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Abstract

Purpose: Deep learning has shown great promise as the backbone of clinical decision support
systems. Synthetic data generated by generative models can enhance the performance and
capabilities of data-hungry deep learning models. However, there is (1) limited availability
of (synthetic) datasets and (2) generative models are complex to train, which hinders their
adoption in research and clinical applications. To reduce this entry barrier, we explore generative
model sharing to allow more researchers to access, generate, and benefit from synthetic data.

Approach: We propose medigan, a one-stop shop for pretrained generative models imple-
mented as an open-source framework-agnostic Python library. After gathering end-user require-
ments, design decisions based on usability, technical feasibility, and scalability are formulated.
Subsequently, we implement medigan based on modular components for generative model
(i) execution, (ii) visualization, (iii) search & ranking, and (iv) contribution. We integrate pre-
trained models with applications across modalities such as mammography, endoscopy, x-ray,
and MRI.

Results: The scalability and design of the library are demonstrated by its growing number of
integrated and readily-usable pretrained generative models, which include 21 models utilizing
nine different generative adversarial network architectures trained on 11 different datasets. We
further analyze three medigan applications, which include (a) enabling community-wide sharing
of restricted data, (b) investigating generative model evaluation metrics, and (c) improving
clinical downstream tasks. In (b), we extract Fréchet inception distances (FID) demonstrating
FID variability based on image normalization and radiology-specific feature extractors.

Conclusion: medigan allows researchers and developers to create, increase, and domain-adapt
their training data in just a few lines of code. Capable of enriching and accelerating the develop-
ment of clinical machine learning models, we show medigan’s viability as platform for gener-
ative model sharing. Our multimodel synthetic data experiments uncover standards for assessing
and reporting metrics, such as FID, in image synthesis studies.
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1 Introduction

1.1 Deep Learning and the Benefits of Synthetic Data

The use of deep learning has increased extensively in the last decade, thanks in part to advances
in computing technology (e.g., data storage, graphics processing units) and the digitization
of data. In medical imaging, deep learning algorithms have shown promising potential for
clinical use due to their capability of extracting and learning meaningful patterns from imaging
data and their high performance on clinically-relevant tasks. These include image-based disease
diagnosis1,2 and detection,3 as well as medical image reconstruction,4,5 segmentation,6 and
image-based treatment planning.7–9

However, deep learning models need vast amounts of well-annotated data to reliably learn to
perform clinical tasks, whereas, at the same time, the availability of public medical imaging
datasets remains limited due to legal, ethical, and technical patient data sharing constraints.9,10

In the common scenario of limited imaging data, synthetic images, such as the ones illustrated
in Fig. 1, are a useful tool to improve the learning of the artificial intelligence (AI) algorithm,
e.g., by enlarging its training dataset.7,11,12 Furthermore, synthetic data can be used to minimize
problems associated with domain shift, data scarcity, class imbalance, and data privacy.7

For instance, a dataset can be balanced by populating the less frequent classes with synthetic
data during training (class imbalance). Further, as domain-adaptation technique, a dataset can
be translated from one domain to another, e.g., from MRI to CT13 (domain shift). Regarding
data privacy, synthetic data can be shared instead of real patient data to improve privacy
preservation.7,14,15

1.2 The Need of Reusable Synthetic Data Generators

Commonly, generative models are used to produce synthetic imaging data, with generative
adversarial networks (GANs)16 being popular models of choice. However, the adversarial train-
ing scheme required by GANs and related networks is known to pose challenges in regard to
(i) achieving training stability, (ii) avoiding mode collapse, and (iii) reaching convergence.17–19

Fig. 1 Randomly sampled images generated by five medigan models ranging from (a) synthetic
mammograms and (b) brain MRI to (c) endoscopy imaging of polyps, (d) mammogram mass
patches, and (e) chest x-ray imaging. The models (a)–(e) correspond to the model IDs in Table 3,
where (a) 3, (b) 7, (c) 10, (d) 12, and (e) 19.
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Hence, the training process of GANs and generative models at large is nontrivial and requires
a considerable time investment for each training iteration as well as specific hardware and
a fair amount of knowledge and skills in the area of AI and generative modeling. Given these
constraints, researchers and engineers often refrain from generating and integrating synthetic
data into their AI training pipelines and experiments. This issue is further exacerbated by the
prevailing need of training a new generative model for each new data distribution, which, in
practice, often means that a new generative model has to be trained for each new application,
use-case, and dataset.

1.3 Community-Driven Model Sharing and Reuse

We argue that a feasible solution to this problem is the community-wide sharing and reuse of
pretrained generative models. Once successfully trained, such a model can be of value to multi-
ple researchers and engineers with similar needs. For example, researchers can reuse the same
model if they work on the same problem, conduct similar experiments, or evaluate their methods
on the same dataset. We note that such reusing ideally is subject to previous inspection of gen-
erative model limitations with the model’s output quality having qualified as suitable for the task
at hand. The quality of a model’s output data and annotations can commonly be measured via
(a) expert assessment, (b) computation of image quality metrics, or (c) downstream task evalu-
ation. In sum, the problem of synthetic data generation calls for a community-driven solution,
where a generative model trained by one member of the community can be reused by other
members of the community. Motivated by the absence of such a community-driven solution
for synthetic medical data generation, we designed and developed medigan to bridge the
gap between the need for synthetic data and complex generative model creation and training
processes.

2 Background and Related Work

2.1 Generative Models

While discriminative models are able to distinguish between data instances of different kinds
(label samples), generative models are able to generate new data instances (draw samples). In
contrast to modeling decision boundaries in a data space, generative models model how data is
distributed within that space. Deep generative models20 are composed of multihidden layer neu-
ral networks to explicitly or implicitly estimate a probability density function (PDF) from a set of
real data samples. After approximating the PDF from observed data points (i.e., learning the
real data distribution), these models can then sample unobserved new data points from that
distribution. In computer vision and medical imaging, synthetic images are generated by sam-
pling such unobserved points from high-dimensional imaging data distributions. Popular deep
generative models to create synthetic images in these fields include variational autoencoders,21

normalizing flows,22–24 diffusion models,25–27 and GANs.16 From these, the versatile GAN
framework has seen the most widespread adoption in medical imaging to date.7 We, hence,
center our attention on GANs in the remainder of this work but emphasize that contributions
of other types of generative models are equally welcome in the medigan library.

