized polar angles
½θ�n ∈ ðθi − Δθ

2
; θi þ Δθ

2
Þ with an increment Δθ of 1 deg. The polar angle ½θ�n is calculated

as cos−1ðzn∕rnÞ, where rn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n þ y2n þ z2n

p
is the distance of the n’th voxel from the origin,

and xn, yn, and zn are the x, y, and z-coordinates of the n’th voxel in the uniform Cartesian grid,
respectively.

An L-degree polynomial curve qLðθÞ is fitted to the extracted maximum voxel brightness
according to the discretized polar angles within the range of interest (90 deg to 160 deg), where

Fig. 3 (a)–(c) 3D OAT breast image (α̂) of a healthy volunteer at a wavelength of 755 nm, scanned
by TomoWave Laboratories using LOUISA-3D5 at MD Anderson Cancer Center, and (d) breast
shapes in a given breast cup. Maximum voxel brightness projection (MVBP) along (a) x axis and
cross-sections on (b) y -z plane at x ¼ 0 mm and (c) x -y plane at z ¼ −30 mm. The slice is indi-
cated with a white dotted line in (a). The image (α̂) was reconstructed using filtered backprojection
(FBP)43 method. The brightness range of the images was adjusted for better visibility. In panels
(b) and (c), a white solid circle indicates the location of the brightest voxel in the cross-section, and
a cyan dashed line represents the approximated breast boundary.
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the region containing the nipple and areola is excluded, as shown in Fig. 5(a). The estimated

distribution of the incident optical fluence ϕ̂0 is described as

EQ-TARGET;temp:intralink-;e002;116;375½ϕ̂0�n ¼ qLð½θ�nÞ; n ¼ 1; : : : N; (2)

where N is the total number of voxels. The L is set depending on the illumination pattern. It was
found that L ¼ 1 and L ¼ 2 were sufficient for accurately fitting the data in the experimental
studies (Sec. 4.2) and computer-simulation studies (Sec. 4.1), respectively.

Elementwise division of ϕ̂0 is applied to the reconstructed image α̂, to compensate for the
nonuniform incident optical fluence as shown in Fig. 5(b):

Fig. 4 Flowchart of normalization of optical fluence distribution in 3D OAT breast images.

Fig. 5 Compensation for nonuniform incident optical fluence: (a) estimated incident optical fluence
as a function of polar angle and (b) MVBP of 3D OAT breast image after the compensation (α̂N0)
along x axis. The results were obtained from Fig. 3(a). In panel (a), a black solid line indicates the
maximum voxel brightness according to polar angles, and a red solid line represents a first-degree
polynomial curve q1ð½θ�i Þ fitted to the maximum voxel brightness. The polar angles to the right of
the blue dashed line correspond with nipple and areola in (a).
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EQ-TARGET;temp:intralink-;e003;116;571½α̂N0�n ¼
½α̂�n
½ϕ̂0�n

; n ¼ 1; : : : ; N: (3)

A comparison of the images before and after the compensation is shown in Fig. 6

3.2 Estimation of Breast Surface and Depth

Under assumption A3, the blood vessels located in subdermal regions can be employed to infer
the breast surface in the reconstructed 3D OAT image α̂. The average range of skin thickness of
healthy female human breasts is between 0.5 and 2.4 mm.46 This is a relatively thin layer that
attenuates light negligibly in comparison to attenuation in the bulk. To extract the voxels that
belong to blood vessels in the close proximity of the breast surface, first a 3D median filter is
applied to reduce the noise. Subsequently, the contrast of the resulting image is increased by
elementwise square operation:

EQ-TARGET;temp:intralink-;e004;116;399½α̂ 0
N0�n ¼ ð½medfα̂N0g�nÞ2; n ¼ 1; : : : ; N; (4)

where medf·g is a 3D median filter function with a 3-by-3-by-3 filter.
The voxels corresponding to the blood vessels near the breast surface are extracted using

