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ABSTRACT. Purpose: The objective assessment of image quality (IQ) has been advocated for
the analysis and optimization of medical imaging systems. One method of comput-
ing such IQ metrics is through a numerical observer. The Hotelling observer (HO) is
the optimal linear observer, but conventional methods for obtaining the HO can
become intractable due to large image sizes or insufficient data. Channelized meth-
ods are sometimes employed in such circumstances to approximate the HO. The
performance of such channelized methods varies, with different methods obtaining
superior performance to others depending on the imaging conditions and detection
task. A channelized HO method using an AE is presented and implemented across
several tasks to characterize its performance.

Approach: The process for training an AE is demonstrated to be equivalent to
developing a set of channels for approximating the HO. The efficiency of the learned
AE-channels is increased by modifying the conventional AE loss function to incor-
porate task-relevant information. Multiple binary detection tasks involving lumpy
and breast phantom backgrounds across varying dataset sizes are considered to
evaluate the performance of the proposed method and compare to current state-
of-the-art channelized methods. Additionally, the ability of the channelized methods
to generalize to images outside of the training dataset is investigated.

Results: AE-learned channels are demonstrated to have comparable performance
with other state-of-the-art channel methods in the detection studies and superior
performance in the generalization studies. Incorporating a cleaner estimate of the
signal for the detection task is also demonstrated to significantly improve the per-
formance of the proposed method, particularly in datasets with fewer images.

Conclusions: AEs are demonstrated to be capable of learning efficient channels for
the HO. The resulting significant increase in detection performance for small dataset
sizes when incorporating a signal prior holds promising implications for future
assessments of imaging technologies.
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1 Introduction
Medical imaging systems are commonly optimized with consideration of a specific task.1

Assessing the performance of such systems requires an objective metric for image quality.2–6

For signal detection tasks, the Bayesian ideal observer (IO) has been advocated for producing
a figure-of-merit for assessing imaging systems because it can maximize the amount of task-
specific information in the measurement data.2–7 For a binary signal detection task, the IO test
statistic takes the form of a likelihood ratio. Using this likelihood ratio as a test statistic in turn
maximizes the area under the receiver operating characteristics (ROC) curve.2–4,7 However,
analytically determining the IO is generally difficult because it typically is a nonlinear function
and requires complete knowledge of the statistical properties of the image data.

There has been recent progress in developing approximations for computing the IO test
statistic.5,6 One line of research involves sampling-based methods that utilize Markov-chain
Monte Carlo methods to approximate the IO, but the work in this area has largely been limited
to relatively simple stochastic object models.3,5,8,9 Another development is the approximation of
the IO with convolutional neural networks (CNNs).10–12 Generative adversarial models have also
been employed to approximate the IO with Markov-Chain Monte Carlo methods.13,14 An alter-
native method to approximating the IO’s performance employs variational Bayesian inference.15

This line of research has shown promise for implementing task-specific optimization of sparse
reconstruction methods.

A common surrogate for the often-intractable IO is the Hotelling observer (HO).16–19 The
HO is the optimal linear discriminator for maximizing the signal-to-noise ratio (SNR) of the test
statistic.20,21 Directly implementing the HO requires the estimation and inversion of a covariance
matrix, which quickly grows as image size increases and can become intractable to compute.22

There are a few different strategies for mitigating the computational cost of inverting a large
matrix.16,22 One method is to avoid a direct inversion by implementing an iterative approach
to estimate the test statistic.2 If the measurement noise covariance matrix is known and an
estimate of the background covariance matrix is available, covariance matrix decomposition
is another option,2 with the caveat that certain situations can lead to significant bias in the
performance.23 Alternatively, the test statistic can be learned directly from the images provided
that there is a sufficient amount of data.11,24 The most commonly employed method, however, is
the implementation of channels that approximate the HO.5,25,26 Additionally, a recent comparison
between nonlinear CNN-based methods and linear channelized methods for simple signals on
simulated digital mammography (DM) images found that channelized methods can outperform
CNN-based methods when training data are limited.27 Conceptually, channels function by pro-
jecting the high-dimensional image data to a low-dimensional image manifold.28–30 Ideally, the
manifold embedding would preserve the important features of the data.31 This dimensionality
reduction stabilizes the process of estimating the HO when considering noisy data and limited
amounts of training images.

Channelized observers are considered efficient if they closely approximate the original
observer’s performance.32 Prior work in computing efficient channels includes Laguerre–
Gauss (LG),26 singular value decomposition (SVD),33 the filtered channel observer (FCO),34 and
partial least squares (PLS).35 Although some methods generate generic channels that can be
applied to classes of signals,26 the more recent work has focused on channels that are applicable
to a specific detection task.35,36 These channels require a dataset of images for training but are
applicable to detection tasks where the signal is not known exactly or rotationally symmetric.35,36

In addition to learning efficient channels, there are approaches that seek to mimic the human
observer’s performance.37–39 An early approach learned the relationship between channel
features and human observer performance with a support vector machine.37 Another approach
investigated optimization with respect to the HO and human observers on accelerated MRI
reconstruction.38 There has also been some recent work applying CNNs for directly learning
a surrogate measure of human observer performance.39 In the remainder of this work, however,
the focus is on efficient channels.

Autoencoders (AEs) are a type of artificial neural network (ANN) that are characterized by a
mirror structure, with the target output of the network similar to the input.40–44 They are designed
to learn a lower-dimensional representation of the data called an embedding. The portion of the
network that transforms the input to the embedding is known as the encoder, and the portion that
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transforms the embedding back into the original data space is known as the decoder. A good
embedding is capable of significant data compression while retaining most of the information
from the original data. The data compression qualities of AEs make them desirable to use in
many tasks, and they have been applied in state-of-the-art systems for classification,45 noise
reduction,46 and regression.47 The widespread success of the AE is due to its ability to generate
low-dimensional representations of images, which increases the efficiency of further processing
by attenuating noise and embedding data to its most important components. Linear AEs share
some similarities with principle component analysis. In general, a linear AE with optimal weights
projects the data onto a subspace spanned by the top principle directions of the data.48

In this work, the problem of learning task-informed embeddings with an AE is explored to
develop efficient channelized observer methods. AEs have previously been demonstrated to
develop efficient channels for simple signal-known-exactly/background-known-statistically
(SKE/BKS) detection tasks.36,49 This paper expands on those works by demonstrating that the
learning task for an AE is equivalent to learning channels for the HO. The AE is modified to learn
the optimum transformation matrix that maximizes the amount of task-specific information
encoded in its latent states. Experiments are performed to validate AE-learned channels on loca-
tion-known binary detection tasks, including SKS tasks with an elliptical signal on a lumpy
background and detection tasks with two separate signals on a breast phantom background.
The performance of the AE-learned channels in these studies is compared to state-of-the-art
channelized methods, including PLS and FCO, as well as conventional methods for estimating
the HO. A study is also performed to assess the ability of these channelized methods to generalize
to related imaging systems. Finally, the impact of the quality of the signal estimate on channel-
ized methods is explored.

