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Abstract

Purpose: To objectively assess new medical imaging technologies via computer-simulations, it
is important to account for the variability in the ensemble of objects to be imaged. This source of
variability can be described by stochastic object models (SOMs). It is generally desirable to
establish SOMs from experimental imaging measurements acquired by use of a well-character-
ized imaging system, but this task has remained challenging.

Approach: A generative adversarial network (GAN)-based method that employs
AmbientGANs with modern progressive or multiresolution training approaches is proposed.
AmbientGANs established using the proposed training procedure are systematically validated
in a controlled way using computer-simulated magnetic resonance imaging (MRI) data corre-
sponding to a stylized imaging system. Emulated single-coil experimental MRI data are also
employed to demonstrate the methods under less stylized conditions.

Results: The proposed AmbientGANmethod can generate clean images when the imaging mea-
surements are contaminated by measurement noise. When the imaging measurement data are
incomplete, the proposed AmbientGAN can reliably learn the distribution of the measurement
components of the objects.

Conclusions: Both visual examinations and quantitative analyses, including task-specific val-
idations using the Hotelling observer, demonstrated that the proposed AmbientGAN method
holds promise to establish realistic SOMs from imaging measurements.
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1 Introduction

Computer simulation remains an important approach for the design and optimization of imaging
systems. Such approaches can permit the exploration, refinement, and assessment of a variety of
system designs that would be infeasible through experimental studies alone.1–3 In the field of
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medical imaging, it has been advocated that imaging systems and reconstruction algorithms
should be assessed and optimized using objective measures of image quality (IQ) that quantify
the performance of an observer at specific diagnostic tasks.4–8 To accomplish this, all sources of
variability in the measured data should be accounted for. One important source of variability that
can significantly limit observer performance is variation in the objects to be imaged.9 This source
of variability can be described by stochastic object models (SOMs).10 A SOM is a generative
model that can be employed to produce an ensemble of to-be-imaged objects that possess pre-
scribed statistical properties.

Available SOMs include texture models of mammographic images with clustered lumpy
backgrounds,11 simple lumpy background models,9 and more realistic anatomical phantoms that
can be randomly perturbed.12 Avariety of other computational phantoms,12–19 either voxelized or
mathematical, have been proposed for medical imaging simulation, aiming to provide a practical
solution to characterize object variability. However, the majority of these were established using
image data corresponding to only a few subjects. Therefore, they may not accurately describe the
statistical properties of the ensemble of objects that is relevant to an imaging system optimization
task. A variety of anatomical shape models have also been proposed to describe both the
common geometric features and the geometric variability among instances of the population
for shape analysis applications.20–27 To date, these have not been systematically explored for
the purpose of constructing SOMs that capture realistic anatomical variations for use in imaging
system optimization.

To establish SOMs that capture realistic textures and anatomical variations, it is desirable to
utilize experimental imaging data. By definition, however, SOMs should be independent of the
imaging system, measurement noise, and any reconstruction method employed. In other words,
they should provide an in silico representation of the ensemble of objects to be imaged and not
estimates of them that would be indirectly measured or computed by imaging systems. To
address this need, Kupinski et al.10 proposed an explicit generative model for describing object
statistics that was trained using noisy imaging measurements and a computational model of a
well-characterized imaging system.10 However, applications of this method have been limited to
situations where the characteristic functional of the random object can be analytically deter-
mined,28 such as with lumpy and clustered lumpy object models.11,29 As such, there remains
an important need to generalize the method.

Deep generative neural networks, such as generative adversarial networks (GANs),30 hold
great potential for establishing SOMs that describe finite-dimensional approximations of objects.
However, conventional GANs are typically trained using reconstructed images that are influ-
enced by the effects of measurement noise and the reconstruction process. To circumvent this,
an AmbientGAN has been proposed31 that augments a GAN with a measurement operator. This
permits a generative model that describes object randomness to be learned from indirect and
noisy measurements of the objects themselves. In a preliminary study, the AmbientGAN was
explored for establishing SOMs from imaging measurements for use in optimizing imaging
systems.32 However, similar to conventional GANs, the process of training AmbientGANs is
inherently unstable. Moreover, the original AmbientGAN cannot immediately benefit from
robust GAN training procedures, such as progressive growing,33 which limits its ability to syn-
thesize high-dimensional images that depict accurate approximations of objects that are relevant
to medical imaging studies.