Otsu thresholding47 applied to α̂ 0
N0. The set of the extracted voxels is defined as V ¼

fn ≤ N∶½α̂ 0
N0�n ≥ Tg where T is an Otsu’s threshold. For each polar angle, the voxels in V that

are the farthest from the z axis are selected to estimate the breast boundary. The estimated radius
of the breast in the cross-section of slice (j’th z-slice), is given as

EQ-TARGET;temp:intralink-;e005;116;294½ρz�j ¼ maxf½ρ�ng n ∈ Sj ∩ V; (5)

where ½ρ�n is the distance of the n’th voxel from the z-axis calculated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n þ y2n

p
, and Sj

denotes the set of all voxels, on the j’th z-slice, i.e., the x-y plane.
In Fig. 7(a), blue circle markers correspond to an estimate ρz for each z-slice. An elliptical

curve is fit to ρz to obtain a smooth representation of the breast boundary according to

assumption A4. The ellipse equation is ðz−zCÞ2
a2 þ ρ2

b2 ¼ 1. Here, a and b are lengths along semi-
major and semiminor axes, respectively, zC is a z-coordinate of the ellipse center. These param-
eters are determined by the elliptical curve fitting. The surface formed by rotation of the
estimated elliptical curve [a red solid line in Fig. 7(a)] around the z axis is then used to approxi-
mate the breast surface as shown in Fig. 7(b). From this, a breast mask MBreast is built by
assigning the value “1” to voxels inside the surface and “0” outside.

Finally, the depth d at each voxel that is used in the Beer–Lambert law is approximated as the
minimum distance from the breast surface, i.e., the estimated spheroid surface, using Newton’s
method.48

Fig. 6 Comparison of images before and after compensation for non-uniform incident optical flu-
ence: MVBP of a 5-mm-thick y slice at y ¼ 0 mm (a) before (α̂) and (b) after (α̂N0) the compen-
sation along y axis and (c) MVBP of their difference (α̂N0 − α̂) along y axis. The results were
obtained from Fig. 3(a). The voxel brightness near the chest wall (θ ¼ 90 deg) in (a) is lower than
in the region near the areola (θ ≥ 160 deg) and, accordingly, the compensation procedure leads to
a higher gain near the chest wall as shown in (b) and (c).
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3.3 Compensation for the Effective Optical Attenuation

With consideration of assumptions A2 and A5, optical attenuation can be approximated as a
function of depth from the decay of the voxel brightness inside the blood vessels in the recon-
structed 3D OAT image. Specifically, such an approximation uses the maximum voxel brightness
value in a certain depth range of ðdm − Δd

2
; dm þ Δd

2
Þ, where Δd is an increment of 1 voxel:

EQ-TARGET;temp:intralink-;e006;116;487½α̂BV�m ¼ maxn∈Cm
f½α̂�ng: (6)

Here,Cm denotes a set of voxels in them’th depth range. Figure 8 shows α̂BV according to depth.
An exponential curve based on the Beer–Lambert law (assumption A5) is fit to α̂BV as shown

in Fig. 8. The estimated optical attenuation is expressed as

EQ-TARGET;temp:intralink-;e007;116;419½f̂a�n ¼ c� expð−μ�eff ½d�nÞ; n ¼ 1; : : : ; N; (7)

where c� and μ�eff are the prefactor and the effective optical attenuation coefficient estimated from
the curve fitting, respectively.

Elementwise division of ϕ̂a is applied to the image after normalization of nonuniform inci-
dent optical fluence α̂N0 as follows:

EQ-TARGET;temp:intralink-;e008;116;334½α̂N�n ¼
� ½α̂N0�n

½ϕ̂a�n
; if n ∈ MBreast

0; otherwise:
(8)

Fig. 7 Breast surface estimation: (a) estimated radii on x -y planes ρ̂z; (b) estimated breast
surface; and (c) estimated breast boundary on y -z plane at x ¼ 0 overlaid on the MVBP of
α̂N0 along the x axis.