The remainder of this work is organized as follows. In Sec. 2, the salient aspects of binary
signal detection theory are presented. The HO, channelized HO (CHO), and AE are also
reviewed in that section. A methodology for learning channels for a location-known binary signal
detection task using an AE is developed in Sec. 3. The numerical studies and results of the pro-
posed method for approximating the HO are included in Secs. 4 and 5, along with a comparison
to other state-of-the-art methods. Finally, this paper concludes with a discussion of the work
in Sec. 6.

2 Background
We consider a linear digital imaging system described as

EQ-TARGET;temp:intralink-;e001;117;331g ¼ HfðrÞ þ n; (1)

where fðrÞ represents the object function with the spatial coordinate r ∈ RK , H represents a
continuous-to-discrete (C-D) imaging operator that maps L2ðRKÞ → RN , n ∈ RN is the random
measurement noise, and g ∈ RN denotes the measured image data vector. Hereafter, the object
function fðrÞ will be abbreviated as f .

2.1 Overview of Binary Signal Detection Tasks
The binary signal detection task considered involves the classification of an image by an observer
into one of two hypotheses: signal-present (H1) or signal-absent (H0). Under these hypotheses,
the imaging process can be represented as

EQ-TARGET;temp:intralink-;e002a;117;199H0∶ g ¼ Hfb þ n; (2a)

EQ-TARGET;temp:intralink-;e002b;117;163H1∶ g ¼ Hðfb þ fsÞ þ n; (2b)

where fb and fs denote a background and a signal object, respectively. Depending on the imaging
task, these can be either random or fixed.

In the binary signal detection task, a real-valued test statistic tðgÞ is obtained from applying
an observer to a measured image. This test statistic is compared against a threshold τ to classify g
as satisfying either H0 or H1. To determine the desired performance for the signal detection task,
an ROC curve can be plotted to depict the trade-off between the false-positive fraction and the
true-positive fraction by varying the threshold τ. The overall signal detection performance of
the observer can be summarized by computing the area under the ROC curve (AUC).50
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2.2 Bayesian Ideal Observer and Hotelling Observer
The IO is optimal and sets the upper limit for observer performance on signal detection tasks.
The IO test statistic for binary tasks is defined as a monotonic transformation of the likelihood
ratio ΛLRðgÞ that takes the form2,3,12

EQ-TARGET;temp:intralink-;e003;114;688ΛLRðgÞ ¼
pðgjH1Þ
pðgjH0Þ

; (3)

where pðgjH0Þ and pðgjH1Þ are conditional probability density functions that describe g under
the hypotheses of H0 and H1, respectively.

An alternative to the IO for assessing signal detection performance is the HO. The HO test
statistic is defined as

EQ-TARGET;temp:intralink-;e004;114;603tðgÞ ¼ wT
HOg; (4)

where wHO ∈ RM denotes the observer template. Let gj ≡ hhgigjfifjHj
denote the conditional

mean averaged with respect to object randomness and noise associated with Hj. The Hotelling
template wHO is defined as2

EQ-TARGET;temp:intralink-;e005;114;538wHO ¼
�
1

2
ðK0 þK1Þ

�
−1
Δg; (5)

where

EQ-TARGET;temp:intralink-;e006;114;489Kj ¼ hh½g − gj�½g − gj�TigjfifjHj
; (6)

EQ-TARGET;temp:intralink-;e007;114;448Δg ¼ g1 − g0; (7)

where Kj and gj represent the covariance matrix and mean of the measured data g under
hypothesis Hj, respectively. The mean signal Δg is the difference of the means under the two
hypotheses. A regularized Moore–Penrose (MP) pseudoinverse can be applied instead of the
inverse in Eq. (5) in cases where the covariance matrix is ill-conditioned.2

The SNR associated with the test statistic t is another commonly employed FOM for
assessing signal detection performance and is given by21

EQ-TARGET;temp:intralink-;e008;114;369SNRt ¼
hti1 − hti0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
σ20 þ 1

2
σ21

q ; (8)

where htij and σ2j ¼ hðt − htijÞ2ij are the mean and variance of tðgÞ under hypothesis Hj.
The HO maximizes the SNR of its test statistic tðgÞ, but unlike the IO it does not necessarily
maximize the AUC.21

2.3 Channels
In some cases, the direct estimation of the HO can become intractable. The covariance matrix in
Eq. (5) may not be invertible due to the size of the images or insufficient quantity of data.
As images become larger, the amount of data required to obtain a robust estimate noticeably
increases. Medical image datasets frequently do not contain sufficient images to robustly
estimate Kj due to large image sizes or the limited access to large scale annotated datasets.

To mitigate this problem, a channelized version of the image g can be introduced as21

EQ-TARGET;temp:intralink-;e009;114;189v ¼ Tg ¼ TðHf þ nÞ; (9)

where v is a M × 1 channel-reduced image and T is a M × N matrix. The dimensionality reduc-
tion is determined by the number of channels M < N. Applying the HO to the channel-reduced
data yields the CHO,21 with the test statistic taking the form

EQ-TARGET;temp:intralink-;e010;114;130TðvÞ ¼ wT
vv ¼ ðK−1

v ΔvÞTv; (10)

where Kv ¼ 1
2
½Kv;1 þKv;0� and Δv ¼ v1 − v0, where Kv;j ¼ hh½v − vj�½v − vj�TivjfifjHj

and

vj ¼ hhvivjfifjHj
for j ¼ ð0;1Þ.
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Efficient channels should maximize the retained task-relevant information to provide an
efficient approximation of the HO. There are several methods that exist for selecting efficient
channels. One of the first was LG channels.32 These channels are a combination of a Gaussian
function with a Laguerre polynomial and were proposed due to their structural similarity with the
Hotelling template for certain detection tasks. These channels are suitable for a smooth rotation-
ally symmetric signal on a lumpy background but may have suboptimal performance for arbitrary
signals and more complex backgrounds.35

An alternative to LG channels are SVD channels.33 These channels are singular vectors that
form a basis for image vectors in the range of the imaging operator. The most efficient set of
channels constructed from this method involved decomposing the noiseless signal image by
use of the singular vectors and choosing the top m of them to form the channel set. However,
this method is computationally expensive and system-specific.

Two current state-of-the-art methods for generating efficient channels capable of considering
arbitrary signals and backgrounds without any specific knowledge of the imaging system are
PLS35 and the FCO.34 The PLS method applies a data reduction technique that iteratively con-
structs a number of latent vectors that maximize the covariance between the data and a binary
label representing the presence of a signal. The PLS method represents an attractive method to
use in limited-data cases and/or large image sizes and works well with noisy and heavily corre-
lated data. However, the technique can suffer from a degradation of performance when the
amount of available image data is small.35

FCO channels were initially developed as anthropomorphic channels to approximate human
signal detection performance for irregularly shaped signals.34 However, FCO channels have also
been explored as efficient channels for the HO.34,51,52 The FCO convolves a selected set of base-
line channels with the signal before computing the observer template. For the experiments in this
paper, LG channels were selected as the baseline set of channels due to both LG’s past success32

and similar decisions with the FCO method in more recent work.51,52 This realization of the FCO
method will be referred to below as a convolutional LG observer.