In this work, modern multiresolution training approaches, such as employed in the
progressive growing of GANs (ProGANs)33 and style-based GANs (StyGANs),34,35 are modified
for use in establishing AmbientGANs with high-dimensional medical imaging measurements.
The resulting models will be referred to as progressive growing AmbientGANs (ProAmGANs)
and style-AmbientGANs (StyAmGANs). Numerical studies corresponding to a stylized imaging
system are conducted to systematically investigate the proposed advanced AmbientGAN meth-
ods for establishing SOMs. The effects of noise levels and the imaging operator null space char-
acteristics on model performance are assessed using both standard and objective measures.
Emulated single-coil experimental magnetic resonance imaging (MRI) data are also employed
to demonstrate the method under less stylized conditions.

The remainder of this paper is organized as follows. In Sec. 2, previous works on learning
SOMs by employing characteristic functions (CFs) and AmbientGANs are summarized.
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The progressive growing training strategy for GANs is also reviewed. The proposed ProAmGAN
and StyAmGAN for learning SOMs from noisy imaging measurements are described in Sec. 3.
Sections 4 and 5 describe the numerical studies and results that demonstrate the ability of the
advanced AmbientGANs to learn SOMs from noisy imaging measurements. Finally, a discus-
sion and summary of the work is presented in Sec. 6.

2 Background

Object properties that are imaged by medical imaging systems are inherently described by con-
tinuous functions. However, it is common practice when performing computer-simulation stud-
ies of imaging systems to approximate the object by use of a finite-dimensional
representation.36,37 In such cases, a discrete-to-discrete (D-D) description of a linear imaging
system can be described as7

EQ-TARGET;temp:intralink-;e001;116;573g ¼ Hf þ n; (1)

where g ∈ RM is a vector that describes the measured image data, f ∈ RN denotes the finite-
dimensional representation of the object being imaged,H ∈ RM×N denotes a D-D imaging oper-
ator RN → RM that maps an object in the Hilbert space U to the measured discrete data in the
Hilbert space V, and the random vector n ∈ RM denotes the measurement noise. Below, the
imaging process described in Eq. (1) is denoted as: g ¼ HnðfÞ. In this work, it will be assumed
that the D-D imaging model is a sufficiently accurate representation of the true continuous-to-
discrete (C-D) imaging model that describes a digital imaging system and the impact of model
error will be neglected. Accordingly, as described below, the objective of this work will be to
establish SOMs that describe the finite-dimensional vector f.

When optimizing imaging system performance using objective measures of IQ, all sources of
randomness in g should be considered. In diagnostic imaging applications, object variability is
an important factor that limits observer performance. In such applications, the object f should be
described as a random vector that is characterized by a multivariate probability density function
(PDF) pðfÞ that specifies the statistical properties of the ensemble of objects to be imaged.

Direct estimation of pðfÞ is rarely tractable in medical imaging applications due to the high
dimensionality of f . To circumvent this difficulty, a parameterized generative model, referred to
throughout this work as an SOM, can be introduced and established using an ensemble of exper-
imental measurements. The generative model can be explicit or implicit. Explicit generative
models seek to approximate pðfÞ, or equivalently, its CF, from which samples f can subsequently
be drawn. On the other hand, implicit generative models do not seek to estimate pðfÞ directly, but
rather define a stochastic process that can draw samples from pðfÞ without having to explicitly
specify it. Variational autoencoders and GANs are examples of explicit and implicit generative
models, respectively, that have been actively explored.38 Two previous works that sought to learn
SOMs from noisy and indirect imaging measurements using explicit and implicit generative
models are presented below.

