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Abstract. We present a line-scan stereo system and descriptor-based dense stereo matching for high-
performance vision applications. The stochastic binary local descriptor (STABLE) descriptor is a local binary
descriptor that builds upon the principles of compressed sensing theory. The most important properties of
STABLE are the independence of the descriptor length from the matching window size and the possibility
that more than one pair of pixels contributes to a single-descriptor bit. Individual descriptor bits are computed
by comparing image intensities over pairs of balanced random subsets of pixels chosen from the whole
described area. On a synthetic as well as real-world examples, we demonstrate that STABLE provides com-
petitive or superior performance than other state-of-the-art local binary descriptors in the task of dense stereo
matching. The real-world example is derived from line-scan binocular stereo imaging, i.e., two line-scan cameras
are observing the same object line and 2-D images are generated due to relative motion. We show that STABLE
performs significantly better than the census transform and local binary patterns (LBP) in all considered geo-
metric and radiometric distortion categories to be expected in practical applications of stereo vision. Moreover,
we show as well that STABLE provides comparable or better matching quality than the binary robust-
independent elementary features descriptor. The low computational complexity and flexible memory footprint
make STABLE well suited for most hardware architectures. We present quantitative results based on the
Middlebury stereo dataset as well as illustrative results for road surface reconstruction. © The Authors.
Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in
whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JEI.26.1.013004]
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1 Introduction
Range information from images is typically obtained using
time-of-flight sensors,1 configurations based on pattern pro-
jection,2 illumination variation by photometric stereo,3 focus
variation,4 multicamera systems,5 or light field cameras.6

Line scanning is a popular method for acquiring images
of moving objects, especially in machine vision applications.
From moving platforms, such as air- or spaceborne scanners,
the so-called pushbroom principle is used to acquire sensor
lines while moving along a predefined trajectory in space.
We utilize this acquisition principle, extended to binocular
stereo, for an application in ground reconstruction from a
vehicular platform. The application area is the inspection of
road surface conditions. Figure 1 shows a few examples of
single road images as acquired by the proposed system. We
will describe how to obtain depth information from line-scan
stereo pairs, e.g., pairs of images taken concurrently from
slightly displaced positions.

In stereo imaging, the range for each pixel is obtained
from the estimated disparity, i.e., the displacement between
corresponding points observed in two (or more) images. The
epipolar constraint in a stereo vision system states that a
point in one image is found along the corresponding epipolar
line in the other image. Epipolar rectification in area-scan
stereo pairs aligns epipolar lines to image lines, thus reducing
the correspondence estimation to a search over an expected
disparity range oriented along image lines. In the presented
line-scan stereo system, one adjusts this geometrical constraint

mechanically such that epipolar lines are aligned with sensor
lines. Estimation of disparities is then performed along
sensor lines.

We will discuss the stochastic binary local descriptor
(STABLE) for disparity estimation.7 Since the introduction
of the scale invariant feature transform (SIFT), a number of
feature detectors and descriptors were suggested over the last
decades.8 Among others, the goal of speeding up SIFT was
met in speeded up robust features (SURF).9 Some represen-
tations of local derivatives, e.g., gradient orientation histo-
grams, are commonly used in those descriptors. Higher
speed is sometimes also traded against reduced invariance
properties, e.g., in binary robust-independent elementary fea-
tures (BRIEF).10 Efficient representations and fast matching
are obtained by the family of binary descriptors. Oriented
BRIEF (ORB) is an alternative to SIFT and SURF that is
based on a binary description.11

STABLE belongs to a broad class of local binary descrip-
tors, along with the census transform (CT),12 local binary
patterns (LBP),13 BRIEF,10 binary robust invariant scalable
keypoints (BRISK),14 or fast retina keypoints (FREAK).15