2.2 Generative Adversarial Networks

The training of GANs comprises two neural networks, the generator network (G) and the dis-
criminator network (D), as illustrated by Fig. 2 for the example of mammography region-of-
interest patch generation. G and D compete against each other in a two-player zero-sum game
defined by the value function shown in Eq. (1). Subsequent studies extended the adversarial
learning scheme by proposing innovations of the loss function, G and D network architectures,
and GAN applications by introducing conditions into the image generation process

EQ-TARGET;temp:intralink-;e001;116;91min
G

max
D

VðD;GÞ ¼ min
G

max
D

½Ex∼pdata
½log DðxÞ� þ Ez∼pz

½logð1 −DðGðzÞÞÞ��: (1)
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2.2.1 GAN loss functions

Goodfellow et al.16 define the discriminator as a binary classifier classifying whether a sample x
is either real or generated. The discriminator is, hence, trained via binary-cross entropy with the
objective of minimizing the adversarial loss function shown in Eq. (2), which the generator, on
the other hand, tries to maximize. In Wasserstein GAN (WGAN),28 the adversarial loss function
is replaced with a loss function based on the Wasserstein-1 distance between real and fake
sample distributions estimated by D (alias “critic”). Gulrajani et al.29 resolve the need to enforce
a 1-Lipschitz constraint in WGAN via gradient penalty (WGAN-GP) instead of WGAN weight
clipping. Equation (3) depicts the WGAN-GP discriminator loss with penalty coefficient λ and
distribution Px̂ based on sampled pairs from (a) the real data distribution Pdata and (b) the gen-
erated data distribution Pg

EQ-TARGET;temp:intralink-;e002;116;361LDGAN
¼ −Ex∼pdata

½log DðxÞ� þ Ez∼pz
½logð1 −DðGðzÞÞÞ�; (2)

EQ-TARGET;temp:intralink-;e003;116;317LDWGAN-GP
¼ Ex̃∼Pg

½Dðx̃Þ� − Ex∼Pdata
½DðxÞ� þ λEx̂∼Px̂

½ðk∇x̂Dðx̂Þk2 − 1Þ2�: (3)

In addition to changes to the adversarial loss, further studies integrate additional loss terms into
the GAN framework. For instance, FastGAN30 uses an additional reconstruction loss in the dis-
criminator, which, for improved regularisation, is trained as self-supervised feature-encoder.

2.2.2 GAN network architectures and conditions

A plethora of different GAN network architectures has been proposed7,31 starting with a deep
convolutional GAN (DCGAN)32 neural network architecture of both D and G. Later approaches,
e.g., include a ResNet-based architecture as backbone29 and progressively-grow the generator and
discriminator networks during training to enable high-resolution image synthesis (PGGAN).33

Another line of research has been focusing on conditioning the output of GANs based on
discrete or continuous labels. For example, in cGAN this is achieved by feeding a label to both
D and G,34 whereas in the auxiliary classifier GAN (AC-GAN), the discriminator additionally
predicts the label that is provided to the generator.35

Other models condition the generation process on input images36–40 unlocking image-to-
image translation and domain-adaptation GAN applications. A key difference in image-to-image
translation methodology is the presence (paired translation) or absence (unpaired translation) of
corresponding image pairs in the target and source domain. Using an L1 reconstruction loss
between target and source domain alongside the adversarial loss from Eq. (2), pix2pix36 defines
a common baseline model for paired image-to-image translation. For unpaired translation,

Fig. 2 The GAN framework. In this visual example, the generator network receives random noise
vectors, which it learns to map to region-of-interest patches of full-field digital mammograms.
During training, the adversarial loss is not only backpropagated to the discriminator as LD but also
to the generator as LG . This particular architecture and loss function was used to train medigan
models listed with IDs 1, 2, and 5 in Table 3.
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cycleGAN37 is a popular approach, which also consists of an L1 reconstruction (cycle-consis-
tency) loss between a source (target) image and a source (target) image translated to target
(source) and back to source (target) via two consecutive generators.

A further methodological innovation includes SinGAN,41 which, based on only a single train-
ing image, learns to generate multiple synthetic images. This is accomplished via a multi-scale
coarse-to-fine pipeline of generators, where a sample is passed sequentially through all gener-
ators, each of which also receives a random noise vector as input.

2.3 Generative Model Evaluation

One approach of evaluating generative models is by human expert assessment of their generated
synthetic data. In medical imaging, such observer studies often enlist board-certified clinical
experts such as radiologists or pathologists to examine the quality and/or realism of the synthetic
medical images.42,43 However, this approach is manual, laborious and costly, and, hence,
research attention has been devoted to automating generative model evaluation,44,45 including:

i. Metrics for automated analysis of the synthetic data and its distribution, such as the incep-
tion score (IS)17 and Fréchet inception distance (FID).46 Both metrics are popular in com-
puter vision,31 whereas the latter also has seen widespread adoption in medical imaging.7

FID is based on a pretrained Inception47 model (e.g., v1,48 v347) to extract features from
synthetic and real datasets, which are then fitted to multivariate Gaussians X (e.g., real) and
Y (e.g., synthetic) with means μX and μY and covariance matrices ΣX and ΣY . Next, X and Y
are compared via the Wasserstein-2 (Fréchet) distance (FD), as depicted as

EQ-TARGET;temp:intralink-;e004;116;455FDðX; YÞ ¼ kμX − μYk22 þ tr
�
ΣX þ ΣY − 2

�
ΣXΣY

�1
2

�
: (4)

ii. Metrics that compare a synthetic image with a real reference image such as mean squared
error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity index measure
(SSIM).49 Given the absence of corresponding reference images, such metrics are not
readily applicable for unconditional noise-to-image generation models.

iii. Metrics that compare the performance of a model on a surrogate downstream task with and
without generative model intervention.7,14,50,51 For instance, training on additional synthetic
data can increase a model’s downstream task performance, thus, demonstrating the useful-
ness of the generative model that generated such data.

For the analysis of generative models in the present study, we discard (ii) due to its limitation
of requiring specific reference images. We further deprioritize the IS from (i) due to its limited
applicability to medical imagery stemming from it missing a comparison between real and
synthetic data distributions combined with it having a strong bias on natural images via its
ImageNet52-pretrained Inception classifier as backbone feature extractor. Therefore, we focus
on FID from (i) and downstream task performance (iii) as potential evaluation measures for
medical image synthesis models in the remainder of this work.

2.4 Image Synthesis Tools and Libraries

Related libraries, such as pygan,53 torchGAN,54 vegans,55 imaginaire,56 TF-GAN,57 PyTorch-
GAN,58 keras-GAN,59 mimicry,60 and studioGAN,31 have focused on facilitating the implemen-
tation, training, and comparative evaluation of GANs in computer vision (CV). Despite a strong
focus on language models, the HuggingFace transformers library and model hub61 also contain
a few pretrained computer vision GAN models. The GAN Lab62 provides an interactive visual
experimentation tool to examine the training process and its data flows in GANs.

Specific to AI in medical imaging, Diaz et al.63 provided a comprehensive survey of tools,
libraries and platforms for privacy preservation, data curation, medical image storage, annota-
tion, and repositories. Compared to CV, fewer GAN and AI libraries and tools exist in medical
imaging. Furthermore, CV libraries are not always suited to address the unique challenges of
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medical imaging data.63–65 For instance, pretrained generative models from computer vision
cannot be readily adapted to produce medical imaging-specific outputs. The TorchIO library64

addresses the gap between CVand medical image data processing requirements providing func-
tions for efficient loading, augmentation, preprocessing, and patch-based sampling of medical
imagery. The medical open network for AI (MONAI)66 is a PyTorch-based67 framework that
facilitates the development of diagnostic AI models with tutorials for classification, segmenta-
tion, and AI model deployment. Further efforts in this realm include NiftyNet,68 the deep learn-
ing tool kit (DLTK),69 MedicalZooPytorch,70 and nnDetection.71 The recent RadImageNet
initiative72 shares baseline image classification models pretrained on a dataset designed as the
radiology medical imaging equivalent to ImageNet.52

To the best of our knowledge, no open-access software, tool, or library exists that targets
reuse and sharing of pretrained generative models in medical imaging. To this end, we expect
the contribution of our medigan library to be instrumental in enabling dissemination of gener-
ative models and increased adoption of synthetic data into AI training pipelines. As an open-
access plug-and-play solution for generation of multipurpose synthetic data, medigan aims to
benefit patients and clinicians by enhancing the performance and robustness of AI-based clinical
decision support systems.