2.1 Establishing SOMs using Explicit Generative Modeling: Propagation of
Characteristic Functionals

The first method to learn SOMs from imaging measurements was introduced by Kupinski et al.10

In that seminal work, a C-D imaging model was considered in which a function that describes the
object is mapped to a finite-dimensional image vector g. For C-D operators, it has been dem-
onstrated that the characteristic functional (CFl) describing the object can be readily related to
the CF of the measured data vector g.39 This provides a relationship between the PDFs of the
object and measured image data. In their method, an object that was parameterized by the vector
Θ was considered and analytic expressions for the CFl were utilized. Subsequently, using the
known imaging operator and noise model, the corresponding CF was computed. The vector Θ
was estimated by minimizing the discrepancy between this model-based CF and an empirical
estimate of the CF computed from an ensemble of noisy imaging measurements. From the
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estimated CFl, an ensemble of objects could be generated. This method was applied to establish
SOMs where the CFl of the object can be analytically determined. Such cases include the lumpy
object model29 and clustered lumpy object model.11 The applicability of the method to more
complicated object models remains unexplored.

2.2 Establishing Finite-Dimensional SOMs by Use of Implicit Generative
Modeling: GANs and AmbientGANs

GANs30,40–49 are implicit generative models that have been actively explored to learn the stat-
istical properties of ensembles of images (i.e., finite-dimensional approximations of object prop-
erties) and generate new images that are consistent with them. A traditional GAN consists of two
deep neural networks: a generator and a discriminator. The generator is jointly trained with the
discriminator through an adversarial process. During its training process, the generator is trained
to map random low-dimensional latent vectors to higher dimensional images that represent sam-
ples from the distribution of training images. The discriminator is trained to distinguish the gen-
erated, or synthesized, images from the actual training images. These are often referred to as the
“fake” and “real” images in the GAN literature. Subsequent to training, the discriminator is
discarded and the generator and associated latent vector probability distribution form as an
implicit generative model that can sample from the data distribution to produce new images.
However, images produced by imaging systems are contaminated by measurement noise and
potentially an image reconstruction process. Therefore, GANs trained directly on images do
not generally represent SOMs because they do not characterize object variability alone.

An augmented GAN architecture named AmbientGAN has been proposed31 that enables
learning an SOM that describes the statistical properties of finite-dimensional approximations
of objects from noisy indirect measurements of the objects. As shown in Fig. 1, the
AmbientGAN architecture incorporates the measurement operator Hn, defined in Eq. (1), into
the traditional GAN framework. During the AmbientGAN training process, the generator is
trained to map a random vector z ∈ Rk described by a latent probability distribution to a

generated object f̂ ¼ Gðz;ΘGÞ, where G∶Rk → RN represents the generator network that is
parameterized by a vector of trainable parameters ΘG. Subsequently, the corresponding simu-

lated imaging measurements are computed as ĝ ¼ Hnðf̂Þ. The discriminator neural network
D∶RM → R, which is parameterized by the vector ΘD, is trained to distinguish the real and
simulated imaging measurements by mapping them to a real-valued scalar s. The adversarial
training process can be represented by the following two-player minimax game:30

EQ-TARGET;temp:intralink-;e002;116;320min
ΘG

max
ΘD

VðD;GÞ ¼ Eg∼pðgÞ½lðDðg;ΘDÞÞ� þ Eĝ∼pðĝÞ½lð1 −Dðĝ;ΘDÞÞ�; (2)

where lð·Þ represents a loss function. When the distribution of objects pðfÞ uniquely induces the
distribution of imaging measurements pðgÞ, i.e., when the imaging operator is injective, and the
minimax game achieves the global optimum, the trained generator can be employed to produce
object samples drawn from pðfÞ.30,31

Fig. 1 An illustration of the AmbientGAN architecture. The generator G is trained to generate
objects, which are subsequently employed to simulate measurement data. The discriminator D
is trained to distinguish “real” measurement data from the “fake” measurement data that are
simulated by use of the generated objects.