The most similar descriptor to STABLE is BRIEF;10 the
main difference lies in the ability of STABLE to have more
than one pair of pixels contributing to a single descriptor bit.
In general, binary descriptors are known to be robust against
intensity variations as relative pixel intensity comparisons
are used in descriptor construction followed by bitstring
matching, especially when compared to direct intensity com-
parison using sums of absolute or squared intensity differ-
ences. Furthermore, a higher speed could be expected from
simple comparison operations.*Address all correspondence to: Svorad Štolc, E-mail: svorad.stolc@ait.ac.at
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STABLE can be related to the principle of “compressed
sampling.”16 The compressed sampling theory claims that
each signal with a sparse representation in some (potentially
unknown) linear basis can be preserved and reconstructed
from a small number of random projections. For natural
images, this means that, due to the sparsity of image edges
and inherent smoothness, it is sufficient to sample the image
in a compressive manner without losing any significant
information. While the reconstruction is not the main focus
in our application, we exploit the principles of compressed
solely sampling for deriving an efficient binary representa-
tion of any given pattern, i.e., for encoding the pattern into
a constant number of bits that is greatly independent from
the pattern’s size.

2 Image Acquisition
We used two line-scan cameras sensitive in the visible spec-
trum for stereo acquisition of the road surface while the
acquisition device was moving. The surface could be
acquired using either one long image sensor line shared by
two lenses or two collinearly arranged line-scan image sen-
sors observing the same surface line patch. Figure 2(a) shows
the selected setup using two collinearly arranged line-scan
sensors observing the surface from two different viewpoints.
The optical axes are verged to obtain a larger overlapping
region. Some details on the geometrical setup are as follows:
a baseline of ∼220 mm, distance to the ground of ∼480 mm,
verging of the cameras of ∼� 11 degwrt the ground surface
normal, and field of view of the camera lens of ∼11.7 deg.

General design principles were that car driving speeds up
to 80 km∕h should be possible at lateral resolution on the
order of magnitude of 0.1 mm∕pixel. The used cameras were
able to achieve the required line rates of >200;000 lines∕s.
Regarding the field of view, it was sufficient to cover a small
stripe only, i.e., in the center of the region where car tires
usually interact with the surface, which made it possible to
restrict the line length to 1000 pixels.

Verging of the optical axis has two drawbacks. First, the
object resolution decreases from left to right in one view and
from right to left in the other view. Second, the limited depth
of field might result in sharpness reduction depending on
optical parameters and adjustment when compared to a
canonical stereo system. Geometric calibration of the sensor
lines ensures a constant object pixel size at the regular work-
ing distance for planar surfaces.

The depth of field was estimated to be on the order of
magnitude of �6.16 mm for a f-number of 5.6, a magnifi-
cation of 0.1, and a sensor pixel size of 10 μm. For f-num-
bers of 1.4 or 2.8, we would obtain a depth of field of
�1.54 mm or �3.08 mm, respectively. Although these are
quite low numbers, it turned out to be sufficient to compen-
sate for the varying distance due to verging and the expected
depth variation in road inspection.

The purpose of calibration is the alignment of the sensors
lines to ensure that the plane spanned by the left optical axis
and left sensor line is coplanar with the plane spanned by the
right optical axis and right sensor line. This property is
important to fulfill the epipolar constraint at each depth and
requires a calibration procedure that ensures collinearity of

Fig. 1 Samples of ground surface images: (a) washed concrete, (b) coarse asphalt, (c) surface with
joints, (d) mixed asphalt and stones, (e) surface with joints, and (f) mixed surface.

Journal of Electronic Imaging 013004-2 Jan∕Feb 2017 • Vol. 26(1)

Valentín, Huber-Mörk, and Štolc: Binary descriptor-based dense line-scan stereo matching



the sensor lines at a number of distances. To facilitate this
requirement, one has to ensure the collinearity of the sensors
at least for two different distances. Using a calibration target
similar to the one suggested by Luna et al.17 where target
patterns are present at parallel planes at different distances,
one is able to determine the camera pose, including the
epipolar plane orientation, of a single line-scan camera.
A similar calibration target is required for line-scan stereo
calibration. In our case, the concurrent mechanical adjust-
ment of both sensor lines ensures the observation of corre-
sponding patterns at different distances and for both cameras,
i.e., the epilpolar planes are the same for both sensors.
Nevertheless, residual misalignment and vibrations of the
system might result in problems during stereo matching.
We suggest an additional correspondence search between
lines adjacent to the concurrently taken sensor lines.