3 Method: The medigan Library

We contribute medigan as an open-source open-access MIT-licensed Python3 library distributed
via the Python package index (Pypi) for synthetic medical dataset generation, e.g., via pretrained
generative models. The metadata of medigan is summarized in Table 1. medigan accelerates
research in medical imaging by flexibly providing (a) synthetic data augmentation and (b) pre-
processing functionality, both readily integrable in machine learning training pipelines. It also
allows contributors to add their generative models in a thought-through process and provides
simplistic functions for end-users to search for, rank, and visualize models. The overview of
medigan in Fig. 3 depicts the core functions demonstrating how end-users can (a) contribute
a generative model, (b) find a suitable generative model inside the library, and (c) generate
synthetic data with that model.

Table 1 Overview of medigan library information.

Title medigan metadata

1 Code version v1.0.0

2 Code license MIT

3 Code version control system Git

4 Software languages Python

5 Code repository https://github.com/RichardObi/medigan.

6 Software package repository Ref. 73

7 Developer documentation Ref. 74

8 Tutorial medigan quickstart (tutorial.ipynb)

9 Requirements for compilation Python v3.6+

10 Operating system OS independent. Tested on Linux,
OSX, Windows.

11 Support email address Richard.Osuala[at]gmail.com

12 Dependencies tqdm, requests, torch, numpy,
PyGithub, matplotlib (setup.py)
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3.1 User Requirements and Design Decisions

End-user requirement gathering is recommended for the development of trustworthy AI
solutions in medical imaging.75 Therefore, we organized requirement gathering sessions with
potential end-users, model contributors, and stakeholders from the EuCanImage Consortium,
a large European H2020 project76 building a cancer imaging platform for enhanced AI in oncol-
ogy. Upon exploring the needs and preferences of medical imaging researchers and AI devel-
opers, respective requirements for the design ofmediganwere formulated to ensure usability and
usefulness. For instance, the users articulated a clear preference for a user interface in the format
of an importable package as opposed to a graphical user interface (GUI), web application,
database system, or API. Table 2 summarizes key requirements and the corresponding design
decisions.

3.2 Software Design and Architecture

medigan is built with a focus on simplicity and usability. The integration of pretrained models is
designed as internal Python package import and offers simultaneously (a) high flexibility to and
(b) low code dependency on these generative models. The latter allows the reuse of the same
orchestration functions in medigan for all model packages.

Using object-oriented programming, the same model_executor class is used to implement,
instantiate, and run all different types of generative model packages. To keep the library main-
tainable and lightweight, and to avoid limiting interdependencies between library code and gen-
erative model code, medigan’s models are hosted outside the library (on Zenodo) as independent
Python modules. To avoid long initialization times upon library import, lazy loading is applied.
A model is only loaded and its model_executor instance is only initialized if a user
specifically requests synthetic data generation for that model. To achieve high cohesion,79 i.e.,
keeping the library and its functions specific, manageable, and understandable, the library is
structured into several modular components. These include the loosely-coupled model_
executor, model_selector, and model_contributor modules.

The generators module is inspired by the facade design pattern80 and acts as a single
point of access to all of medigan’s functionalities. As single interface layer between users and
library, it reduces interaction complexity and provides users with a clear set of readily extendable
library functions. Also, the generators module increases internal code reusability and
allows for combination of functions from other modules. For instance, a single function call
can run the generation of samples by the model with the highest FID score of all models found
in a keyword search.

Fig. 3 Architectural overview ofmedigan. Users interact with the library by contributing, searching,
and executing generative models, the latter shown here exemplified for mammography image
generation with models with IDs 1 to 4 described in Table 3.
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3.3 Model Metadata

The FID score and all other model information such as dependencies, modality, type, zenodo
link, associated publications, and generate function parameters are stored in a single compre-
hensive model metadata json file. Alongside its searchability, readability, and flexibility,
the choice of json as file format is motivated by its extendability to a nonrelational database.
As a single source of model information, the global.json file consists of an array of model IDs,
where under each model id the respective model metadata is stored. Toward ensuring model
traceability as recommended by the FUTURE-AI consensus guidelines,75 each model (on
Zenodo) and its global.json metadata (on GitHub) are version-controlled with the latter being
structured into the following objects.

i. execution: contains the information needed to download, package, and run the model
resources.

ii. selection: contains model evaluation metrics and further information used to search,
compare, and rank models.

iii. description: contains general information and main details about the model such as title,
training dataset, license, date, and related publications.

This global.jsonmetadata file is retrieved, provided, and handled by the config_manager
module once a user imports the generatorsmodule. This facilitates rapid access to a model’s
metadata given its model_id and allows one to add new models or model versions to medigan via
pull request without requiring a new release of the library.

3.4 Model Search and Ranking

The number of models in medigan is expected to grow over time. Potentially this will lead to the
foreseeable issue where users of medigan have a large number of models to choose from. Users
likely will be uncertain which model best fits their needs depending on their data, modality,
use-case, and research problem at hand and would have to go through each model’s metadata
to find the most suitable model in medigan. Hence, to facilitate model selection, the model_
selectormodule implements model search and ranking functionalities. This search workflow
is shown in Fig. 4 and triggered by running Code Snippet 1.

The model_selector module contains a search method that takes search operator (i.e
OR, AND, or XOR) and a keyword search values list as parameters and recursively searches
through the models’ metadata. The latter is provided by the config_manager module.

Fig. 4 The search workflow. A user sends a search query (1) to the generators class, which trig-
gers a search (2) via the ModelSelector class. The latter retrieves the global.jsonmodel metadata/
config dict (3), in which it searches for query values finding matching models (4). Next, the
matched models are optionally also ranked based on a user-defined performance indicator (5)
before being returned as list to the user.
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The model_selector populates a modelMatchCandidates object with matchedEntry
instances each of which represents a potential model match to the search query. The
modelMatchCandidates class evaluates which of it is associated model matches should
be flagged as true match given the search values and search operator. The method rank_
models_by_performance compares either all or specified models in medigan by a
performance indicator such as FID. This indicator commonly is a metric that correlates with
diversity, fidelity, or condition adherence to estimate the quality of generative models and/or
the data they generate.7 The model_selector looks up the value for the specified perfor-
mance indicator in the model metadata and returns a descendingly or ascendingly ranked list of
models to the user.