Zhou et al.: Learning stochastic object models from medical imaging measurements. . .

Journal of Medical Imaging 015503-4 Jan∕Feb 2022 • Vol. 9(1)



Zhou et al.32 demonstrated the ability of the AmbientGAN to learn a simple SOM corre-
sponding to a lumpy object model that could be employed to produce small (64 × 64) object
samples. However, adversarial training is known to be unstable and the use of AmbientGANs to
establish realistic and large-scale SOMs has, to date, been limited.

2.3 Advanced GAN Training Strategies

A training strategy for GANs—progressive growing of GANs (ProGANs)—has been recently
developed to improve the stability of the GAN training process33 and hence the ability to learn
generators that sample from distributions of high-resolution images. GANs are conventionally
trained directly on full size images through the entire training process. In contrast, ProGANs
adopt a multiresolution approach to training. Initially, a generator and discriminator are trained
using downsampled (low resolution) training images. During each subsequent training stage,
higher resolution versions of the original training images are employed to train progressively
deeper discriminators and generators, continuing until a final version of the generator is trained
using the original high-resolution images. A similar progressive training procedure is
employed in the StyleGAN framework.34 More recently, an advanced GAN training strat-
egy—StyleGAN2—has been developed to further improve the IQ of the synthesized images.35

Although, StyleGAN2 does not employ the progressive growing strategy, the generator does
make use of multiple scales of image generation via skip connections between lower resolution
generated images to the final generated image.35 While these advanced training strategies
have found widespread success on training GANs, they cannot be directly used to train
AmbientGANs for establishing SOMs from medical imaging measurements. This is because
these GAN training procedures and architectures are designed to train the generator that pro-
duces images in the same Hilbert space as the training images. However, medical imaging
measurements g that are used as training data of AmbientGANs are typically indirect repre-
sentations of to-be-imaged objects f and generally reside in a different Hilbert space than the

generator-produced objects f̂ . For example, in MRI, the to-be-imaged objects reside in a real
Hilbert space while the k-space measurements reside in a complex Hilbert space. A solution
to this problem that enables the use of advanced GAN training methods for training
AmbientGANs is described next.

3 Establishing SOMs by Use of Advanced AmbientGANs

To train the AmbientGAN using advanced GAN training methods that employ the progressive
growing approach, such as ProGAN and Style-based GANs, an image reconstruction operator
O: RM → RN is included in the AmbientGAN architecture. The discriminator is trained to dis-
tinguish between the real reconstructed images fr ¼ OðgÞ and the fake reconstructed images

f̂r ¼ OðĝÞ. In this way, the generator and the discriminator are associated with images in the
same Hilbert space, which enables the use of advanced GAN training methods to train
AmbientGANs. This advanced AmbientGAN training strategy is shown in Fig. 2.

Fig. 2 An illustration of the proposed modified AmbientGAN architecture. Any advanced GAN
architecture employing a progressively growing training procedure can be employed in this
framework.
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Given a training dataset that comprises measured data g, a set of reconstructed images fr is
computed by applying the reconstruction operator O to the measured data g. The generator is

trained with the discriminator through an adversarial process to generate objects f̂ ¼ Gðz;ΘGÞ
that result in (fake) reconstructed images f̂r that are indistinguishable, in distribution, from the
real reconstructed images fr. This adversarial training process can be represented by a two-player
minimax game:

EQ-TARGET;temp:intralink-;e003;116;659min
ΘG

max
ΘD

VðD;GÞ ¼ Efr∼pðfrÞ½lðDðfr;ΘDÞÞ� þ Ef̂r∼pðf̂rÞ½lð1 −Dðf̂r;ΘDÞÞ�; (3)

where f̂r ¼ OðℋnðGðz;ΘGÞÞÞ. As with the original AmbientGAN, when the distribution of
objects pðfÞ uniquely induces the distribution of reconstructed objects pðfrÞ, and the generator
and the discriminator achieve the global optimum, the trained generator can be employed to
produce object samples drawn from the distribution pðfÞ.