Fig. 8 Estimation of optical attenuation at a wavelength of 755 nm. A black solid line indicates
maximum voxel brightness α̂BV at a certain depth range of ðdm − Δd

2 ; dm þ Δd
2 Þ, and a blue curve is

the estimated optical attenuation ϕ̂a. The μeff estimated from the 3D OAT breast image was
1.0041 cm−1.
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4 Study Description and Evaluation Metrics

4.1 Computer-Simulation Studies

The proposed method was investigated and evaluated by use of physical measures of image
quality and its impact on spectral linear unmixing. Results from the proposed method were com-
pared with those from a general-purpose image contrast enhancement method. To investigate the
impact of the proposed method on spectral linear unmixing, ground truth data are required.
Accordingly, a realistic numerical breast phantom was generated, and a computer-simulation
study was conducted.

4.1.1 Realistic numerical breast phantom

The numerical breast phantom was created using a computational framework for virtual 3D OAT
breast imaging trials developed by the authors of Ref. 49. This framework employs an open
source tool from the U.S. Food and Drug Administration50 with modifications for use in
OAT imaging.49,51 The produced numerical breast phantom consists of fat, skin, glandular, nip-
ple, arterial, and venous tissues. The breast shape is a hemisphere with a radius of 60 mm, which
is compatible with use of a breast stabilizer cup. The entire phantom was discretized using a
uniform 3D Cartesian lattice with a voxel size of 0.25 mm.

4.1.2 Functional, optical, and acoustic properties

Wavelength-dependent optical properties were assigned to each breast tissue by prescribing the
composition of each tissue type in terms of total hemoglobin concentration, oxygen saturation, and
volume fractions of blood, water, fat, and melanin.44 Illumination wavelengths of 757, 800 (the
isosbestic point of deoxy- and oxyhemoglobin), and 850 nm were selected from near-infrared-I
range (650 to 950 nm) that is commonly used in OAT breast imaging.5,7,9 While at least two wave-
lengths are required for the linear unmixing of deoxy- and oxyhemoglobin, additional wavelengths
lead to more stable estimates. As data acquisition time increases proportionally to the number of
illumination wavelengths used, OAT images at only a few wavelengths can be collected in clin-
ically relevant settings. For this reason, two- and three-wavelength linear unmixing methods were
utilized in the numerical studies. Regarding the acoustic properties of the numerical breast phan-
tom, homogeneous speed of sound and no acoustic attenuation were assumed.52

4.1.3 Simulation of optoacoustic signals

The optoacoustic signals were simulated in three dimensions using the GPU-accelerated
MCXLAB software.53,54 The illumination geometry was configured to mimic LOUISA-3D5

(Sec. 2) where laser beams are cylindrically emitted from five linear fiber-optic segments on
the surface of an arc-shaped light paddle that rotates around the breast in 20 discrete steps.
In the MC simulation, to mimic the beam from each fiber-optic segment, five cone beams with
a half-angle of 12.5 deg were employed. Consequently, a total of 500 cone beams were simulated
for 20 illumination views. The light source positions were evenly distributed along the linear
fiber-optic segments [Fig. 2(a)]. The incident beam direction was specified as perpendicular to
the linear segments toward the origin of coordinates [Fig. 3(d)]. The number of photons simu-
lated was 108 per cone beam, and the simulation duration was 5 ns. The size of a simulation
domain was 340 × 340 × 170 voxels with a voxel size of 0.5 mm. Subsequently, the true initial
pressure p0ðr; λÞ was computed via elementwise multiplication of the simulated optical fluence
and optical absorption coefficient. A Grüneisen parameter Γ ¼ 1 was assumed, as is commonly
done as constant for soft tissues.2,55

4.1.4 Acoustic wave propagation and data acquisition

Acoustic wave propagation and data acquisition were simulated using the GPU-accelerated
k-Wave toolbox.56 The measurement geometry was defined as in the LOUISA-3D system:5
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an arc-shaped probe with 96 transducers collecting pressure data at 320 tomographic views
(Fig. 2). A total of 1536 time samples were acquired at virtual transducers with a sampling
frequency of 20 MHz. Idealized point-like transducers were assumed. Thermal acoustic noise
was modeled as Gaussian noise with zero mean and standard deviation equal to 1% of the maxi-
mum signal strength, as was determined based on the in vivo breast data.