3.5 Synthetic Data Generation

Synthetic data generation ismedigan’s core functionality toward overcoming scarcity of (a) train-
ing data and (b) reusable generative model in medical imaging. Posing a low entry barrier for
nonexpert users, medigan’s generate method is both simple and scalable. While a user can
run it with only one line of code, it flexibly supports any type of generative model and synthetic
data generation process, as illustrated in Table 3 and Fig. 1.

3.5.1 Generate workflow

An example of the usage of the generate method is shown in Code Snippet 2, which triggers
the model execution workflow illustrated in Fig. 5. Further parameters of the generate method
allow users to specify the number of samples to be generated (num_samples), if samples are
returned as a list or stored on a disk (save_images), where they are stored (output_path),
and whether model dependencies are automatically installed (install_dependencies).
Optional model-specific inputs can be provided via the **kwargs parameter. These include
for example, (i) a nondefault path to the model weights, (ii) a path to an input image folder
for image-to-image translation models, (iii) a conditional input for class-conditional generative
models, or (iv) the input_latent_vector as commonly used as model input in GANs.

Running the generate method triggers the generators module to initialize a mode-
l_executor instance for the user-specified generative model. The model is identified via its
model_id as unique key in the global.json model metadata database, parsed and managed by the
config_manager module. Using the latter, the model_executor checks if the required
Python package dependencies are installed, retrieves the Zenodo URL and downloads, unzips,
and imports the model package. It further retrieves the name of the internal data generation
function inside the model’s __init_ _.py script. As final step before calling this function,
its parameters and their default values are retrieved from the metadata and combined with user-
provided arguments. These user-provided arguments customize the generation process, which
enables handling of multiple image generation scenarios. For instance, the aforementioned pro-
vision of the input image folder allows users to point to their own images to transform them using
medigan models that are, e.g., pretrained for cross-modality translation. In the case of large
dataset generation, the number of samples indicated by num_samples are chunked into
smaller-sized batches and iteratively generated to avoid overloading the random-access memory
available on the user’s machine.

Code Snippet 1: Searching for a model in medigan.

1. from medigan import Generators # import

2. generators = Generators() # init

3. values=[’patches’, ’mammography’] # keywords of search query

4. operator=’AND’ # all keywords are needed for match

5. results = generators.find_model(values, operator)
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3.5.2 Generate workflow extensions

Apart from storing or returning samples, a callable of the model’s internal generate function can
be returned to the user by setting is_gen_function_returned. This function with pre-
pared but adjustable default arguments enables integration of the generate method into other
workflows within medigan (e.g., model visualization) or outside of medigan (e.g., a user’s
AI model training). As a further alternative, a torch67 dataset or dataloader can be returned
for any model in medigan running get_as_torch_dataset or get_as_torch_
dataloader, respectively. This further increases the versatility with which users can introduce
medigan’s data synthesis capabilities into their AI model training and data preprocessing
pipelines.

Instead of a user manually selecting a model via model_id, a model can also be automatically
selected based on the recommendation from the model search and/or ranking methods. For
instance, as triggered by Code Snippet 3, the models found in a search for mammography are
ranked in ascending order based on FID, with the highest ranking model being selected and
executed to generate the synthetic dataset.

3.6 Model Visualization

To allow users to explore the generative models in medigan, a novel model visualization module
has been integrated into the library. It allows users to examine how changing inputs like the latent
variable z and/or the class conditional label y (e.g., malignant/benign) can affect the generation
process. Also, the correlation between multiple model outputs, such as the image and corre-
sponding segmentation mask, can be observed and explored. Figure 6 illustrates an example
showing an image-mask sample pair from medigan’s polyp generating FastGAN model.51

Fig. 5 The generated workflow. A user specifies a model_id in a request (1) to the generators
class, which checks (2) if the model’s ModelExecutor class instance is already initialized. If not,
a new one is created (3), which (4) gets the model’s config from the global.json dict, (5) loads the
model (e.g., from Zenodo), (6) checks its dependencies, and (7) unzips and imports it, before
running its internal generate function (8). Finally, the generated samples are returned to the user.

Code Snippet 2: Executing a medigan model for synthetic data
generation.

1. from medigan import Generators

2. generators = Generators()

# create 100 polyps with masks using model 10 (FASTGAN)

generators.generate(model_id=10, num_samples=100)

Osuala et al.: medigan: a Python library of pretrained generative models for enriched data access. . .

Journal of Medical Imaging 061403-13 Nov∕Dec 2023 • Vol. 10(6)



This depiction of the graphical user interface (GUI) of the model visualization tool can be
recreated by running Code Snippet 4.

Internally, the model_visualizer module retrieves a model’s internal generate method
as callable from the model_executor and adjusts the input parameters based on user inter-
action input from the GUI. This interaction further provides insight into a model’s performance
and capabilities. On one hand, it allows one to assess the fidelity of the generated samples. On the
other hand, it also shows the model’s captured sample diversity, i.e., as observed output variation
over all possible input latent vectors. We leave the automation of manual visual analysis of this
output variation to future work. For instance, such future work can use the model_visualizer
to measure the variance of a reconstruction/perceptual error computed between pairs of images
sampled from fixed-distance pairs of latent space vectors z. The slider controls on the left of
the interface allow one to change the latent variable, which for this specific model affects, for
instance, polyp size, position, and background. As the size of the latent vector z commonly is
relatively large, each n (e.g., 10) variables are grouped into one indexed slider resulting in
zm adjustable latent input variables. The seed button on the right allows one to initialize a new
set of latent variables, which results in a new generated image. The reset buttons allows one to
revert user’s modifications to previous random values.

Code Snippet 3: Sequential searching, ranking, and data generation
with highest ranked model.

1. from medigan import Generators

2. generators = Generators()

3. values = [’mammography’] # keywords for searching

4. metric = ’FID’ # metric for ranking

5. generators.find_models_rank_and_generate
(values=values, metric=metric)

Fig. 6 Graphical user interface ofmedigan’s model visualization tool on the example of model 10,
a FastGAN that synthesizes endoscopic polyp images with respective masks.51 The latent input
vector can be adjusted via the sliders, reset via the Reset button, and sampled randomly via the
Seed button.
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3.7 Model Contribution

A core idea of medigan is to provide a platform where researchers can share and access trained
models via a standardized interface. We provide in-depth instructions on how to contribute
a model to medigan complemented by implementations automating parts of the model con-
tribution process for users. In general, a pretrained model in medigan consists of a Python __
init __.py and, in case the generation process is based on a machine learning model,
a respective checkpoint or weights file. The former needs to contain a synthetic data storage
method and a data generation method with a set of standardized parameters described in
Sec. 3.5.1. Ideally, a model package further contains a license file, a metadata.json and/or
a requirements.txt file, and a test.sh script to quickly verify the model’s functionalities. To
facilitate creation of these files, medigan’s GitHub repository provides model contributors
with reusable templates for each of these files.

Keeping the effort of pretrained model inclusion to a minimum, the generators module
contains a contribute function that initializes a ModelContributor class instance dedi-
cated to automating the remainder of the model contribution process. This includes automated
(i) validation of the user-provided model_id; (ii) validation of the path to the model’s __
init__.py; (iii) test of importlib import of the model as package; (iv) creation of the
model’s metadata dictionary; (v) adding the model metadata to medigan’s global.json metadata;
(vi) end-to-end test of model with sample generation via generators.test_model();
(vii) upload of zipped model package to Zenodo via API; and (viii) creation of a GitHub issue,
which contains the Zenodo link and model metadata, in the medigan repository. Being assigned
to this GitHub issue, the medigan development team is notified about the new model, which can
then be added via pull request. Code Snippet 5 shows how a user can run the contribute
method illustrated in Fig. 7.