It should be noted that when the generator and the discriminator are established progressively
using ProGAN or StyleGANmethods, the generator is initially trained to produce low-resolution
images that are subsequently upscaled to the original image dimension. The measurement oper-
atorHn is subsequently applied to the upscaled images to simulate the measurement data and the
reconstructed images are produced using the reconstruction operator O. The reconstructed
images are downsampled and the discriminator is subsequently trained on the downsampled
(low resolution) reconstructed images. The generator and the discriminator are progressively
trained until the original high-resolution images are achieved. The training procedure of
AmbientGAN that employs progressive growing strategy is shown in Fig. 3.

While the progressive growing strategy has achieved many successes in stabilizing the GAN
training for synthesizing high-resolution images, it can cause certain artifacts in the generated
images.35 As mentioned above, the StyleGAN2 that trains a redesigned generator without
progressive growing was developed to further improve the synthesized IQ.35 The new generator
employs skip connections to form images that are summation of images with different resolu-
tions. This enables the multiresolution training of the generator without the explicit use of
progressive growing strategy. The training of AmbientGANs can be potentially improved further
by employing the StyleGAN2 generator and discriminator in the proposed AmbientGAN train-
ing framework that is shown in Fig. 2. The training procedure of AmbientGAN that employs the
StyleGAN2 architecture is shown in Fig. 4.

Below, the advanced AmbientGAN that employs the ProGAN was referred to as
ProAmGAN and the one that employs the StyleGAN2 was referred to as Sty2AmGAN.

Fig. 3 ProAmGAN training procedure. Initially, the generator and discriminator are trained with
low-resolution images. Additional layers in the generator and discriminator are trained by use
of higher-resolution versions of the original images when the training advances. More details about
the progressive growing method can be found in the original ProGAN paper.33
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4 Numerical and Experimental Studies

Computer-simulation and experimental studies were conducted to demonstrate the ability of the
proposed advanced AmbientGAN methods to establish SOMs from imaging measurements.
Details regarding the design of these studies are provided below.

4.1 Stylized Imager That Acquires Fully Sampled Data

A stylized imaging system that acquires fully sampled two-dimensional (2D) Fourier space
(a.k.a., k-space) data was investigated first. This imaging system can be described as

EQ-TARGET;temp:intralink-;e004;116;319g ¼ FðfÞ þ n; (4)

where F denotes a 2D discrete Fourier transform (DFT), f denotes the discretized object to be
imaged, and n denotes the measurement noise. While Eq. (4) can be interpreted as a simplified
model of MRI, it should be noted that here we do not attempt to model the real-world complex-
ities of data-acquisition in MRI. A situation where modeling error is present is addressed later in
Sec. 4.3. A collection of clinical brain MR images from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database50 were employed to serve as ground truth objects f. Fifteen thousand
sagittal brain slices of dimension 256 × 256 were selected from this dataset and were normalized
to the range between 0 and 1. These images were employed to form the collection of ground-
truth objects f. Examples of f are shown in Fig. 5.

From the ensemble of objects f , k-space measurement data were simulated according to
Eq. (4). The measurement noise n was modeled by i.i.d. zero mean complex Gaussian distri-
bution with a standard deviation of σnðgÞ for both the real and imaginary components. Different
measurement noise levels corresponding to standard deviations σnðgÞ ¼ 4 and 16 were
considered.