4.1.5 Image reconstruction and processing

Noisy synthetic data were reconstructed using a GPU-accelerated FBP,43 implemented in
C++ and CUDA.38,57 The size of the reconstructed volume was 480 × 480 × 240 voxels

(120 × 120 × 60 mm3). Elapsed time for the image reconstruction was ∼40 s using four
NVIDIA GeForce GTX 1080 GPUs. After the image reconstruction, k-means singular value
decomposition dictionary learning58 was applied to reduce the noise.

For physical image quality evaluation, numerical results from the proposed method were
compared with those from contrast limited adaptive histogram equalization (CLAHE),59 a
method to enhance local contrast that is commonly used in medical images, such as ultrasound
images,60 mammograms,61 and optical microangiographies.62 In OAT imaging, CLAHE is
employed in a multispectral OAT system (iThera Medical, Germany).63 While several imple-
mentations of CLAHE are available for one- and two-dimensional images, an extension to
3D images was implemented for use in this study.

For detection and visualization of the blood vasculature, multiscale vessel enhancement
filtering63,64 and Otsu thresholding47 were applied to the reconstructed initial pressure with
no optical fluence normalization, CLAHE, and the proposed method. The vessel enhancement
filter, also known as Frangi filter, detects tubular structures based on an eigenvalue analysis of the
Hessian matrix of the image at multiple scales.64 The thicknesses of the detected structures are
controlled through a set of scale parameters. In this work, the parameters with widths ranging
from 1 to 5 voxels (0.25 to 1.25 mm) were chosen, as they are representatives of vessel diameters
in the breast.65

To investigate spectral linear unmixing, molar concentrations of deoxy- and oxyhemoglobin
were computed via Eq. (1), from which total hemoglobin concentration CtHbðrÞ and oxygen
saturation sO2ðrÞ were subsequently calculated. Results from the two- and three-wavelength
linear unmixing methods, with no optical fluence normalization, CLAHE, and the proposed
method, were compared.

4.2 Studies with Clinical Data

Two clinical data sets corresponding to the right and left breast of a healthy volunteer were
acquired by TomoWave Laboratories (Houston, Texas) using LOUISA-3D5 at MD Anderson
Cancer Center and processed by the authors with institutional review board approval. The breasts
were illuminated at a wavelength of 755 nm. The details of the illumination geometry of
LOUISA-3D5 were given in Sec. 2. Acoustic measurements were collected with ultrawide-band
(50 kHz to 6 MHz) ultrasonic transducers of size of 1.1 × 1.1 mm2. Additional details of the
measurement geometry and image reconstruction were provided in Sec. 4.1. The image recon-
struction and processing were conducted identically to those in computer-simulation studies.
Experimental results from the proposed method were compared with those from CLAHE.59

4.3 Evaluation Metrics

4.3.1 Physical measures of image quality

The peak signal-to-noise ratio (PSNR)66 and structure similarity (SSIM) index67 were calculated.
They are defined as

EQ-TARGET;temp:intralink-;e009;116;107PSNR ¼ 10 log
MAX2

α

MSE
; (9)
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and

EQ-TARGET;temp:intralink-;e010;116;723SSIMðx; yÞ ¼ ð2μxμy þ C1Þð2σxy þ C2Þ
ðμ2x þ μ2y þ C1Þðσ2x þ σ2y þ C2Þ

: (10)

In Eq. (9),MAXα is the maximum possible value of voxel brightness (e.g., 255 in 8-bit voxel
values), and MSE is the mean squared error with respect to the ground truth, i.e., true μa dis-
tribution of the blood vessels. In Eq. (10), μx, μy, σx, σy, and σxy are the local means, standard
deviations, and covariance of images x and y. Here, x and y correspond to the μa estimate, i.e.,
the reconstructed initial pressure with no normalization, CLAHE, and the proposed method,
and the true μa distribution of the blood vessels, respectively. C1 ¼ ðK1MAXαÞ2 and
C2 ¼ ðK2MAXαÞ2 in Eq. (10) denote stabilization constants, where K1 ¼ 0.01 and K2 ¼ 0.03

are the default values in the Image Processing Toolbox of MATLAB.