3.8 Model Testing Pipeline

Each new model contribution is being systematically tested before becoming part of medigan.
For instance, on each submitted pull request to medigan’s GitHub repository, a CI pipeline
automatically builds, formats, lints, and tests medigan’s codebase. This includes the automatic
verification of each model’s package, dependencies, compatibility with the interface, and correct
functioning of its generation workflow. This allows one to ensure that all models and their meta-
data in the global.json file are available and working in a reproducible and standardized manner.

4 Applications

4.1 Community-Wide Data Access: Sharing the Essence of Restricted
Datasets

medigan facilitates sharing and reusing trained generative models with the medical research
community. On one hand, this reduces the need for researchers to retrain their own similar gen-
erative models, which can reduce the extensive carbon footprint94 of deep learning in medical
imaging. On the other hand, this provides a platform for researchers and data owners to share
their dataset distribution without sharing the real data points of the dataset. Put differently,

Code Snippet 4: Visualization of a model in medigan.

1. from medigan import Generators

2. generators = Generators()

3. n = 10 # grouping latent vector z dimensions by dividing them by 10

4. generators.visualize(model_id=10, slider_grouper=n)
# polyp with mask
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sharing generative models trained on (and instead of) patient datasets not only is beneficial as
data curation step,14 but also minimizes the need to share images and personal data directly
attributable to a patient. In particular, the latter can be quantifiably achieved when the generative
model is trained using a differential privacy guarantee7,95 before being added to medigan. By
reducing the barriers posed by data sharing restrictions and necessary patient privacy protection
regulation,medigan unlocks a new paradigm of medical data sharing via generative models. This
places medigan at the center toward solving the well-known issue of data scarcity7,9 in medical
imaging.

Apart from that, medigan’s generative model contributors benefit from an increased expo-
sure, dissemination, and impact of their work, as their generative models become readily usable
by other researchers. As Table 3 illustrates, to date, medigan consists of 21 pretrained deep
generative models contributed to the community. Among others, these include two conditional
DCGAN models, six domain translation CycleGAN models and one mask-to-image pix2pix
model. The training data comes from 10 different medical imaging datasets. Various of the

Fig. 7 Model contribution workflow. After model preparation (1), a user provides the model’s id
and metadata (2) to the generators class to (3) initialize a ModelContributor instance, which (4)
validates and (5) extends the metadata. Next, (6) the model’s sample generation capability is
tested after (7) integration intomedigan’s global.jsonmodel metadata. If successful, (8) the model
package is prepared and (9–13) pushed to Zenodo via API. Lastly, (14 and 15) a GitHub issue
containing the model metadata is created, assigned, and pushed to the medigan repository.

Code Snippet 5: Contribution of a model to medigan.

1. from medigan import Generators

2. generators = Generators()

3. generators.contribute(

4. model_id = “00100_YOUR_MODEL”, # assign ID

5. init_py_path =“path/ending/with/__init__.py”, # model package root

6. generate_method_name = “generate”, # method inside __init__.py

7. model_weights_name = “10000",

8. model_weights_extension = ”.pt”,

9. dependencies = [“numpy”, “torch”],

10. zenodo_access_token = “TOKEN”, #zenodo.org/account/settings/applications

11. github_access_token = “TOKEN”) #github.com/settings/tokens
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models were trained on breast cancer datasets including INbreast,81 OPTIMAM,82 BCDR,83

CBIS-DDSM,86 and CSAW.88 Models allow one to generate samples of different pixel resolu-
tions ranging from regions-of-interest patches of size 128 × 128 and 256 × 256 to full images of
1024 × 1024 and 1332 × 800 pixels.

4.2 Investigating Synthetic Data Evaluation Methods

A further application of medigan is testing the properties of medical synthetic data. For instance,
evaluation metrics for generative models can be readily tested in medigan’s multiorgan, multi-
modality, and multimodel synthetic data setting.

Compared to generative modeling, synthetic data evaluation is a less explored research area.7

In particular, in medical imaging the existing evaluation frameworks, such as the FID46 or the
IS,17 are often limited in their applicability, as mentioned in Sec. 2.3. The models in medigan
allow one to compare existing and new synthetic data evaluation metrics and their validation in
the field of medical imaging. Multimodel synthetic data evaluation allows one to measure the
correlation and statistical significance between synthetic data evaluation metrics and down-
stream task performance metrics. This enables the assessment of clinical usefulness of generative
models on one hand and of synthetic data evaluation metrics on the other hand. In that sense, the
metric itself can be evaluated including its variations when measured under different settings,
datasets, or preprocessing techniques.

4.2.1 FID of medigan Models

We compute the FID to assess the models inmedigan and report the results in Table 3. We further
note that the FID can be computed not only between a synthetic and a real dataset (rs) but also
between two sets of samples of the real dataset (rr). As the FIDrr describes the distance within
two randomly sampled sets of the real data distribution, it can be used as an estimate of the real
data variation and optimal lower bound for the FIDrs as shown in Table 3. Given the above,
it follows that a high FIDrr likely also results in a higher FIDrs, which highlights the importance
of accounting for the FIDrr when discussing the FIDrs. To do so, we propose the reporting of
a FID ratio rFID to describe the FIDrs in terms of the FIDrr.

EQ-TARGET;temp:intralink-;e005;116;366rFIDðFIDrs; FIDrrÞ ¼ 1 −
FIDrs − FIDrr

FIDrs

; rFID ∈ ½0;1� ⊂ R: (5)

Assuming FIDrs ≥ FIDrr bounds rFID between 0 and 1, rFID the simplifies the comparison of
FIDs computed using different models and datasets. A rFID close to 1 indicates that much of
the FIDrs can be explained by the general variation in the real dataset. The code used to compute
the FID scores is available at https://github.com/RichardObi/medigan/blob/main/tests/fid.py.

The models in Table 3 yielding the highest ImageNet-based rFID score are the ones with
ID 10 (0.677, endoscopy, 256 × 256, FastGAN), ID 13 (0.650, mammography, 1332 × 800,
CycleGAN), 14 (0.564, mammography, 1332 × 800, CycleGAN), 20 (0.543, chest x-ray,
1024 × 1024, PGGAN) and 1 (0.497, mammography, DCGAN, 128 × 128). This indicates that
the rFID does not depend on the modality, nor on the pixel resolution of the synthetic images.
Further, neither image-to-image translation (e.g. CycleGAN) nor noise-to-image models
(e.g., PGGAN, DCGAN, FastGAN) seem to have a particular advantage for achieving higher
rFID results.