2.4 Neural Networks for Approximating the IO
A feed-forward ANN is a system of computational units associated with tunable parameters
called weights.53,54 A feed-forward ANN is capable of approximating any continuous function
if it has a sufficiently complex architecture.55,56 ANNs have been employed to form numerical
observers, with the focus on directly estimating the test statistic.10–12 Kupinski et al.12 utilized
conventional fully connected neural networks to approximate the IO on low-dimensional
extracted image features. Zhou and Anastasio extended this work to higher-dimensional data
and allowed for native processing of image data by replacing the FCNN with a CNN.10,11

However, these approaches focus on learning the test statistic directly and may require a complex
network and a large amount of training data to accurately approximate the IO.

2.5 Autoencoders
A specialized type of ANN is the AE.40–44 The AE is characterized by a mirror structure, with the
input of the network similar to the target output. An AE has three distinct components: an
encoder, an embedding, and a decoder. The encoder transforms the input to the embedding,
which generally has a significantly reduced dimensionality compared to the input. The decoder
transforms the embedding into the target output. In a canonical AE, the decoder is specified to
reconstruct an approximation of the input to the encoder. AEs are frequently employed for their
data compression properties in state-of-the-art systems for classification,45 regression,47 noise
reduction,46 anomaly detection,57 and image recovery58 tasks. Additional performance improve-
ments can be made by injecting additional information into the AE training process. Studies have
shown that exploiting a priori information via modifications to the loss function can introduce
task-specific information in the training of AEs.59,60 In contrast to previous work with ANNs,
an AE is usually trained in an unsupervised way.45

In general, the layers in an AE specify many sets of matrix multiplications with added bias
terms and nonlinear transformations. By restricting the operations to only matrix multiplications,
linear AEs can be obtained. In these cases, the encoder and decoder can each be described by a
transformation matrix that transforms to or from the data embedding. Such a simplified network
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is considered in this work since this configuration’s encoder has a natural parallel with the chan-
nel matrix in the CHO. The input to the network is an image, and the target output is either
the input image or a related version of the input image, depending on the task.

Another aspect of AEs that has recently been considered is the concept of tied weights.61

Tied weights further enforce the mirror-like structure of the AE by forcing the encoder and
decoder matrices to be symmetric. Tied-weight AEs have been shown to perform similar to
untied-weight AEs but require less data to train because of the reduction in parameters.

An optimization problem is solved to determine the weights of the AE by minimizing a
reconstruction loss. Let W1 and W2 be N ×M weight matrices that parameterize the encoder
and decoder of the linear AE, respectively. The optimization problem to obtain the optimal
weights of a linear AE is

EQ-TARGET;temp:intralink-;e011;114;604Ŵ1; Ŵ2 ¼ arg min
W1;W2

kW2WT
1g − g�k2; (11)

where the target reconstruction is represented by g�. This target reconstruction can be the same as
or different from the input data but is usually closely related. For example, in denoising problems,
the target output is a clean version of the input image.

The solution of the optimization problem is computed by minimizing the loss function using
a variation of the backpropagation algorithm.62 The conventional loss function for an AE is
the mean squared error between the input and the output of the network. Given P vectorized
background images gi, the conventional loss function corresponding to a zero-bias linear AE is40

EQ-TARGET;temp:intralink-;e012;114;487LconðW1;W2Þ ¼
1

P

XP
i¼1

kW2WT
1gi − g�i k22: (12)

The data embedding of the trained AE is represented as

EQ-TARGET;temp:intralink-;e013;114;432ŷ ¼ ŴT
1g; (13)

and the corresponding reconstruction is ĝ ¼ Ŵ2ŷ.

3 Method: Autoencoder-Learned Channels
A method for learning efficient channels for the CHO with an AE is described below. A con-
nection between AE weights and the CHO framework is established to illustrate the connection
between the learned data embeddings and more traditional channels.

3.1 Autoencoder Channels and Linear Autoencoders
The learned weights of an AE have an additional interpretation when considered in the frame-
work of a signal detection task. The weights define a mapping from the high-dimensional image
space to a low-dimensional embedding space. This is conceptually equivalent to the CHO chan-
nel matrix T. Thus the learned AE weights can be employed as channels for the CHO by setting
T ¼ WT

1 in Eq. (9). Intuitively, these AE-learned channels capture the data most important for
reconstructing the image. Combining a conventional AE with directly learning an observer on
the data embedding has also been proposed.49 However, here AE channels with a conventional
method for obtaining the CHO will be considered.

The embedding in Eq. (13) causes the AE to encode the entirety of the input image. This
makes the conventional AE suboptimal for learning channels because a significant portion of
the data embedding is dedicated to reconstructing certain components of the image that may
not be highly relevant to the detection task. To circumvent this, as described below, information
about the signal can be incorporated into the AE training process to preserve task-specific
information.

3.2 Task-Specific Autoencoders
A modification to the loss function to improve the learned data embedding and resulting signal
detection performance for AE-channels is presented here. Ideally, the entirety of the AE embed-
ding would be dedicated to the task-specific information. This would minimize the proportion of
the embedding that is dedicated to extraneous information and lead to a more efficient set of
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channels. By changing the AE’s target reconstruction to the mean signal image for a binary signal
detection task, the background and noise are suppressed during the reconstruction process. This
results in an embedding in which the signal can be accurately represented. This substitution of
the target reconstruction minimizes the MSE between the reconstructed image and the estimated
signal image and takes the form of

EQ-TARGET;temp:intralink-;e014;117;676LtaskðW1;W2Þ ¼
1

P

XP
i¼1

kW2WT
1gi − IðgiÞΔḡk22; (14)

where Δḡ is defined in Eq. (7) and Ið·Þ is the indicator function that returns 1 if the signal is
present and 0 otherwise. Since the loss function employs label information, this approach is a
supervised learning method. Considering the background as noise to be suppressed permits the
entire capacity of the embedding to focus on the task-specific information. Although a linear
AE projects data into a subspace spanned by the data’s top principle directions,48 the proposed
modification removes this association. Using the signal template as the target image assists the
training process in identifying an embedding that preserves task-specific information. As shown
below, this modification to the loss function is capable of generating efficient channels for the
CHO. A diagram of the AE with both the conventional and task-based approach for the signal
detection task is provided in Fig. 1, with a sample reconstruction from AEs trained using both
loss functions shown in Fig. 2. Both the task-specific and conventional loss functions can be
minimized by use of a gradient-descent method, with specific implementation details provided
in Sec. 4.6.