3 Stereo Image Processing
To obtain depth information from stereo image pairs, corre-
sponding points need to be found. Corresponding points are
typically identified via block matching, i.e., comparison of
image patches between image pairs. Measures of block sim-
ilarity include direct comparison of pixel intensities using
similarity metrics such as the sum of absolute differences,
the sum of squared errors, the normalized cross correlation,
and comparison based on measuring some distance between
block feature descriptors. While for descriptors, such as
SURF or SIFT, vector metrics in high-dimensional spaces are
commonly used to quantify descriptor similarity; for binary
descriptors, the Hamming distance is applied in most cases.

3.1 Local Binary Descriptors
In general, binary descriptors have been used for tasks like
texture analysis, recognition, and matching, e.g., LBP13,18

and the CT.12 In the context of local descriptors, several
fast binary descriptors were also developed recently, e.g.,
BRIEF,10 BRISK,14 FREAK,15 etc. In our experiments, we
considered the center-based descriptors CENSUS and LBP,
where center-based refers to the fact that pairwise compari-
son always involves the central pixel, and the uncentered
descriptors BRIEF and STABLE. The main difference in
binary descriptors is in the sampling pattern for local inten-
sity comparisons, which results in a binary descriptor vector.

The CENSUS-dense descriptor is the only descriptor utiliz-
ing exactly all pixels in the considered matching window. We
alternatively investigate the CENSUS-sparse descriptor,
which uses a subsample of off-center pixels on a regular grid
and compares those against the central pixel. The BRIEF
descriptor uses a subsample of pixel pairs (typically sparsely)
located at arbitrary positions in the matching window. The
resulting descriptor lengths equal the number of pixel pair
comparisons performed. Finally, with STABLE, we also
get pixel pairs at random positions, but we are able to map
a larger number of pixel pairs to a smaller number of
descriptor bits. Figure 5 shows the compared descriptor
masks (the meaning of the numbers in the mask will be
explained in the next section).

3.2 STABLE Descriptor
We consider an image patch p of size X × Y pixels. The oper-
ation β derives the ith descriptor bit di ∈ d from patch p as
follows:

EQ-TARGET;temp:intralink-;e001;326;325βðp; iÞ ¼
�
1 if ðp � fiÞ > 0;
0 otherwise;

(1)

where fi is a filter mask of equal size as the image patch p.
We refer to the operation β as the binarized convolution.
The filter dictionary f contains K sparse filter masks fi.
Each entry in fi is either 0, 1, or −1. The descriptor d is
a K-dimensional bitmask, which is obtained for a given
image patch p using

EQ-TARGET;temp:intralink-;e002;326;214dðpÞ ¼
XK
i¼1

2i−1βðp; iÞ: (2)

Figure 3 shows this operation schematically. A set of
sparse filter masks from a dictionary are applied to the same
image patch and, depending on the number and individual
signs of the filter mask entries, a number of pixels is contrib-
uting to each descriptor bit.

A more efficient implementation of STABLE, avoiding
binarized convolutions with K sparse feature filters, uses a
single index filter mask g. This mask g is of the same size
as the image patch p and encodes at nonzero pixel positions

(a)

stereo baseline

(b) (c)

Fig. 2 Binocular stereo image acquisition: (a) sketch of verged stereo geometry for two collinearly
arranged line-scan sensors, (b) car trailer carrying the imaging devices, and (c) cameras mounted in
trailer.
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the position in the descriptor array d and a sign. An accu-
mulator array a of sizeK is used to perform a sign-dependent
accumulation in cell i of the pixel values in p with corre-
sponding filter mask index jij; i ¼ 1; : : : ; K. After all accu-
mulators cells are processed, the descriptor d is derived by
thresholding each cell entry of a. The improved operation
involving the filter index mask g instead of the filter diction-
ary d is shown in Fig. 4.