From each ensemble of simulated k-space data, reconstructed images fr were produced
by acting a 2D inverse discrete Fourier transform (IDFT) operator F−1 to the measured image
data g and taking the real component: fr ¼ ReðF−1ðgÞÞ. For each noise level, the proposed
AmbientGANs were trained to establish an SOM that characterizes the distribution of
objects f using the ensemble of reconstructed noisy images fr. For comparison, standard

Fig. 4 Training procedure of AmbientGAN that employs the StyleGAN2 architecture. The gener-
ator employs skip connections and forms the images by explicitly summing images at different
resolutions. The discriminator employs residual connections that can be helpful for performing
image classification tasks. The “To image” block corresponds to the convolutional operator that
maps hidden feature maps having the spatial dimension of n × n (e.g., 128 × 128) to the grayscale
image having the dimension of n × n. Similarly, the “From image” block corresponds to the con-
volutional operator that maps the grayscale image to the hidden feature maps. The “Down” and
“Up” blocks denote bilinear down- and upsampling, respectively. The generator and discriminator
are trained without progressive growing (i.e., the complete architectures of the generator and
discriminator are trained during the whole training process). More details about the StyeGAN2
architecture can be found in the original StyGAN2 paper.35
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(i.e., nonambient) ProGANs were trained directly using the reconstructed images fr. In this case,
because the reconstructed images are affected by measurement noise, the resulting generator will
learn to sample from the distribution of noisy reconstructed images instead of the distribution of
(noiseless) objects f .

The Fréchet inception distance (FID)51 score, a widely employed metric for assessing gen-
erative models, was computed to evaluate the performance of the original ProGAN and the pro-
posed AmbientGANs. The FID score quantifies the distance between the features extracted by
the Inception-v3 network52 from the ground-truth (real) and generated (fake) objects. Lower
FID score indicates better quality and diversity of the generated objects. The FID scores were
computed using 15,000 ground-truth objects, 15,000 ProGAN-generated objects, 15,000
ProAmGAN-generated objects, and 15,000 Sty2AmGAN-generated objects.

As another form of comparison between the ProGAN- and AmbientGANs-generated images,

the standard deviation of the noise in the generated images σnðf̂Þ was estimated. Specifically,
a previously described method53 was applied to 15,000 ProGAN-generated images, 15,000
ProAmGAN-generated images, and 15,000 Sty2AmGAN-generated images. The average of
the estimated standard deviation of the noise in the ProGAN- and AmbientGANs-generated
images was compared.

4.2 Stylized Imager That Acquires Incomplete Data

Imaging systems sometimes acquire undersampled, or incomplete, measurement data to accel-
erate the data-acquisition process or for other purposes. In such cases, the imaging operator H
has a nontrivial null space and only the measurement component fmeas ¼ H†Hf can be observed
by the imaging system, where H† denotes the Moore–Penrose pseudoinverse of H. Because of
this, it is expected that the performance of an AmbientGAN trained using incomplete measure-
ments will be adversely affected by this information loss. This topic is investigated below and the
extent to which ProAmGANs and Sty2AmGANs can learn to sample from the distribution of
measurement components of an object is demonstrated.

The ensemble of 15,000 clinical MR images that was described in Sec. 4.1 was employed to
serve as ground truth objects. Three accelerated data-acquisition designs that undersample k-
space by use of the Cartesian sampling pattern with an acceleration factor (also known as the
reduction factor) R of 1.25, 2, and 4 were considered. The acceleration factor R is defined as the
ratio of the amount of fully sampled k-space data to the amount of k-space data collected in the
accelerated data-acquisition process. For each considered design, a collection of 15,000 mea-
sured data g were simulated by computing and sampling the k-space data and adding i.i.d. zero
mean Gaussian noise with a standard deviation of 4 to both the real and imaginary components.

A stylized imager was considered in which undersampled k-space data were acquired andH†

could therefore be computed by applying a 2D IDFT to the zero-filled k-space data. For each
data-acquisition design, reconstructed objects fr were produced by acting H† on the given mea-
sured image data g. A ProAmGAN and a Sty2AmGANwere subsequently trained to establish an
SOM for each data-acquisition design. In the training process, H and H† were applied to the
generator-produced objects as discussed in Sec. 3. The FID scores were computed by use of

Fig. 5 Examples of ground-truth objects f.
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15,000 ground-truth objects f and 15,000 AmbientGANs-generated objects f̂ for each data-
acquisition design. To assess the ability of ProAmGANs and Sty2AmGANs to accurately learn
the variation in the measurement components of the objects, the FID score was computed by use
of the ground-truth measurement components fmeas ¼ H†Hf and AmbientGANs-generated

measurement components f̂meas ¼ H†Hf̂ for each data-acquisition design.