4.3.2 Task-based measures of image quality

Blood vessel detectabily and artery/vein classification accuracy were used to evaluate the impact
of the proposed method on spectral linear unmixing.

Based on the estimate of total hemoglobin concentration, the blood vessel voxels were
detected via multiscale vessel enhancement filtering and Otsu thresholding. The detection per-
formance was assessed using the detectability index DET defined as

EQ-TARGET;temp:intralink-;e011;116;481DET ¼ N̂AV

NA þ NV

× 100%; (11)

where NA and NV are the numbers of all voxels corresponding to arteries and veins in the

numerical phanton, and N̂AV is the number of voxels correctly detected as vasculature,
respectively.

The accuracy of artery/vein classification was assessed under two different scenarios. In the
calculation of the classification accuracy index ACC, the vascular structures of the numerical
phantom were assumed as known, while in the detection-classification accuracy index (DACC),
the vascular structures were estimated from the reconstructed OAT images as explained above. In
both scenarios, an oxygenation level of 83.5% was used as the threshold for the classification of
arteries and veins. This threshold corresponds to the arithmetic mean of the oxygenation level
assigned to arteries (97%) and veins (70%) in the numerical phantom.

Specifically, in the scenario of known vascular structures, true artery rate (TAR), true vein
rate (TVR), and classification accuracy index (ACC) were defined as

EQ-TARGET;temp:intralink-;e012;116;289TAR ¼ NTA

NA

× 100%; TVR ¼ NTV

NV

× 100%; and ACC ¼ NTA þ NTV

NA þ NV

× 100%; (12)

where NTA and NTV are the numbers of the voxels that are correctly classified as arteries and
veins, respectively.

Similarly, in the scenario in which the vascular structures are also estimated from the spectral
unmixing of the OAT images, detected true artery rate (DTAR), detected true vein rate (DTVR),
and DACC were defined as

EQ-TARGET;temp:intralink-;e013;116;186DTAR ¼ N̂TA

NA

× 100%; DTVR ¼ N̂TV

NV

× 100%; and DACC ¼ N̂TA þ N̂TV

NA þ NV

× 100%;

(13)

where N̂TA and N̂TV are the numbers of the voxels that are detected and correctly classified as
arteries and veins, respectively.
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5 Results

5.1 Computer-Simulation Studies Results

5.1.1 Physical measures of image quality

Figure 9 shows results obtained by applying CLAHE and the proposed optical fluence normali-
zation method to the reconstructed estimate of p0. In the results from CLAHE [Fig. 9(c)] and the
proposed method [Fig. 9(d)], more structures at depths deeper than 5 mm (green to red color)
were revealed compared to the reconstructed initial pressure distribution in Fig. 9(b). The vas-
culature in the image produced using the proposed optical fluence normalization in Fig. 9(d) is
visually more similar to that in the ground truth [Fig. 9(a)] than that produced by CLAHE
in Fig. 9(c).

Figure 10 shows PSNR [Eq. (9)] and SSIM [Eq. (10)] comparisons between CLAHE
[Fig. 9(c)] and the proposed method [Fig. 9(d)]. As shown in Fig. 10, the results of the proposed
method showed higher PSNR and SSIM than those of no normalization and CLAHE for all three
wavelengths.

5.1.2 Task-based measures of image quality

Figure 11 shows the detected blood vasculature and the estimated blood oxygenation using two-
and three-wavelength linear unmixing methods with no optical fluence normalization
[Fig. 11(a)], CLAHE [Fig. 11(b)], and the proposed method [Fig. 11(c)].