The flow chart in Fig. 8 provides further insight into the comparison between the lower
bound FIDrr and the model FIDrs. The red trend line shows a positive correlation between the
FIDrr and FIDrs, which corroborates our previous assumption that a higher model FIDrs is to be
expected given a higher lower bound FIDrr. Hence, for increased transparency, we motivate
further studies to routinely report the lower bound FIDrr and the FID ratio rFID apart from
the model FIDrs. The three-channel RGB endoscopic images represented by orange dots have
an FIDrr comparable with their grayscale radiologic counterparts. However, both chest x-ray
datasets ChestX-ray1490 and Node2189 represented by green dots show a slightly lower FIDrr

than other modalities. The model FIDrs shows a high variation across models without readily
observable dependence on modality, generative model, or image size.
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4.2.2 Analysing potential sources of bias in FID

The popular FID metric is computed based on the features of an Inception classifier (e.g., v1,48

v347) trained on ImageNet52—a database of natural images inherently different from the domain
of medical images. This potentially limits the applicability of the FID to medical imaging data.
Furthermore, the FID has been observed to vary based on the input image resizing methods and
ImageNet backbone feature extraction model types.31 Based on this, we further hypothesize a
susceptibility of the FID to variation due to (a) different backbone feature extractor weights and
random seed initializations, (b) different medical and nonmedical backbone model pretraining
datasets, (c) different image normalization procedures for real and synthetic dataset, (d) nuances
between different frameworks and libraries used for FID calculation, and (f) the dataset sizes
used to compute the FID.

Such variations can obstruct a reliable comparison of synthetic images generated by different
generative models. Illustrating the potential of medigan to analyze such variations, we report and
experiment with the FID. In particular, we subject the FID to variations in (i) the pretraining
dataset of its backbone feature extractor and by (ii) testing the effects of image normalization
across a set ofmediganmodels. We experiment with the Inception v3 model trained on the recent
RadImageNet dataset72 released as radiology-specific alternative to the ImageNet database.52

The RadImageNet-pretrained Inception v3 model weights we used are available at https://
github.com/BMEII-AI/RadImageNet. We further compute the FIDrs and FIDrr with and without
normalization to analyze the respective impact on results.

In Table 4, the FID results are summarized allowing for cross-analysis between variations due
to image normalization and/or due to the pretraining dataset of the FID feature extraction model.
We observe generally lower FID values (1.15 to 7.32) for RadImageNet compared to ImageNet
as FID model pretraining datasets (52.17 to 225.85). To increase FID comparability, we com-
pute, as before, the FID ratio rFID. The RadImageNet-based model results in notably lower rFID
values for both normalized and non-normalized images. Notably, an exception to this are models
with ID 5 (mammography, 128 × 128, DCGAN) and 6 (mammography, 128 × 128, WGAN-GP)
achieving respective RadImageNet-based rFID scores of 0.593 and 0.550. In general, the
RadImageNet-based model seems more robust at detecting if two sets of data originate from
the same distribution resulting in low FIDrr values. Overall, for most models, the FID is
explained only by a limited amount by the variation in the real dataset and rFID < 0.7 for
all ImageNet and RadImageNet-based FIDs. The scatter plot in Fig. 9 further compares the
RadImagnet-based FID with the ImageNet-FID for the models from Table 4. Noticeably, the
difference between non-normalized and normalized images is surprisingly high for several mod-
els for both ImageNet and RadImageNet FIDs (e.g., models with IDs 6 and 8) while negligible
for others (e.g., models with ID 1, 10, 13-16, and 19-21). Another observation is the relatively
modest correlation between RadImageNet and ImageNet FID indicated by the slope of the red

Fig. 8 Scatter plot illustrating the FIDrs ofmedigan’smodels (real-synthetic) compared to the lower
bound FIDrr between two sets of the model’s respective training dataset (real-real). The lower
bound can represent an optimally achievable model and, as such, facilitates interpretation. Each
model is represented by a dot below its model ID. The dots’ color encoding depicts model modality,
where blue: mammography, orange: endoscopy, green: chest x-ray, and pink: brain MRI. The
red regression line illustrates the trend across all data points/models.
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Table 4 Normalized (left) and non-normalized (right) FID scores. This table measures the nor-
malization impact on FID scores based on a promising set of medigan’s deep generative models.
Synthetic samples were randomly-drawn for each model matching the number of available real
samples. The lower bound FIDrr is computed between a pair of randomly sampled sets of real data
(real-real), whereas the model FIDrs is computed between two randomly sampled sets of real and
synthetic data (real-syn). The results for model 7 (Flair, T1, T1c, T2) and 21 (T1, T2) are averaged
across modalities.

Normalized images Non-Normalized images

FIDImageNet
47,52 FIDRadImageNet

72 FIDImageNet
47,52 FIDRadImageNet

72

ID Dataset
real-
real

real-
syn rFID

real-
real

real-
syn rFID

real-
real

real-
syn rFID

real-
real

real-
syn rFID

1 Inbreast 33.61 67.60 0.497 0.25 1.27 0.197 28.59 66.76 0.428 0.29 1.15 0.252

2 Optimam 28.85 80.51 0.358 0.22 6.19 0.036 28.75 77.95 0.369 0.33 4.11 0.080

3 BCDR 65.94 150.16 0.439 0.80 3.00 0.265 66.25 149.33 0.444 0.80 3.10 0.259

5 BCDR 68.22 180.04 0.379 0.99 1.67 0.593 64.45 174.38 0.370 0.87 4.04 0.215

6 BCDR 68.22 221.30 0.308 0.99 1.80 0.550 64.45 206.57 0.312 0.87 2.95 0.295

7 BRATS 2018 30.73 140.02 0.219 0.07 5.31 0.012 30.73 144.00 0.215 0.07 6.53 0.010

8 CBIS-DDSM 37.56 137.75 0.272 0.46 3.05 0.151 32.06 91.09 0.352 0.36 6.58 0.055

10 HyperKvasir 43.31 63.99 0.677 0.11 7.32 0.015 43.31 64.01 0.677 0.11 7.33 0.015

12 BCDR 68.22 205.29 0.332 0.99 5.69 0.080 64.45 199.50 0.323 0.87 4.25 0.205

13 OPTIMAM 65.75 101.01 0.650 0.17 1.14 0.153 65.83 101.15 0.651 0.18 1.10 0.163

14 OPTIMAM 41.61 73.77 0.564 0.16 0.83 0.190 41.71 74.03 0.563 0.15 0.81 0.184

15 CSAW 74.96 162.67 0.461 0.31 4.07 0.076 73.62 165.53 0.445 0.19 3.71 0.051

16 CSAW 42.68 98.38 0.439 0.38 2.71 0.142 42.50 99.81 0.426 0.22 2.82 0.077

19 ChestX-ray14 28.75 96.74 0.297 0.19 0.77 0.243 28.75 96.78 0.297 0.19 0.66 0.286

20 ChestX-ray14 28.33 52.17 0.543 0.20 2.83 0.071 28.33 52.38 0.541 0.20 2.59 0.077

21 CrossMoDA 24.41 59.49 0.410 0.02 1.45 0.014 24.41 60.11 0.406 0.02 1.40 0.014

Fig. 9 Scatter plot demonstrating the FIDrs (real-synthetic) of medigan models from Table 4. The
FIDrs is based on the features of two different inception classifiers,47 one trained on ImageNet52