The concept of filter masks is also applicable to other
binary descriptors, e.g., Fig. 5 shows filter masks corre-
sponding to CENSUS-dense, CENSUS-sparse, LBP, BRIEF,
and STABLE. The number in each cell refers to which bit a
pixels contributes. The sign indicates whether the pixel value
is taken as is (þ1) or if it is negated (−1) when using
the accumulator-based implementation scheme. The center-
based descriptors in Figs. 5(a) to 5(c) utilize the central
pixel for each descriptor bit, which is indicated by −�.

3.3 Stereo Matching
In stereo matching, we consider a discrete range of dispar-
ities [r1; : : : ; rP] for which the descriptors, corresponding to
each image pixel position, are compared by the Hamming
distance. This results in a cost stack C of dimension
M × N × P, where M and N are the image dimensions and
P is the number of evaluated disparities. The cost stack C is
searched for by the minimum cost at each pixel, which pro-
vides the associated disparity estimation. The cost stack C is
then filtered with a 1 × 3 Gaussian kernel in the cost domain
followed by filtering with a 3 × 3 Gaussian kernel in the
image domain. Finally, to efficiently obtain a subpixel accu-
racy disparity map, a parabola is fitted to three values around
the initial integer disparity estimation, a procedure com-
monly applied in image processing.19

4 Results
Wewill present results on synthetically disturbed data to esti-
mate robustness of STABLE in comparison to other binary

descriptors. We also provide detailed comparison to BRIEF,
the most similar approach to STABLE, based on stereo
matching performance on the Middlebury stereo dataset.
Furthermore, we provide illustrative examples on real-world
data of freeway road surface. Finally, we provide run-time
measurements on GPU platform.

4.1 Synthetic Data
To evaluate performance of the STABLE descriptor com-
pared with other state-of-the-art local binary descriptors,
we employed a similar evaluation scheme as suggested by
Mikolajczyk and Schmid20 based on the analysis of receiver
operator characteristic (ROC) curves. We extracted 1200
grayscale patterns from 48 natural images contained in the
data set introduced in Ref. 20, always 25 patterns per image
at random locations. Given the perturbation type, for each
pattern, we introduced 25 synthetic perturbations, which
gave a total number of 30,000 patches. In this study, we
considered five different types of perturbations:

• Gaussian additive noise (σ ≤ −20 dB);
• Gaussian blur (σ ≤ 4 px);
• shift in random direction (≤3 px);
• scaling (≤� 10%); and
• rotation (≤� 10 deg).

We considered matching windows of size 15 × 15 pixels.
Given the set of 30,000 patches defined for each pertur-

bation type, there is always a group of 25 associated per-
turbed versions for each patch in the data set. Making every
patch a query, one can assess its Hamming distance to all
patches in the data set making use of a particular feature
descriptor. Knowing that for each query there are only 25

Filter dictionary

Image

* >0

Descriptor
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–1

–1

–1

–1

1

1
1

* >0

1
0

1

1

Fig. 3 Operation of the STABLE descriptor: sparse filters from a dic-
tionary where each filter mask mostly consists of entries of 0, other
entries {−1;1} are randomly distributed. An image patch is convolved
with each filter mask, and the result is thresholded (binarized convo-
lution) and inserted into descriptor bits.
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Fig. 4 Efficient implementation of the STABLE descriptor: an index
filter mask contains pixel indices and signs. An image patch is
accessed using this mask, and a signed sum is inserted into an accu-
mulator array. The descriptor is finally obtained by binarization of
the accumulator entries.
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relevant elements, one can calculate the precision and recall
values for all result sets associated with different thresholds
put on the Hamming distance. The ROC curve is then
defined by the obtained precision and recall values.

In total, we compared five local binary descriptors:

• CENSUS-dense;
• CENSUS-sparse;
• LBP;
• BRIEF; and
• STABLE.