4 Numerical Studies
Numerical simulation studies were conducted to evaluate the performance of the proposed
method for learning efficient channels for the CHO. All simulations addressed BKS signal
detection tasks. Four distinct binary signal detection tasks were considered. Using a lumpy
stochastic object model, a location-known task and a fixed-centroid signal-known-statistically
task were considered. These tasks enabled the HO to be estimated both using covariance matrix
decomposition2 and direct computation according to Eq. (5). These observers will be referred to

Fig. 1 Diagram of the proposed method. A noisy image is the input to an encoder, which is
mapped to an M-dimensional latent space to encode the information. The encoder transformation
matrix is given by WT

1 . The embedded representation is then multiplied by the decoder transfor-
mation matrixW2 to return to image space and generate the output image. Two different loss func-
tions are considered for training this model. The conventional loss function computes the MSE
between the output image and the input image. This approach attempts to reconstruct the entire
input image. The second considered loss function is the task-specific loss, which calculates
the difference between the output image and estimated signal image ŝ. This loss maximizes
the signal-specific information of the input image.
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as HO-CMD and HO-Direct, respectively. On a breast phantom background, two location-known
signal detection tasks using signals of different shapes and sizes were considered. These tasks
allowed for the evaluation of channelized methods on a more realistic medical imaging task.
ROC curves were fit by use of a binormal model50,63,64 with the fitted AUC values reported.
The experimental results are reported in distinct sections based on the image background model,
with the details for each signal detection task and the training of neural networks are given in the
appropriate sections.

4.1 Signal Detection Tasks That Utilize a Lumpy Background Model
Two different signal detection tasks were performed with consideration of a lumpy stochastic
object model65 with an idealized parallel-hole collimator system.3 Further details about each of
the components are provided below.

4.1.1 Lumpy background

A stochastic lumpy object model was used as the background65

EQ-TARGET;temp:intralink-;e015;114;330fbðrÞ ¼
XL
n¼1

lðr − rnja; sÞ; (15)

where L ∼ PoissðL ¼ 5Þ is the number of lumps that is sampled from Poisson distribution with
the mean set to 5 and lðr − rnja; sÞ is the lump function modeled by a symmetric 2D Gaussian
function with amplitude a and width s given by

EQ-TARGET;temp:intralink-;e016;114;251lðr − rnja; sÞ ¼ a exp

�
−
ðr − rnÞTðr − rnÞ

2s2

�
; (16)

where rn is the uniformly sampled position of the n’th lump. The magnitude and width of the
lumps were set to the frequently employed values of a ¼ 1 and s ¼ 7.10,35,49,65 An example of
a signal-present image in the dataset with a circular signal is located in Fig. 3.

4.1.2 Imaging system

The stylized imaging system in these studies was a linear C-D mapping describing an idealized
parallel-hole collimator system with a point response function given by3,66

EQ-TARGET;temp:intralink-;e017;114;117hmðrÞ ¼
h

2πw2
exp

�
−
ðr − rmÞTðr − rmÞ

2w2

�
; (17)

with the height h ¼ 40, the width w ¼ 0.5, and the location of the m’th pixel in r denoted by m.

(a) (b) (c) (d)

Fig. 2 Reconstructed images corresponding to each of the loss functions. The grayscale in each
case is adjusted to maximize visibility. Panel (a) is the input image, which contains the faint
Gaussian elliptical signal in (b). The conventional AE with 20 channels reconstructs the image
in (c) while the task-specific tied-weight AE with 10 channels reconstructs the image in (d).
Note that the reconstructed image in (c) is noticeably less noisy than the input image (a), which
it is attempting to reconstruct. This is due to the limited number of latent states in the model embed-
ding the largest structures in the input images. Noise cannot be effectively encoded for an image,
so it is attenuated.
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4.1.3 Signals

The signal function fs was a 2D Gaussian function:

EQ-TARGET;temp:intralink-;e018;117;542fsðrÞ ¼ A expð−ðRθðr − rcÞÞTD−1ðRθðr − rcÞÞÞ; (18)

where A ¼ 0.2 is the amplitude and rc is the coordinate of the signal location. Here Rθ is the
Euclidean rotation matrix that rotates the Gaussian by an angle of θ and is given by

EQ-TARGET;temp:intralink-;e019;117;494Rθ ¼
�
cos θ − sin θ
sin θ cos θ

�
; (19)

and D is a scaling matrix that controls the width of the Gaussian along each axis and is given by

EQ-TARGET;temp:intralink-;e020;117;445D ¼
�
2σ2x 0

0 2σ2y

�
: (20)

For both experiments involving the lumpy background, the elliptical Gaussian signal was set
to have the parameters σx ¼ 5 and σy ¼ 1.5. The image size was selected to be 64 × 64 with the
signal centered at rc ¼ ½32;32�T. The value of θ varied depending on the type of task.

4.1.4 Detection tasks

The first signal detection task considered a single orientation of the signal by setting θ ¼ 0. The
signal template was computed according to Eq. (7), which resulted in a noisy estimate of the
signal. The second signal detection task sampled θ uniformly from the set ½0 deg; 45 deg;
90 deg; 135 deg�. This allowed for four distinct orientations of the elliptical Gaussian. The mean
signal was also computed with Eq. (7), which resulted in a noisy estimate of the signal averaged
across the four possible realizations.

4.1.5 Dataset generation

A training set of 60,000 unique background images with noise were generated for the lumpy object
model. The background images were generated separately from the signal image in Eq. (18) using
the appropriate background model. Each background image was summed with a unique noise vec-
tor drawn from an independent and identically distributed Gaussian distribution nm ∼N ð0; δ2Þ
with a mean of 0 and standard deviation δ ¼ 20. These images were then paired, with half des-
ignated for signal present and half for signal absent. Each signal present image was summed with
the signal image to generate the final training dataset of 30,000 paired images. Another set of 5000
paired images was generated for determining the channel covariance matrix after the channels had
been learned and a further set of 5000 paired images were held out as a testing dataset.

4.2 Location-Known Tasks That Utilize a Breast Phantom Dataset
Two additional signal detection tasks were performed with consideration of a breast phantom
stochastic object model employing the VICTRE dataset.51,52 This dataset contains simulated DM

(a) (b) (c) (d)

Fig. 3 Sample generation for signal-present images used in the lumpy background experiments.
The grayscale in each case was adjusted to maximize visibility. The signal image (a) was added to
the lumpy background (b) and the Gaussian noise (c) to produce the composite dataset image (d).
The signal image is an elliptical Gaussian signal with width σx ¼ 5, σy ¼ 1.5.
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images and was employed previously in a location-known mathematical observer study to evalu-
ate imaging systems.51,52 The images were divided into four categories of breast types: extremely
dense, heterogeneously dense, scattered fibroglandular, and fatty. The signals in the dataset were
microcalcification clusters and spiculated masses. Regions of interest (ROIs) from the simulated
DM image were extracted to generate the images used in the signal detection task. For each
signal, there were associated signal-absent and signal-present images. The spiculated mass
ROIs were 109 × 109 pixels and the microcalcification ROIs were 65 × 65 pixels. The consid-
ered microcalcification signal was a consistent arrangement of five microcalcifications, which
were considered jointly as one signal for the detection task. The signal remained constant
throughout all the signal-present images, but a clean signal image was assumed to be unavailable.
An estimation of the signal was obtained from the difference of the mean signal-present and
signal-absent images according to Eq. (7), making this a location-known task.51,52

For each type of signal, 12,500 total images were selected from the dataset to form training,
validation, and testing sets of 5000, 625, and 625 paired images, respectively. The breast types
selected maintained the proportions employed in the VICTRE study.51,52 The signals were esti-
mated by taking the mean of the signal-present images and subtracting the mean of the signal-
absent images for the combined training and validation dataset. Sample images and estimated
signals are included in Fig. 4.