(x -axis) and the other trained on RadImageNet72 (y -axis). Each model is represented by a dot
below its model ID. A black dot indicates an FID calculated from normalized (Norm∕N) images,
e.g., with pixel values scaled between 0 and 1, as opposed to a blue dot indicating an FID calcu-
lated from images without previous normalization. The dots that correspond to the samemodel IDs
(normalized and non-normalized) are connected via black lines. The red regression line illustrates
the trend across all data points.
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regression line. Counterexamples for this correlation include model 2 (normalized), which has
a low ImageNet-based FID (80.51) compared to a high RadImageNet-based FID (6.19), and
model 6 (normalized), which, in contrast, has a high ImageNet-based FID (221.30) and a low
RadImageNet-based FID (1.80). With a low ImageNet-based FID (63.99), but surprisingly high
RadImageNet-based FID (7.32), model 10 (both normalized and non-normalized) is a further
counterexample. The example of model 10 is of particular interest, as it indicates limited appli-
cability of the Radiology-specific RadImageNet-based FID for out-of-domain data, such as
three-channel endoscopic images.

Given the demonstrated high impact of backbone model training set and image normalization
on FID, it is to be recommended that studies specify the exact model used for FID calculation
and any applied data preprocessing and normalization steps. Further, where possible, reporting
the RadImageNet-based FID allows for reporting a radiology domain-specific FID. The latter is
seemingly less susceptible to variation in the real datasets than the ImageNet-based FID while
also being capable of capturing other, potentially complementary, patterns in the data.

4.3 Improving Clinical Medical Image Analysis

A high-impact clinical application of synthetic data is the improvement of clinical downstream
task performance such as classification, detection, segmentation, or treatment response estima-
tion. This can be achieved by using image synthesis for data augmentation, domain adaptation,
and data curation (e.g., artifact removal, noise reduction, super-resolution)7,63 to enhance the
performance of clinical decision support systems such as computer-aided diagnosis (CADx) and
detection (CADe) software.

In Table 5, the capability of improving the clinical downstream task performance is
demonstrated for various medigan models and modalities. Downstream task models trained on
a combination of real and synthetic imaging data achieve promising results surpassing the
alternative results achieved from training only on real data. The results are taken from the respec-
tive publications11,14,50,84 and indicate that image synthesis can further improve the promising
performance demonstrated by deep learning-based CADx and CADe systems, e.g., in
mammography96 and brain MRI.85 For downstream task evaluation, we generally note the
importance of avoiding data leakage between training, validation, and test sets by training the

Table 5 Examples of the impact of synthetic data generated by medigan models on downstream
task performance. Based on real test data, we compare the performance metrics of a model
trained only on real data with a model trained on real data augmented with synthetic data.
The metrics are taken from the respective publications describing the models.

ID Test dataset Task Metric Trained on real Real + synthetic

2 OPTIMAM Mammogram patch classification11 F1 0.90 0.96

3 BCDR Mammogram mass detection50 FROC AUC 0.83 0.89

5 BCDR Mammogram patch classification14 F1 0.891 0.920

5 BCDR Mammogram patch classification14 AUROC 0.928 0.959

5 BCDR Mammogram patch classification14 AUPRC 0.986 0.992

6 BCDR Mammogram patch classification14 F1 0.891 0.969

6 BCDR Mammogram patch classification14 AUROC 0.928 0.978

6 BCDR Mammogram patch classification14 AUPRC 0.986 0.996

7 BRATS 2018 Brain tumor segmentation84 Dice 0.796 0.814

14 OPTIMAM Mammogram mass detection50 FROC AUC 0.83 0.85

15 OPTIMAM Mammogram mass detection50 FROC AUC 0.83 0.85
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generative model either on only the dataset partition used to train the respective downstream task
model (e.g., IDs 2, 3, 7, 14, 15) or to train the generative models on an entirely different dataset
(e.g., IDs 5, 6).

The approaches displayed in Table 6 represent the application, where synthetic data is used
instead of real data to train downstream task models. Despite an observable performance
decrease when training on synthetic data only, the results51,91,92 demonstrate the usefulness of
synthetic data if none or only limited real training data is available or shareable. For example,
if labels or annotations in a target domain are scarce but present in a source domain, a generative
model can translate annotated data from the source domain to the target domain to enable super-
vised training of downstream task models.92,93

5 Discussion and Future Work

In this work, we introduced medigan, an open-source Python library, which allows one to share
pretrained generative models for synthetic medical image generation. The package is easily inte-
grable into other packages and tools, including commercial ones. Synthetic data can enhance
the performance, capabilities, and robustness of data-hungry deep learning models as well as to
mitigate common issues such as domain shift, data scarcity, class imbalance, and data privacy
restrictions. Training one’s own generative network can be complex and expensive since it
requires a considerable amount of time, effort, specific dedicated hardware, carbon emissions,
as well as knowledge and applied skills in generative AI. An alternative and complementary
solution is the distribution of pretrained generative models to allow their reuse by AI researchers
and engineers worldwide.

medigan can help to reduce the time to run synthetic data experiments and can readily be
added as a component, e.g., as a dataloader as discussed in Sec. 3.5.2, in AI training pipelines.
As such, the generated data can be used to improve supervised learning models as described
in Sec. 4.3 via training or fine-tuning but can also serve as plug-and-play data source for
self/semisupervised learning, e.g., to pretrain clinical downstream task models.

Furthermore, studies that use additional synthetic training data for training deep learning
models often do not report all the specifics about their underlying generative model.7,75 Within
medigan, each generative model is documented, openly accessible, and reusable. This increases
the reproducibility of studies that use synthetic data and makes it more transparent where the data
or parts thereof originated from. This can help to achieve the traceability objectives outlined
in the FUTURE-AI consensus guiding principles toward AI trustworthiness in medical
imaging.75 medigan’s currently 21 generative models are illustrated in Table 3 and developed
and validated by AI researchers and/or specialized medical doctors. Furthermore, each model
contains traceable75 and version-controlled metadata in medigan’s global.json file, as outlined in

Table 6 Examples of the impact of synthetic data generated by medigan models on downstream
task performance. Based on real test data, we compare the performance metrics of a model
trained only on real data with a model trained only on synthetic data. The metrics are taken from
the respective publications describing the models. n.a. refers to the case where only synthetic data
can be used, as no annotated real training data is available.

ID Test dataset Task Metric Trained on real Trained on synthetic

4 BCDR Mammogram mass segmentation Dice 0.865 0.737

11 HyperKvasir Polyp segmentation51 Dice loss 0.112 0.137

11 HyperKvasir Polyp segmentation51 IoU 0.827 0.798

11 HyperKvasir Polyp segmentation51 F-Score 0.888 0.863

20 ChestX-ray14 Lung disease classification91 AUROC 0.947 0.878

21 CrossMoDA Brain tumor segmentation92 Dice n.a. 0.712

21 CrossMoDA Cochlea segmentation92 Dice n.a. 0.478
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Sec. 3.3. The searchable (see Sec. 3.4) metadata allows one to choose a suitable model for a
user’s task at hand and includes, among others, the dataset used during the training process, the
trained date, publication, modality, input arguments, model types, and comparable evaluation
metrics.