While for CENSUS and LBP, the descriptor size depends
on the matching window, in the case of STABLE and BRIEF,
the number of feature bits is defined independently from the
matching window. Thus, we also looked into the relationship
between matching performance, expressed in terms of the
area under the ROC curve (AUC), and the descriptor size
in bits. Furthermore, as both of these descriptors are gener-
ated stochastically, their performance was assessed as the
average and standard deviation over 25 trials with different
randomly generated filter masks. We believe this should
provide a clear picture about the typical performance and
stability of those stochastic descriptors.

Fig. 5 Examples of index filter masks of different binary feature descriptors defined on the 7 × 7 pixel
matching window: (a) CENSUS-dense, (b) CENSUS-sparse, (c) LBP, (d) BRIEF, (e) STABLE.
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Fig. 6 ROC curves obtained for different perturbation types. In the case of STABLE and BRIEF, the
provided ROC curves represent the best performance case over 25 random trials, i.e., the one with
the highest AUC value: (a) Gaussian noise, (b) blurring, (c) shifting, (d) scaling, (e) rotation.
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Figure 6 shows the recognition performance obtained by
different feature descriptors for a constant configuration of the
descriptor size. Going from the worst to the best performing
descriptors, it can be seen that the LBP provides the overall
worst performance for all perturbation types. It is then
followed by CENSUS-sparse and CENSUS-dense, both of
which provide comparable performance despite their very dif-
ferent numbers of feature bits. For most perturbation types, it
is then followed by BRIEF and finally by STABLE (notice the
curve with circles exceeds all the other curves in most cases).

In Fig. 7, the matching performance is analyzed in relation-
ship with the descriptor size. All descriptors with a constant
number of bits are marked as points, whereas all the others are
represented as curves. In this analysis, it is even more pro-
nounced that the performance of the both CENSUS descriptors
and LBP is significantly worse than for STABLE and BRIEF
at the respective bit counts. In the case of noise, blur, and shift
perturbations, the STABLE descriptor outperforms the BRIEF
descriptor, especially for medium numbers of feature bits.

The performance of STABLE versus BRIEF is docu-
mented in detail in Fig. 8. The advantage of STABLE
over BRIEF is expressed in terms of the recognition perfor-
mance gain defined as a ratio between AUC values obtained
by both descriptors using the same numbers of bits. It
follows that AUC ratios above one mark the cases where
STABLE outperformed BRIEF and vice versa. It is apparent
that the advantage of STABLE is mostly pronounced for
medium bit counts, while with the increasing size of the
descriptor, the difference is getting smaller as both descriptors

become more similar to each other. It should be noted that at
the maximum possible number of bits, both descriptors are in
fact the same where each bit is generated by just a pair of
pixels. There are two cases in which STABLE significantly
outperformed BRIEF, namely perturbations by (i) the additive
noise and (ii) the blur. In the case of additive noise, a perfor-
mance gain as large as 30% was obtained with 8-bit descrip-
tors. For blur and shift perturbations, the highest AUC ratios
exceeding 5% were obtained for 32-bit and 8-bit descriptors,
respectively. For scale and rotation perturbations, STABLE
performs generally slightly worse than BRIEF; however,
the worst performance loss is still well below 5%.

4.2 Stereo Matching on Middlebury Stereo Dataset
We assessed the dense stereo reconstruction performance of
STABLE versus BRIEF on real-world data. We used 10
evaluation training sets with disparity ground truth from
the Middlebury Stereo Datasets 2014.21 For both STABLE
and BRIEF, we used windows of size of 15 × 15 and descrip-
tor length of 8, 16, 32, and 64 bits. The left view served as
the reference view.