4.3 Location Known Tasks Considering a Provided Signal
The tasks in Secs. 4.1 and 4.2 consider a mean signal that is computed separately for each dataset
size. This represents the case where the training data are used to estimate the mean signal.
However, one can also consider the performance of methods when the mean signal is provided.
This represents cases where a prior about the signal is known and can be leveraged to improve
detection performance. Such experiments isolate the contribution of the mean signal estimate
from additional images provided by larger datasets. This experiment formulation has also been
employed previously to evaluate the dependence of channelized methods on the quantity of back-
ground images.35 The experiments in Secs. 4.1 and 4.2 were repeated, setting the mean signal to
be the estimate from the training and validation data at the maximum dataset size for cases.

4.4 Tasks Evaluating the Generalizability of Channelized Methods
Since the proposed method of determining channels is dependent on the mean signal image, there
is the reasonable concern that AE-learned channels may fail to generalize outside of the learned
dataset. Thus two studies were considered to evaluate the ability of the learned channelized
methods to generalize.

4.4.1 Domain shift study

The first case considers the effects of domain shift on the channels. Domain shift is the difference
in distributions between the datasets an algorithm is trained and evaluated upon.67 A method’s

(a) (b) (c) (d)

Fig. 4 Sample estimated signals and images from the VICTRE breast phantom dataset. The gray-
scale was adjusted in each case to maximize visibility. Panels (a) and (c) contain the mean signal
image of the spiculated mass and microcalcification cluster, respectively. Panels (b) and (d) are
sample images of those corresponding signals embedded into a fatty breast phantom. Note that
the signal in (c) appears to be doubled. This artifact is a result of the extracted scattered breast
ROIs not aligning with the other breast types in the provided public dataset.
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robustness to domain shift corresponds to generalization performance when a set of channels
developed for one imaging system is employed in another related system with different
properties. Such a circumstance may occur when using channels to tune an imaging system’s
parameters, as it is undesirable to recompute channels whenever part of the system is
changed. Characterization of such performance is important when considering the application
of channels developed with consideration of one imaging system to data produced by another
imaging system. Medical imaging datasets are frequently difficult to obtain, and it may be ben-
eficial to leverage previously collected datasets to develop channels for use with new imaging
systems.

An experiment was developed to investigate the impact of domain-shift on the learned chan-
nels. To evaluate observer performance in the presence of domain shift, a source dataset and a
target dataset are necessary. The source dataset is defined as the training dataset for a channelized
method. Likewise, the target dataset is the dataset upon which the channelized method is evalu-
ated. The difficulty of the problem depends on the difference in the distributions between the
source and target dataset.

To evaluate generalization performance across multiple instances of domain shift, three data-
sets were constructed and all possible combinations of source and target datasets were consid-
ered. The imaging system, location-known elliptical signal, and stochastic object model for the
background were reused from Sec. 4.1.1. These parameters correspond with a location-known
detection task for a stylized PET imaging system. The three datasets were constructed by setting
the width of the imaging system in Eq. (17) to 1.0, 2.0, and 4.0. Thus the domain shift is the
difference in image distributions from stylized PET imaging systems with different widths.

The noise model was also altered from the previous studies. A mixed Poisson/Gaussian
noise model was considered, as it is known to be a reasonable approximation of PET
noise.68 Each pixel of the image was sampled as a random Poisson variable with the mean set
to the intensity of the voxel and combined with additive i.i.d. Gaussian noise. This noise model
takes the form of

EQ-TARGET;temp:intralink-;e021;117;412nm ¼ pm þ σm; (21)

where pm ∼ PoissðgmÞ and σm ∼N ð0; 1Þ. After adding the noise, the images were scaled to [0,1].
The generated datasets had training, validation, and testing sizes of 30,000, 5000, and 5000

paired signal present/absent images, respectively. The same set of backgrounds were considered
for each dataset.

4.4.2 Amalgamated dataset study

Due to the difficulty of obtaining medical imaging data and the benefits of additional data for
improving performance, it is sometimes beneficial to consider related images acquired from
multiple imaging conditions. For this combined dataset to be beneficial for application across
multiple imaging conditions, the imaging conditions must be similar enough such that the
benefits of the additional data outweigh the loss of imaging-condition specific channels. The
performance of the obtained channels upon the individual imaging conditions that contributed
to the combined dataset is relevant for evaluating the benefits of such a technique.

To evaluate such a case, pairs of images were evenly sampled from the three constructed
datasets in Sec. 4.4.1 to generate a fourth dataset. Backgrounds were sampled without replace-
ment and selected from train/validation/testing sets independently to avoid contamination. This
dataset served as an additional source and was denoted as the amalgamated dataset. The per-
formance of channels trained on the amalgamated dataset was evaluated on each of the three
component datasets to simulate deploying the learned channels to each of the contributing
imaging conditions.

4.5 AE Topology
The considered network topology was a tied-weight AE with no nonlinear or bias terms. This
structure parallels the CHO formulation in Eq. (9), as the AE is learning the transformation
matrix T. Tied weights were chosen because they couple the encoder and the decoder by enforc-
ingWT

1 ¼ W2, making the encoder a transpose of the decoder. This formulation prevents loss of
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information that may solely exist in the decoder since only the encoder is employed as the trans-
formation matrix. Additionally, tied weight AEs have fewer parameters to train and thus are
expected to perform better in limited-data experiments.36

4.6 Experimental Parameters

4.6.1 Training details

AE-channels were determined by minimizing the modified AE loss function in Eq. (14). The
models were trained in Tensorflow69 using the Adam algorithm.62 The AE weights were initial-
ized using a truncated normal initializer with a standard deviation of 5 × 10−6. The models were
trained for 500 epochs. In cases where the considered dataset contained more than 500 images,
pre-training the models on a subset of 500 images for 500 epochs to burn in the network some-
times improved performance. A mini-batch size of 250 was employed, with an equal number of
signal-present and signal-absent images in each mini-batch. The learning rate was determined
empirically and set to 5 × 10−3 for the VICTRE phantom background study and 1 × 10−5 for
the lumpy background study. All networks were trained on a single NVIDIA TITAN X GPU.