With respect to the blood vasculature detection, the majority of the voxels corresponding to
the blood vessels were not detected without normalization of the optical fluence [Fig. 11(a)].
Although many of the blood vessel voxels near the breast surface were detected via CLAHE, the
voxels in the region deeper than 15 mm [orange to red color in Fig. 9(a)] were not detected
[Fig. 11(b)]. The proposed method significantly improved the blood vasculature detectability
[Fig. 11(c)]. With respect to estimation of the vascular blood oxygenation, the proposed method
[Fig. 11(c)] enhanced the estimation accuracy in regions deeper than 18 mm [orange to red color
in Fig. 9(a)] for all choices of wavelengths [Fig. 11(c)]. The results of vascular oxygenation
estimation from CLAHE [Fig. 11(b)] were relatively inaccurate regardless of the wavelength
pairs and voxel location, compared to the proposed method [Fig. 11(c)].

Fig. 9 Comparison between distributions of (a) the optical absorption coefficient μa, (b) initial pres-
sure estimate reconstructed from the noisy measurements, simulated at a wavelength of 800 nm,
using FBP with no normalization, and (c) images processed via CLAHE and (d) optical fluence
normalization method. The images are presented as MVBP along y axis and color-encoded by
depth. A depth range of 0 to 30 mm was visualized. A Jet color map in MATLAB was used to
illustrate the breast tissues at different depths.
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Table 2 provides detectability (DET), detectability-classification accuracy, and classification
accuracy with respect to arteries (TAR and DTAR), veins (TVR and DTVR), and both (ACC
and DACC).

As presented in Table 2, the DET of the proposed method was, on average, 6.66 and 2.37
times greater than no optical fluence normalization and CLAHE, respectively. The proposed
method showed slightly better ACC compared with the others in Table 2. The proposed method
increased the DACC by 5.81 and 2.34 times on average compared to no optical fluence nor-
malization and CLAHE, respectively. The distribution of artery/vein voxels was not uniform
with respect to depth. There were more voxels that correspond to the blood vessels (veins in
particular) near the surface. Thus, further analysis of the classification accuracy according to
depth will be presented henceforward [Fig. 12(b)].

Figure 12 shows (a) vasculature detectability and (b) artery/vein classification accuracy of no
optical normalization, CLAHE, and the proposed method as a function of depth. In this analysis,
depth was quantized using 5 bins with a width of 10 mm. At all depth ranges, the proposed
method [red color in Fig. 12(a)] outperformed the other two [black and cyan colors in
Fig. 12(a)] in blood vessel detectability. The artery/vein voxels located deeper than 20 and

Fig. 11 Estimates of vascular blood oxygenation obtained using (a) no optical fluence normali-
zation, (b) CLAHE, and (c) the proposed method. The used wavelength pairs are 757 and 800 nm
(first column), 757 and 850 nm (second column), 800 and 850 nm (third column), and 757, 800,
and 850 nm (fourth column). The vascular blood oxygenation of the numerical phanton (ground
truth) is shown on the top right. Paraview22 was used for volume rendering.

Fig. 10 Comparison on PSNR and SSIM between no normalization (black), CLAHE (cyan), and
the proposed method (red).
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30 mm were not detected when no optical fluence normalization [black color in Fig. 12(a)] and
CLAHE [cyan color in Fig. 12(a)] were applied, respectively. As shown in Fig. 12(b), in the
depth ranges of 10 to 20 mm and 20 to 30 mm, the ACC of the proposed method (red color) was
higher than the others (black and cyan colors), and the ACC largely dropped in the results of all
three methods at a depth deeper than 30 mm. It is speculated that this is because the strength of
the attenuated optoacoustic signals at depths deeper than 30 mm is similar to or lower than that of
the noise. The ACC of CLAHE [cyan color in Fig. 12(b)] was either lower or slightly higher,
up to 2.53%, than that of no optical fluence normalization [black color in Fig. 12(b)].

5.1.3 Results from Experimental Studies

Figure 13 shows reconstructed 3D OAT images with no optical fluence normalization
[Figs. 13(a) and 13(b)], CLAHE [Figs. 13(c) and 13(d)], and the proposed method

Table 2 Artery/vein detectability and classification accuracy (%).