As the error metric, we used the percentage of pixels with
absolute disparity error greater than 2.0 (dubbed as bad 2.0).
We did not include occluded pixels. For each of the 10 data-
sets, we performed 25 runs (each run with a different index
mask for both descriptors) and recorded the best and average
values for each metric. Performance gain of STABLE rela-
tive to BRIEF averaged over all datasets is shown in Fig. 9.
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Results in Fig. 9 show that both for average and best cases
and for all tested bit lengths, STABLE outperforms BRIEF.
The largest performance gain (4.33% in bad 2.0) was mea-
sured for the length of 32 bits. Performance gain for 8 and
64 bits is significantly lower for both metrics. For illustra-
tion, Figs. 10(a) to 10(d) show the example where STABLE
outperformed BRIEF the most and Figs. 10(e) to 10(h) show
the example where STABLE was least superior to BRIEF.
The green areas in the difference images in Figs. 10(c) and
10(g) depict areas where STABLE gained a better bad 2.0
score when compared to BRIEF, whereas magenta refers to
a better bad 2.0 score for BRIEF. Black to white areas indi-
cate that both methods obtained very similar bad 2.0 errors.

4.3 Road Surface Data
In this section, we present results on real world data acquired
by driving our system on a freeway. First, we compare
STABLE and CENSUS-dense and provide results for

STABLE with different descriptor lengths. Subsequently,
we provide illustrative examples for selected features
found during the road surface survey. The purpose of this
survey is to assess 3-D road surface as poor road conditions
lead to increased wear and tear on vehicles and has an impact
on surface water transport, noise emission, etc.

4.3.1 Descriptor properties for road surface

Figures 11(a) and 11(b) show a stereo image pair depicting a
top down view of a washed concrete surface. The estimated
depth maps shown in Figs. 11(c) and 11(d) are results of
15 × 15 CENSUS-dense and 15 × 15 STABLE with 64 bit
descriptor length, respectively. The result of STABLE is
less noisy (i.e., less “black” pixels) using just 64 bits, while
achieving a qualitatively similar, or even slightly better,
depth estimation as the 15 × 15 − 1 ¼ 224 bit long CENSUS
descriptor.

Figure 12 shows the performance of STABLE with a
descriptor length ranging from 16 bits to 112 bits, which
is the maximum bit count possible for the 15 × 15 matching
window. While the 16-bit long descriptor still provides quite
noisy results, using 32- or 64-bit descriptors improves the
reconstruction quality significantly. On the other hand,
increasing the size of the descriptor to full 112 bits does
not seem to improve the result any further.

Finally, Fig. 13 shows the influence of spatial averaging
and additive noise on CENSUS-dense and STABLE. In both
cases, STABLE outperforms CENSUS-dense descriptor. The
images show the estimated disparities, which are linearly
related to depth measurements.

4.3.2 Sample images from road survey

Due to the lack of ground truth, we refer to a manual anno-
tation of interesting properties visible to human observers
and show the derived 3-D reconstruction from which these
properties become clearly visible. In most of the results,
there is a vertically oriented 3-D structure visible. This stems
from diamond grinding, which is a pavement preservation
technique used to remove surface irregularities to reduce
noise and increase road safety. We applied postprocessing
based on total variation (TV) regularization22 to obtain
smoother 3-D renderings, shown in Fig. 14. The brighter
the disparity, the closer the observed object point is to the
observer.

Figure 14(a) shows an image of a grinded concrete road
surface with an expansion joint. The grinding stripes, as well
as the expansion joint, are visible in the disparity map in
Fig. 14(b). A 3-D rendering of the portion around the expan-
sion joint is provided in Fig. 14(c). Figure 14(d) shows an
image of a grinded concrete pavement with a small hole; the
corresponding disparity and 3-D rendering of the area of the
hole are shown in Figs. 14(e) and 14(f), respectively. A gray-
scale image, disparity, and 3-D rendering of a larger break
out of the surface are shown in Figs. 14(g) to 14(i), respec-
tively. Finally, an image showing two grinding lanes of dif-
ferent depths is provided in Fig. 14(j). Additionally, in the
left upper corner, there is some material, which we assume
is chewing gum, observed in the area of the deeper grinding.
The disparity in Fig. 14(k) shows that the valley of the grind-
ing is not reached at the position of this suspicious object.
In the 3-D rendering in Fig. 14(l), the different grinding
depths and the object are visible as well.