Several channelized reference methods were implemented to compared against the AE-
learned channels, including convolutional LG,34 PLS,35 and the nonprewhitening matched filter
(NPWMF).21 The HO-Direct21 was also computed on each subset using Eq. (5). The MP pseu-
doinverse was employed instead of the traditional inverse in these cases. Regularization was
applied to the MP pseudoinverse in the form of truncating scaled singular values below
1 × 10−6, with the cutoff point determined empirically. A grid search on the entire training data-
set for each background was performed for each dataset size to select the parameters for all
methods, with the maximum number of channels capped at 20. This grid search also implicitly
provided multiple random initializations for the AE.

4.6.2 Evaluation

Subsets of the training data were considered to evaluate the performance of models as the amount
of available data varied. The VICTRE experiments detailed in Sec. 4.2 contained subsets of size
K ¼ 250, 500, 1000, 2000, and 5000 image pairs. The larger lumpy background experiments
detailed in Sec. 4.1 also considered sets of 10,000, 15,000, 20,000, 25,000, and 30,000 image
pairs. The generalization and amalgamation studies considered a single case of 30,000 images.

The standard train-validate-test scheme70 was employed to evaluate performance. The AE
and competing methods were given the training data and signal estimate to operate on, with the
performance evaluated on the validation data to select the best set of parameters. For all methods,
the mean signal image used during training was computed from the difference of the signal
present and signal absent training images. Once the parameters were determined for each
method, the CHO was numerically determined according to Eq. (10). The final models were
then evaluated on the testing set to obtain the AUC values.

The HO-CMD was also computed for the experiments on lumpy backgrounds to analyze the
efficiency of the channels for each method. This method has been demonstrated to approximate
the HO when noiseless images are available and the noise model is known,2 forming an upper
bound for the experiments and permitting the evaluation of the efficiency of the channelized
methods. The empirical background covariance matrix was calculated using the combined train-
ing and validation datasets for a total of 70,000 noiseless background images. This method was
unavailable for estimating the HO of the VICTRE experiments as noiseless images were not
available.

5 Results
The results for the limited-image tests for the lumpy model and VICTRE breast phantom model
are provided in Figs. 5 and 6. A visualization of the generated observer templates for each of the
considered methods at the maximum number of considered images is included in Fig. 7, with a
diagonal cross-section of the some of the observers contained in Fig. 8. Overall, the proposed
task-informed AEmethod was competitive with the state-of-the-art channelized methods for both
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the lumpy background and VICTRE phantom background cases. For the lumpy background
cases, the best performing model was convolutional LG. This is likely due to the smooth, sym-
metric signal supporting LG channels. The task-informed AE and PLS methods produced AUC
values that were within statistical error of each other at most of the considered dataset sizes. The
HO-Direct had inferior performance to all channelized methods while also requiring significantly
more computation to evaluate. Thus some channelized methods outperformed the standard
method of computing the HO. The HO-CMD serves as an upper bound. As the amount of train-
ing data increases, it is expected that the channelized methods will approach the HO-CMD pro-
vided that sufficient channels are available since the CHO is a special case of the HO. However,
this was not investigated as it requires significant amounts of data and is not a practical use case.

A few additional architectures were considered. The first modification to the architecture
was replacing the decoder of the AE with a fully connected neural network and minimizing
a sigmoid cross-entropy loss employing the image label rather than a mean image. This modi-
fication had inferior performance when compared to the proposed method. One potential reason
for this is less information available for training the method—one label as opposed to a full signal
image to compute the MSE. Previous works have demonstrated that it is possible to closely
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Fig. 5 Performance of the CHO on varying training dataset sizes for the lumpy background model.
Panel (a) contains the results for the location-known elliptical signal while (b) contains the SKS
elliptical signal results. The error bars correspond to the standard deviation of the fit AUC values.
The HO-CMD is provided as an estimate of the upper bound of the HO, given an infinite amount of
images, and is included to benchmark the efficiency of the channels for all methods.
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Fig. 6 Performance of the CHO on varying training dataset sizes for the VICTRE breast phantom
model. Panel (a) contains the results for the spiculated mass signal while (b) contains the micro-
calcification cluster results. The error bars correspond to the standard deviation of the fit AUC
values. The analytic HO estimate is not included as the clean images are not available to generate
an estimate. The NPWMF is also omitted in (b) since it has an AUC below 0.53 for all considered
dataset sizes, significantly less than the other methods.
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approximate the HO when employing a label instead of an image, but a more sophisticated loss
function must be considered.11,49,71 This architecture is also incompatible with the experiment
proposed in Sec. 4.3. A second modification was adding a ReLU function after the encoder to
introduce a nonlinear function into the training process. This modification required the model
weights to be untied for the training process to converge. This architecture also had inferior
performance to the proposed method. A potential reason for this is the untied weights. The
AE learns to leverage the nonlinear function to improve the signal image reconstruction and
lower the loss function, but when the weights of the AE are used as channels in the CHO they
no longer benefit from the nonlinear function. The symmetry between the AE training method
and the CHO discussed in Sec. 3 is broken. Finally, the conventional AE was also tested but
failed to exceed 0.55 AUC in all four experiments.
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Fig. 7 Visualization of the observer templates obtained from each of the channelized methods for
the considered backgrounds and signals. Each column contains results for a given signal/back-
ground combination and each row contains the observer templates for a specific channelized
method.
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In the VICTRE background case, the PLS and task-informed AE methods maintained their
trend of the produced channels resulting in AUCs within statistical error of each other. However,
in this case, both methods performed noticeably better than convoluational LG. The evolution of
the channels for the spiculated mass as the number of images are increased is in Fig. 9. There was
a noticeable seam in the observer templates for the task-informed AE channels on the phantom
data, which is a remnant of the random initialization of the training method. This seam does not
significantly affect observer performance, which may be why it was not removed in the training
process. An additional contributing factor to the emergence of this seam may be the more com-
plicated, nonsymmetric signal. Compared to the lumpy background experiments, the more com-
plex VICTRE signal likely contributes to the substandard performance of the convolutional LG
method. In addition, the increased structure complexity of the signal and the relatively higher
noise are likely contributing factors in the earlier plateau of observer performance in the VICTRE
case compared to the lumpy background experiments.

The learned channels for the 30,000 location-known lumpy image case and the 5000
VICTRE spiculated mass case are included in Figs. 10 and 11, respectively. Many of the channels
are similar to one another in the features they extract and can be removed without significant loss
of performance. These extraneous channels likely exist due to the AE training process. Random
initializations generate different starting locations for each channel, which is iteratively opti-
mized by the AE training process. During this process, the channels are updated to better jointly
reconstruct the signal image. Thus even if the final model makes inefficient use of its full channel
budget, the channels are influenced by their interactions during the training process. One of the
limitations of this approach is its sensitivity to the random initialization, which can result in
models of dramatically varying quality even with the same structure.