To assess model suitability, users are recommended to first (i) ensure the compatibility
between their planned downstream task (e.g., mammogram region-of-interest classification) and
a candidate medigan model (e.g., mammogram region-of-interest generator). Second, (ii) a
user’s real (test) data and the model’s synthetic data should be compatible corresponding, for
instance, in domain, organ, or disease manifestation. If the awareness of the domain shifts
between real and synthetic data remains limited after this qualitative analysis, (iii) a quantitative
assessment (e.g., via FID) is recommended. Finally, (iv) it is to be assessed if a downstream task
improvement is plausible. This depends, among others, on the tested scenario and the task at
hand, but also on the amount, domain, task specificity and quality of the available real data, and
the generative model’s capabilities as indicated by its reported evaluation metrics from previous
studies. If a positive impact of synthetic data on downstream task performance is plausible, users
are recommended to proceed toward empirical verification.

The exploration and multimodel evaluation of the properties of generative models and syn-
thetic data is a further application of medigan. medigan’s visualization tool (see Sec. 3.6) intui-
tively allows the user to explore and adjust the input latent vector of generative models to visually
evaluate, e.g., its inherent diversity and condition adherence7 (i.e., how well does a given mask or
label fit the generated image). The evaluation of synthetic data by human experts, such as radi-
ologists, is a costly and time-consuming task, which motivates the usage of automated metric-
based evaluation such as the FID. Our multimodel analysis reveals sources of bias in FID report-
ing. We show the susceptibility of FID to vary substantially based on changes in input image
normalization or in the choice of the pretraining dataset of the FID feature extractor. This finding
highlights the need to report the specific models, preprocessing, and implementations used to
compute the FID alongside the FID ratio rFID proposed in Sec. 4.2.1 to account for the variation
immanent in the real dataset. With medigan model experiments demonstrably leading to insights
in synthetic data evaluation, future research can use medigan as a tool to accelerate, test, analyze,
and compare new synthetic data and generative model evaluation and exploration techniques.

5.1 Legal Frameworks for Sharing of Synthetic and Real Patient Data

Many countries have enacted regulations that govern the use and sharing of data related to
individuals. The two most recognized legal frameworks are the Health Insurance Portability and
Accountability Act (HIPAA)97 from the United States (U.S.) and the General Data Protection
Regulation (GDPR)98 from the European Union (E.U.). These regulations govern the use and
disclosure of individuals’ protected health information (PHI) and assures individuals’ data is
protected while allowing use for providing quality patient care.99–102

Conceptually, synthetic data is not real data about any particular individual and conversely to
real data, synthetic data can be generated at high volumes and potentially shared without restric-
tion. In this sense, under both GDPR and HIPAA regulation, the rules govern the use of real data
for the generation and evaluation of synthetic datasets, as well as the sharing of the original
dataset. However, once fully synthetic data is generated, this new dataset falls outside the scope
of the current regulations based on the argument that there is no direct correlation between the
original subjects and the synthetic subjects. A common interpretation is that as long as the real
data remains in a secure environment during the generation of synthetic data, there is little to
no risk to the original subjects.103

As a consequence, the use of synthetic data can help prevent researchers from inadvertently
using and possibly exposing patients identifiable data. Synthetic data can also lessen the controls
imposed by Institutional Review Boards (IRBs) and based on international regulations by
ensuring data is never mapped to real individuals.104 There are multiple methods of generating
synthetic data, some of which include building models from real data, which can create a set
statistically similar to real data. How similar the synthetic data is to real-world data often defines
its “utility,” which will vary depending on the synthesis methods used and the needs of the study
at hand. If the utility of the synthetic data is high enough then evaluation results are expected to
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be similar to those that use real data.103 Being built based on real data, a common concern is
patient reidentification and leaking of patient-specific features in generative models.7,15 Despite
the arguably permissive aforementioned regulations, deidentification63 of the training data prior
to generative model training is to be recommended. This can minimize the possibility of
generative models leaking sensitive patient data during inference and after sharing. A further
recommended and mathematically-proven tool for privacy preservation is differential privacy
(DP).95 DP can be included in the training of deep generative model, among other setups,
by adding DP noise to the gradients.

5.2 Expansion of Available Models

In the future, further generative models across medical imaging disciplines, modalities, and
organs can be integrated into medigan. The capabilities of additional models can range from
privatising or translating the user’s data from one domain to another, balancing or debiasing
imbalanced datasets, reconstructing, denoising or removing artifacts in medical images, or resiz-
ing images, e.g., using image super-resolution techniques. Despite medigan’s current focus on
models based on GANs,16 the inclusion of different additional types of generative models is
desirable and will enable insightful comparisons. In particular, this is to be further emphasized
considering the recent successes of diffusion models,25–27 variational autoencoders,21 and nor-
malizing flows22–24 in the computer vision and medical imaging105–107 domains. Before integrat-
ing and testing a new model via the pipeline described in Sec. 3.8, we assess whether a model is
to become a candidate for inclusion into medigan. This threefold assessment is based on the
SynTRUST framework7 and reviews whether (1) the model is well-documented (e.g., in a
respective publication), (2) the model or its synthetic data is applicable to a task of clinical
relevance, and (3) whether the model has been methodically validated.

5.3 Synthetic DICOM Generation

Since the dominant data format used for medical imaging is Digital Imaging and Communications
in Medicine (DICOM), we plan to enhance medigan by integrating the generation of DICOM
compliant files. DICOM consists of two main components, pixel data and the DICOM header.
The latter can be described as an embedded dataset rich with information related to the pixel
data such as the image sequence, patient, physicians, institutions, treatments, observations, and
equipment.63 Future work will explore combining our GAN generated images with synthetic
DICOM headers. The latter will be created from the same training images from which themedigan
models are trained to create synthetic DICOM data with high statistical similarity to real-world
data. In this regard, a key research focus will be the creation of an appropriate and DICOM-
compliant description of the image acquisition protocol for a synthetic image. The design and
development of an open-source software package for generating DICOM files based on syn-
thesized DICOM headers associated to (synthetic) images will extend prior work108 that demon-
strated the generation of synthetic headers for the purpose of evaluating deidentification methods.

6 Conclusion

We presented the open-source medigan package, which helps research in medical imaging to
rapidly create synthetic datasets for a multitude of purposes such as AI model training and
benchmarking, data augmentation, domain adaptation, and intercentre data sharing. medigan
provides simple functions and interfaces for users, allowing one to automate generative model
search, ranking, synthetic data generation, and model contribution. By reuse and dissemination
of existing generative models in the medical imaging community, medigan allows researchers to
speed up their experiments with synthetic data in a reproducible and transparent manner.

We discuss three key applications ofmedigan, which include (i) sharing of restricted datasets,
(ii) improving clinical downstream task performance, and (iii) analyzing the properties of gen-
erative models, synthetic data, and associated evaluation metrics. Ultimately, the aim of medigan
is to contribute to benefiting patients and clinicians, e.g., by increasing the performance and
robustness of AI models in clinical decision support systems.
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