Fig. 9 Stereo matching performance gain of STABLE over BRIEF
on Middlebury Stereo Dataset 2014. Displayed are the relative
differences between average and best bad 2.0 scores from 25
runs averaged over all datasets.
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Fig. 8 Recognition performance gain (i.e., the ratio between AUC val-
ues) of STABLE over BRIEF.
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4.4 Performance
For computational complexity analysis, we compared
STABLE and BRIEF with K features bits applied to X × Y
image patches implemented using the index filter mask
implementation, which was shown in Fig. 4. In general,
there are two main operations required for using any of

the local binary descriptors—building and matching. The
matching operation is typically identical for all binary
descriptors, i.e., making use of the Hamming distance
applied to binary strings of length K. The difference can
thus be only in the computational complexity of the building
operation.

Fig. 10 Stereo matching performance of STABLE and BRIEF on Vintage (a)–(d) and Jadeplant (e)–(h)
examples from the Middlebury Stereo Dataset 2014 where STABLE outperformed BRIEF the most
(a)–(d) and the least (e)–(h) for the length of 32 bits. (a) and (e) The depth reconstructions when using
STABLE, (b) and (f) Depth reconstructions for BRIEF, respectively. (c) and (g) The differences in bad 2.0
error metric wrt the corresponding ground truth depth maps are shown in (d) and (h). The green areas in
the difference images depict areas where STABLE gained better bad 2.0 score when compared to
BRIEF, whereas magenta refers to a better bad 2.0 score for BRIEF. Black to white areas indicate
that both methods obtained very similar bad 2.0 errors.
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Building of the descriptors is comprised of three basic
steps:

1. generating the index filter mask;
2. computing the accumulator values; and
3. binarization of the accumulator values.

The index filter mask is generated only once and can be
considered an input parameter for the building operation.
Therefore, this step can be omitted from our analysis. The
binarization step uses the same thresholding algorithm for
both analyzed descriptors and can be neglected as well.
Hence, the only difference comes from the complexity of
computing the accumulator values, as shown in Algorithm 1.
While STABLE requires processing of X × Y elements from
the index filter mask as well as from the image patch (or X ×
Y − 1 for odd number of pixels), BRIEF requires processing

only 2K such elements. Consequently, for a fixed K,
STABLE scales linearly with the number of patch pixels
while BRIEF, in principle, requires only a constant time.

In practice, however, the difference between the actual
execution time on CPU or GPU platforms and the theoretical
one might be more in favor of STABLE due to caching in
the on-chip memory. When a memory read for a cell is
requested, often nearby cells are fetched and stored in the
cache as well (details are hardware-dependent). To enable
optimal caching, the data have to be well-organized in the
memory, i.e., aligned with the hardware layout, and should
be accessed using a predictable memory access patterns, e.g.,
in the same order as they were stored. This is especially
important for GPUs where the global memory latency is
higher compared to the CPU memory and thus optimal
utilization of the cache memory has a higher impact on
the final performance. We believe that such memory caching

Fig. 11 Depth reconstruction of the road surface from a stereo image pair (a) and (b) using 15 × 15
CENSUS-dense with 224 bits (c), and 15 × 15 STABLE with 64 bits (d).

Fig. 12 Depth reconstruction quality obtained by 15 × 15 STABLE with different bit counts: (a) 16, (b) 32,
(c) 64, (d) 112.

Fig. 13 Depth reconstruction results for 15 × 15 CENSUS-dense with 224 bits and 15 × 15 STABLE with
64 bits: (a) and (b) corrupted by 5 × 5 averaging, (c) and (d) corrupted by Gaussian noise with −20 dB
variance.
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mechanisms can be better utilized with STABLE as all ele-
ments in both index and image patch arrays are always
accessed. In particular, they are accessed sequentially. There-
fore, the memory access pattern can be fully optimized. On
the other hand, as BRIEF uses a random-access sparse
memory pattern, prediction algorithms implemented in vari-
ous memory caching mechanisms are more prone to fail.