In all four of the considered detection tasks, the performance of the AE-learned channels
most closely followed the PLS channels. The PLS filters for the elliptical and spiculated mass
signals are included in Figs. 12 and 13. In contrast to the AE-learned channels, there is a distinct
pattern for each of the considered filters. Thus while the performance of the AE-learned channels
scales approximately the same as PLS with additional images, the channels the two methods
generate are quite distinct.

Since the AE training process simultaneously updates all channels, there is no natural order-
ing for the importance of the channels. To evaluate the contributions of each channel provided to
the overall AUC, an ablation study was performed for the AE-learned channels for the elliptical
signal with 30,000 training images and the spiculated mass signal with 5000 training images. The
channel that contributes the least was iteratively pruned to form a rank ordering of the importance
of the channels. The results of the ablation study are in Fig. 14. Although the first few channels
contribute significantly to the performance of the observer, the results quickly plateau. The pla-
teau occurs more slowly with the more complex spiculated mass signal, indicating that signal
complexity impacts the minimum number of beneficial channels. Beyond this point, the random
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Fig. 8 Lineplots of the considered observers for the lumpy background model on the 30,000 image
training dataset. The lineplot is a diagonal cross section of the observer template from the upper
left to the lower right. Panel (a) contains the results for the location-known signal while (b) contains
the SKS elliptical results.
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Fig. 10 Location-known elliptical channels associated with the AE-learned HO template for the
30,000 paired image dataset on the lumpy background. The grayscale is constant and fixed.
The channels are ordered left to right, top to bottom. The ordering of the channels was determined
through an ablation study.
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Fig. 9 Observer templates associated with the VICTRE spiculated mass experiment. Each
column contains one of the considered channelized methods and the rows containing the size of
the associated training dataset.
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initializations provided by sweeping over a range of the channels likely matter more than the
additional channel budget.

The results for the fixed-signal lumpy background experiments are in Fig. 15. For the lumpy
background cases, the task-informed AE channels performed significantly better than the PLS
channels for all but the largest dataset sizes. In those cases, performance was comparable.
Convolutional LG channel performance was relatively static since the models were tuned at the
maximum dataset size, and it is not a learning method but were the best performing channels for
the majority of the lumpy dataset sizes considered. However, both the PLS and task-informed AE
channels outperformed convolutional LG when sufficient images were available. Compared to

Fig. 11 Eighteen channels associated with the AE-learned HO template for the VICTRE spicu-
lated mass detection task, displayed on the range ½−0.01; 0.01�. The channels are ordered left to
right, top to bottom. The ordering of the channels was determined through an ablation study. Note
the presence of a seam running through several of the channels. This seam does not significantly
impact observer performance and is likely a result of the stochastic learning process and more
complicated structure of the signal.
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the standard experiments in Fig. 5, the performance of the task-informed AE and convolutional
LG methods significantly improve and the PLS method retains approximately the same curve.
This performance increase is especially notable for the smaller dataset sizes.

In the fixed-signal VICTRE background case, contained in Fig. 16, the task-informed AE-
learned channels outperform every other tested method for the smaller training subsets. Given a
sufficient amount of data, the AE and PLS channels approach the same AUC and are approx-
imately equivalent. This occurred more quickly for the larger spiculated mass signal than the
smaller microcalcification clusters. Compared to the fixed-signal lumpy background experi-
ments, the performance of the observers on the VICTRE data plateaued more quickly. This
is likely due to the relatively higher noise in the lumpy background experiments and the more
complicated signal in the VICTRE case. The significant boost in the performance of the AE
method when a cleaner signal image is available demonstrates the potential of the method to
leverage prior information when it is available. Compared to the standard case in Fig. 6, the
AE and convolutional LG methods again demonstrate improvement with the better signal esti-
mate, whereas the PLS method’s performance remains consistent. Overall, the ablation study
results indicate that the proposed method is more sensitive to the quality of the mean signal
than the amount of training images. This characteristic is shared with the FCO method but not
PLS.

Although the ROI varied across the considered tasks, it did not appear to be a dominant
factor in determining when the plateau occurred in observer performance. In particular, the spi-
culated mass detection task with the larger ROI had its AUC plateau more quickly than the simple
elliptical signal with a smaller ROI. Despite the number of weights in the AE scaling with the size
of the ROI, the statistical properties of the detection task are likely the determining factor for the
amount of training data required. Thus the number of images required to reach the plateau is
likely connected to the difficulty of the signal detection task. For the comparison of the spiculated
mass and elliptical signal tasks, the difference in difficulty is most likely due to the magnitude
of noise.

The results for the domain shift and amalgamation studies are included in Table 1.
Visualizations of the observer templates obtained for each of the considered width values are
included in Fig. 17. For the 2.0 and 4.0 source system widths, the channels obtained from the
task-informed AE generalized well to target imaging systems with widths both above and below
the source system. The improvement was especially noticeable when applying the channels

Fig. 12 Location-known elliptical channels associated with PLS for the 30,000 paired image data-
set on the lumpy background. The grayscale is constant and fixed. The channels are ordered left to
right, top to bottom. The channels are presented in the order produced by the iterative PLSmethod.
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obtained from the 4.0 imaging system width data to the 1.0 imaging system width target images.
In the 1.0 source imaging system width case, the channels from the task-informed AE were
competitive when applied to data from the target imaging systems of 2.0 and 4.0 widths and
outperformed both Conv-LG and HO-Direct channels, but PLS channels produced superior
results. This indicates that the learned channels possess some measure of generalizability and
resilience to errors in the employed signal image, despite the dependence of the proposed method
on the estimate of the signal. PLS-generated channels demonstrated unusual behavior in that they
generalized well to imaging systems with more blur but had noticeably inferior performance to
the other considered methods when evaluated on imaging systems with less blurring. This is
noticeable in the case with the channels obtained from the 1.0 source imaging system width
generalizing the best of the considered methods to the 4.0 target system. However, PLS also
performed the worst out of the observers when considering the channels obtained from the

Fig. 13 Ninteen channels associated with the PLS HO template for the VICTRE spiculated mass
detection task, displayed on the range [−0.01, 0.01]. The channels are ordered left to right, top to
bottom. The channels are presented in the order produced by the iterative PLS method.
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Fig. 14 Results of the ablation study performed for the elliptical and spiculated mass experiments.
The channel contributing the least was iteratively pruned to produce a rank ordering of the chan-
nels. A plateau occurs after a certain number of channels, depending on the signal complexity.
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Fig. 15 Performance of the CHO on varying training dataset sizes for the lumpy background model
with a fixed mean signal estimated from the training and validation datasets. Panel (a) contains the
results for the location-known elliptical signal while (b) contains the SKS elliptical signal results.
The error bars correspond to the standard deviation of the fit AUC values. The HO-CMD is pro-
vided as an estimate of the upper bound of the HO, is given an infinite amount of images, and is
included to benchmark the efficiency of the channels for all methods.