λs (nm) Normalization DET TAR TVR ACC DTAR DTVR DACC

757, 800 None 12.00 89.81 75.97 81.58 3.62 17.69 11.99

CLAHE 33.53 72.15 79.16 76.32 16.71 38.83 29.86

Proposed method 78.89 77.88 97.21 89.38 66.85 76.69 72.71

757, 850 None 11.39 74.78 88.71 83.06 2.78 17.08 11.32

CLAHE 31.04 62.54 90.82 79.36 16.21 37.12 28.65

Proposed method 76.19 71.62 96.52 86.43 58.98 74.38 68.14

800, 850 None 11.87 30.41 85.61 63.24 2.88 15.71 10.51

CLAHE 34.75 25.81 86.07 61.65 16.39 30.37 24.70

Proposed method 79.51 48.66 77.47 65.79 37.35 65.33 53.99

757, 800, 850 None 11.58 78.35 88.06 84.12 3.07 17.28 11.52

CLAHE 32.13 64.91 90.03 79.85 16.96 38.05 29.51

Proposed method 77.11 73.12 96.80 87.21 61.01 75.24 69.47

Note: For each metric and each choice of wavelengths, the entry corresponding to the best performing method
is in bold.

Fig. 12 (a) Artery/vein detectability and (b) classification accuracy of no optical fluence normali-
zation (black color), CLAHE (cyan color), and the proposed method (red color), according to
10 mm-depth ranges. The used wavelength pairs are 757 and 800 nm (dashed lines); 757 and
850 nm (dash-dotted lines); 800 and 850 nm (dotted lines); and 757, 800, and 850 nm (solid lines).
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[Figs. 13(e) and 13(f)]. A depth range of 0 to 30 mm was visualized. In Fig. 13, the region deeper
than 15 mm (orange to red color) is nearly invisible to the human eye in the CLAHE results
[Figs. 13(c) and 13(d)] while it is clearly visible in the results of the proposed method
[Figs. 13(e) and 13(f)]. Additional visualization of the comparison in Figs. 13(a), 13(c), and
13(e) is provided in Video 1, showing a z-slice (x-y plane) of the breast image at each descretized
z location with an increment of 0.25 mm (from −46 to −2.25 mm). In Video 1, the visibility of
the blood vessels seated deeper than 15 mm (orange to red color) is consistent with the results in
Fig. 13. The effective optical attenuation coefficient estimated from the left breast [Figs. 13(a),
13(c), and 13(e)] was 1 cm−1 and that from the right breast [Figs. 13(b), 13(d), and 13(f)]
was 0.98 cm−1.

6 Discussion

In spite of the method’s simplicity, the numerical results demonstrated that the proposed method
significantly improved vasculature detectability by compensating for optical attenuation and
increased estimation accuracy of the vascular blood oxygenation by mitigating the spectral color-
ing effect (Figs. 11 and 12, and Table 2). Voxel brightness in the reconstructed estimate of
p0ðr; λiÞ decreased with depth due to optical attenuation. This resulted in severely underestimat-
ing total hemoglobin concentration at depths deeper than 10 mm when applying spectral linear
unmixing directly to p0ðr; λiÞ, rather than μaðr; λiÞ. On the other hand, in the estimation of oxy-
gen saturation (CHbO2

ðrÞ∕CtHbðrÞ), the effect of the optical attenuation could not be canceled out
because of its dependence on wavelengths, i.e., the spectral coloring effect. Thus, the classifi-
cation accuracy constantly decreased with depth without optical fluence normalization in
Fig. 12(b). The proposed method ameliorated such reduction [Fig. 12(b)].