To practically measure the difference between execution
times of building STABLE and BRIEF descriptors, we
implemented the accumulator algorithm, described in
Algorithm 1, for a CUDA-enabled GPU in C/C++. Namely,
we used the CUDA Toolkit 7.5 and a NVIDIA GTX Titan
GPU. As a reference, we also implemented the CENSUS-
dense descriptor. The test data were a grayscale image of

Fig. 14 Illustrative results for road surface data (disparity maps smoothed by TV regularization): grinded
concrete surface with expansion joint: (a) image, (b) disparity, and (c) 3-D rendering (cutout); grinded
concrete surface with a hole: (d) image, (e) disparity, and (f) 3-D rendering (cutout); ungrinded concrete
surface with a larger break out region: (g) image, (h) disparity, and (i) 3-D rendering (cutout); grinding at
different depths and a chewing gum like object observed in a portion of the deeper grinding: (j) image,
(k) disparity, and (l) 3-D rendering (cutout).
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1500 × 1500 pixels. The descriptors of length 32 and 64 bits
were represented as packed binary strings using 32- and
64-bit integers, respectively, and were computed from win-
dows of 15 × 15 pixels. Each CUDA thread computed one
descriptor. Threads were arranged into 32 × 32 thread
blocks. The CUDA code was compiled with the preference
on L1 cache memory size. We executed the algorithm 500
times, each time with a different randomly generated index
filter mask for both descriptors. Average measured execution
times are listed in Table 1.

Results in Table 1 show that total execution time of
STABLE, in comparison to BRIEF, is lower than expected
merely from the number of utilized pixels for both 32- and
64-bit lengths. When considering execution time per utilized
pixel, execution time for STABLE is even lower by 44% and
22% for 32- and 64-bit length, respectively. This strongly
points to a better utilization of GPU’s hardware memory
caching.

5 Conclusion
In this paper, we have introduced the STABLE descriptor,
suitable for high-performance dense stereo matching, for
the application of line-scan stereo matching. STABLE relates
to the compressed sensing theory for efficient representation
of image patterns. We showed that STABLE provides signifi-
cantly better matching quality wrt, the efficiency of data rep-
resentation being preserved in a highly compressed binary
form.

Compared with other state-of-the-art binary descriptors,
our descriptor achieves the same matching quality with

considerably fewer descriptor bits required, or alternatively,
significantly better matching quality making use of the same
number of descriptor bits. This could be advantageous in
storage- and/or memory-limited environments. STABLE
offers increased stability and robustness, especially in the
cases where data are subject to noise, blur, and/or slight mis-
placement, which is often observed in practice. In all of the
considered data, i.e., synthetically perturbed data from the set
introduced in Ref. 20, the Middlebury Stereo Dataset 2014
(Ref. 21) and real-world line-scan stereo data, encouraging
results were achieved. Promising illustrative examples from
the real-world road survey application were provided.

Unlike some other descriptors, the descriptor size and the
matching window are defined independently in STABLE.
Moreover, STABLE always utilizes all pixels of the given
matching window for producing the required number of
feature bits, which makes it suitable for many practical appli-
cations where a trade-off between the descriptor size, due
to computational performance limitations, and the overall
matching performance is necessary. Yet another indication of
the same is that STABLE surpasses other analyzed descrip-
tors predominantly in a small-medium range of feature bits.

Despite that STABLE requires more operations to com-
pute than BRIEF for the same window size and bit length,
it runs in less time per utilized pixel on GPU as it can take
better advantage of the GPUs memory caching mechanisms.
Comparable results are expected on different computing
platforms implementing similar caching mechanisms.

We have demonstrated that the proposed descriptor works
very well for a broad class of natural patterns and that the
inherent sparsity of those patterns suffices the assumptions of
the compressed sensing theory. Another direction of our
future research will go toward ways of mitigating certain
matching artifacts originating from a typically rectangular
matching window, where each pixel is utilized precisely one
time. The calibration of line-scan stereo, which so far has
been solved only by a mechanical camera adjustment, will
also be considered in more detail in future investigations.
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