0 1000 2000 3000 4000 5000

Num images

0.65

0.7

0.75

0.8

0.85

0.9

A
U

C

Spiculated mass in breast phantom

Task-informed AE

Partial least squares

Convolutional LG

NPWMF

HO-direct

0 1000 2000 3000 4000 5000

Num images

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

A
U

C

Microcalcifications in breast phantom

Task-informed AE

Partial least squares

Convolutional LG

HO-direct

(a) (b)

Fig. 16 Performance of the CHO on varying training dataset sizes for the VICTRE breast phantom
model with a fixed mean signal estimated from the training and validation datasets. Panel (a) con-
tains the results for the spiculated mass signal while (b) contains the microcalcification cluster
results. The error bars correspond to the standard deviation of the fit AUC values. The analytic
HO estimate is not included as the clean images are not available to generate an estimate. The
NPWMF is also omitted in (b) since it has an AUC below 0.53 for all considered dataset sizes,
significantly less than the other methods.

Granstedt, Zhou, and Anastasio: Approximating the Hotelling observer with. . .

Journal of Medical Imaging 055501-20 Sep∕Oct 2023 • Vol. 10(5)



4.0 source imaging system data to the 1.0 target imaging system, with the performance of
PLS lagging the performance of the task-informed AE channels by 0.08 AUC.

During the course of the experiments, it was observed that the convolutional LG channels
were especially sensitive to the quality of the estimated signal. When provided with the signal
used to generate the data in both the location-known and SKS lumpy experiments, the method
outperformed all other competitors. When fewer images were used to generate the mean signal
image and thus there is more noise in the signal image, such as in the VICTRE phantom dataset,
the performance degraded significantly. This is illustrated in the dichotomy between standard and
fixed signal results in Figs. 5 and 15. In the fixed signal case, the performance of the method
barely changes as the number of paired images sweep from 500 to 30,000. Thus the performance
improvement in the standard case is almost entirely due to the increase in the quality of the mean
signal image. This is also visible in the observer templates constructed using convolutional LG
channels, as they differ significantly from the templates constructed via other channelized meth-
ods. Although the task-informed AE-learned channels attempt to reconstruct the given signal
image directly, and thus would seem to be impacted more by noise, the method was more robust
to error in the estimated signal than the convolutional LG approach. Denoising AEs is known to
reduce noise in an image since the AE embedding’s limited dimensionality lacks the capacity to
represent the high-frequency components of the noise. The reduced sensitivity of the proposed
method to minor variations in the data may be a result of this property.

Table 1 Results from the domain shift and amalgamation studies. Observers for each method
were first obtained from each source system. Each of these observers were then applied to each
target imaging system to evaluate their performance in the presence of domain shift. The source
amalg case refers to the even sampling of the source system datasets to generate an amalga-
mated dataset, which was evaluated in the same way for each target imaging system. The stan-
dard error for all of the values is �0.005. The highest values that are statistically significant for
each of the target imaging systems within a source image system width are in bold.

Source system width Observer method

Target system width

1.0 2.0 4.0

1.0 Task-informed AE 0.99 0.91 0.68

PLS 0.99 0.92 0.71

Conv LG 0.99 0.90 0.64

HO-Direct 0.99 0.90 0.64

2.0 Task-informed AE 0.99 0.92 0.71

PLS 0.99 0.92 0.71

Conv LG 0.98 0.91 0.69

HO-direct 0.99 0.92 0.70

4.0 Task-informed AE 0.93 0.88 0.73

PLS 0.85 0.80 0.72

Conv LG 0.89 0.85 0.73

HO-direct 0.92 0.87 0.73

Amalg Task-informed AE 0.98 0.92 0.73

PLS 0.96 0.90 0.74

Conv LG 0.98 0.91 0.71

HO-direct 0.97 0.92 0.74
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6 Discussion and Conclusion
This study demonstrated that AEs are capable of learning efficient CHO channels for both
location known and fixed-centroid SKS signal detection tasks. Data embeddings and observer
channels were demonstrated to be fundamentally related, with the task of optimizing a data
embedding to preserve signal-specific information equivalent to determining an efficient channel
selection for the CHO. Furthermore, the presented method of computing channels is capable of
meeting or exceeding the performance of state-of-the-art methods on the investigated tasks.

Channels were learned for the CHO by minimizing the reconstruction loss of an AE.
Modification of the AE loss function to focus only on task-specific information involving the
signal was found to have a significant benefit over using the conventional AE loss. Empirical
sweeps over the network topology revealed that the AE could efficiently approximate the HO for
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Fig. 17 Sample images and templates from the generalization and amalgamation studies. The
columns contain the results from varying the width of the imaging system, increasing from left
to right. The first row contains a sample signal absent image from the dataset. The remaining rows
contain the obtained observer templates for the considered methods.
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a wide range of cases utilizing comparable numbers of channels to other approaches. The pro-
posed method was equivalent to state-of-the-art approaches for the lumpy and VICTRE back-
grounds. When a higher-quality signal estimate was provided, the AE-channels demonstrated
significantly higher performance and were superior to the compared channelized methods on
the VICTRE breast phantom dataset containing complicated signals. This increase was especially
notable on smaller dataset sizes. Additionally, ability of the channels to generalize to imaging
systems with varying parameters was evaluated. On average, the proposed method outperformed
the other considered channelized approaches in cross-imaging system performance despite the
injection of the signal image during the training process. In terms of appearance and perfor-
mance, the AE channels were closest to PLS channels and the performance of the two methods
was typically within error. However, AE-learned channels were noticeably better at generalizing.
The AE-learned channels were sensitive to the random initialization of the weights and fre-
quently learned redundant channels. The training scheme can likely be further improved with
a more robust approach to weight initialization.

Opportunities for future work include evaluating the AE-learned channels with a channel-
ized IO and extending the formulation to both more sophisticated SKS cases and 3D input
images. The channels should work directly for any standard Markov chain Monte Carlo method
for estimating the IO. Although the current form of the loss function for learning AE-channels
requires knowing the signal centroid, it could be generalized by considering convolutional AEs.72

Another aspect that can be further developed is the resilience of the method to deterministic
errors in the employed signal image. For instance, the supplied mean signal might be offset or
larger/smaller than the original image. Although the generalizability study explored this in a
limited way, a more structured study would be beneficial for developing more resilient methods.
A deterministic shift of the mean image may benefit from untying the encoder and decoder,
for instance.

The superior performance of AE-learned channels on smaller datasets and medically real-
istic phantoms also expands the applicability of the method to real-world cases, and the method
should be tested on experimental data to identify remaining challenges in tuning the AE. The
proposed method may also be applied toward learning anthropomorphic channels by replacing
the ground-truth labels with human-generated labels during the training process. Acquiring
human labels is a complex task that has several different elements in the study design, depending
on the specific detection task and desired use case.73–76
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