Fig. 13 Comparison between reconstructed images with [(a), (b)] no optical fluence normalization,
[(c), (d)] CLAHE, and [(e), (f)] the proposed method. The used wavelength was 755 nm. Images in
the left column [(a), (c), and (e)] are from the left breast and those in the right column [(b), (d), and
(f)] are from the right breast. The images (a) to (f) are presented in MVBP of the entire breast
volume along y axis. The still images in panel (g) of Video 1 (Video 1, MP4, 944 kB [URL:
https://doi.org/10.1117/1.JBO.27.3.036001.1]) illustrate a z slice (x -y plane) at z ¼ −10 mm.
The images were color-encoded by depth using the Jet color map in MATLAB.
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Furthermore, the value of the effective optical attenuation coefficient (Fig. 8), which was
estimated from the in vivo 3D OAT breast images using the proposed method, correlates well
with experimental measurements (≈1 cm−1) that were reported in previous studies.44,68–70 The
proposed method is completely measurement-data-driven, therefore, a prior knowledge of the
optical properties of the breast tissues, anatomy of the vascular network, and precise characteri-
zation of the illumination pattern and incident fluence is not required.

The proposed method was specifically implemented for the 3D OAT breast imaging system
presented in Fig. 2. However, the general framework for the normalization of the optical fluence
distribution is not limited to breast imaging and to this specific system. For example, the curve
fitting for incident optical fluence estimation can be opportunely modified to account for differ-
ent optical illumination patterns.

Although these studies demonstrated qualitative and quantitative enhancement achieved via
use of the proposed method, there remain limitations. First and foremost, the proposed method
assumes a constant effective optical attenuation coefficient when estimating the fluence map
within the breast. Errors in the estimation of the fluence map due to neglecting spatial variations
of effective optical attenuation coefficient may introduce bias in the optical energy absorption
estimates.

Besides, to obtain 3D quantitative images of the vascular blood oxygenation from in vivo data,
further investigations should address acoustic heterogeneity of breast tissue and noise removal
(thermal acoustic noise from the medium and thermal noise from ultrasound transducer and
electromagnetic interference). Because the proposed method compensates for the depth-dependent
optical attenuation by amplifying the image brightness at each voxel in the reconstructed 3D OAT
images as a function of depth, existing noise and artifacts are also amplified depending on the
depth. Application of the proposed method to images reconstructed using advanced regularization
techniques can reduce such noise and artifacts, thus extending imaging depth.

Future directions include investigation of the proposed method to imaging of breasts with
benign and malignant lesions and other 3D OAT imaging applications, such as transcranial im-
aging and small animal imaging (whole or partial body). It is expected that the performance of
the proposed method largely depends on the distributions of the optical properties within the
target. For example, in whole mouse imaging, hemoglobin-concentrated organs, such as liver,
kidneys, and colon, locally occupy a certain extent as bulk. This causes a locally varying imbal-
ance in the optical fluence distribution. In such case, the assumptions of the proposed method are
invalid, thus, further investigation is required, including the use of more sophisticated numerical
models to estimate the fluence distribution, such as MC photon transport simulation or simplified
spherical harmonics approximation of radiative transfer equations.12

7 Conclusion

In this work, a straightforward physics-based method to normalize optical fluence distributions
in 3D OAT breast images was proposed. The method is based on generally accepted assumptions
on breast anatomy and optical properties as well as common features of light delivery in existing
3D OAT breast imagers. In the proposed method, both distributions of incident optical fluence
and optical attenuation within the breast tissues are estimated solely from the voxel brightness in
the reconstructed images, thus, a prior knowledge of the breast and specific geometry of the
light-delivery system is not required.

Numerical studies demonstrated that the proposed method—in conjunction with spectral lin-
ear unmixing—significantly enhanced blood vasculature detectability and improved estimation
accuracy of vascular blood oxygenation down to a depth of 30 mm, when compared with no
optical fluence normalization and a general-purpose image contrast enhancement technique
called CLAHE. In addition, the proposed method outperformed CLAHE, in terms of PSNR and
SSIM. It was also demonstrated that the proposed method can be applied to in vivo data. In
particular, the effective optical attenuation coefficients estimated from the reconstructed 3D
OAT breast images via the proposed method were found to be consistent with those experimen-
tally measured in in vivo studies. With further investigations on acoustic heterogeneity, noise
removal, and vascular segmentation, the use of the proposed method can potentially achieve
3D in vivo functional OAT images of the whole breast.
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