4.3 Experimental Emulated Single-Coil MRI Data

As a step toward transcending the stylized studies, an emulated set of single-coil knee
MRI k-space measurements were also employed to train a ProAmGAN and Sty2AmGAN.
These measurements were obtained from the NYU fastMRI Initiative database.54 The central
256 × 256 regions of the k-space were extracted and a total of 11,400 k-space acquisitions were
employed for model training. The reconstructed images were formed as the magnitude of the
IDFT of the k-space data. The magnitude MR images are commonly employed in MRI because
they can avoid the phase artifacts that are commonly present in experimental MR measurement
data.55

When training the ProAmGAN and Sty2AmGAN, the canonical measurement model was

assumed: ĝ ¼ Hnðf̂Þ ¼ Fðf̂Þ þ n. However, when dealing with experimental measurements, the
noise model that characterizes n is unknown and needs to be estimated. This was accomplished
as follows. The noise in the (emulated) experimental k-space measurements was assumed to be
described by i.i.d. complex-valued Gaussian random variables; accordingly, the noise in the
reconstructed magnitude MR image was modeled by a Rayleigh distribution.55 The standard
deviation of the measurement noise was subsequently estimated by fitting a Rayleigh distribution
to a set of patches, residing outside the support of the object, in the magnitude images that were
reconstructed from the noisy k-space measurements. The estimated standard deviation specified
the k-space noise model in the measurement model above.

To train the ProAmGAN and Sty2AmGAN by employing the magnitude MR images as the
input to the discriminator, care must be taken when computing the simulated reconstructed

image f̂r. Specifically, if the modulus operator, which is denoted as absð·Þ, is directly applied

to the IDFT of the simulated k-space measurements ĝ, i.e., f̂r ¼ absðF−1ðĝÞÞ ≡ absðf̂ þ
F−1ðnÞÞ, the fake magnitude images f̂r can be indistinguishable from the real magnitude images

fr despite the fact that the corresponding fake objects f̂ can be negative. This can prevent the
generator from being properly trained for use as an SOM.

To address this issue, we computed the fake reconstructed image f̂r as

EQ-TARGET;temp:intralink-;e005;116;307f̂r ¼ f̂ þ e; (5)

where e ¼ absðF−1ðFðReLUðf̂ÞÞ þ nÞÞ − ReLUðf̂Þ. Here, ReLUð·Þ is the componentwise rec-
tified linear unit (ReLU) operator that outputs the input value if the input value is positive; while

if the input value is negative, it outputs 0. The quantity f̂r can be subsequently expressed as

EQ-TARGET;temp:intralink-;e006;116;233f̂r ¼
�
absðF−1ðFðf̂Þ þ nÞÞ; if f̂ ≥ 0

f̂ þ absðF−1ðnÞÞ; if f̂ < 0
: (6)

In this way, fake reconstructed images f̂r that are produced by positive objects can represent
the corresponding magnitude images while those that are produced by negative objects cannot
represent magnitude images. Therefore, when the training is completed such that the fake recon-

structed images f̂r are indistinguishable from the ground-truth magnitude MR images fr, the
generator would produce non-negative objects.

4.4 Task-Based Image Quality Assessment

The generative models established using the ProGANs, ProAmGANs, and Sty2AmGANs in the
stylized numerical studies described in Secs. 4.1 and 4.2 were further evaluated using objective
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measures of IQ. To accomplish this, a signal-known-exactly and background-known-statistically
binary classification task was considered. A Hotelling observer (HO) was employed to classify
noisy images gt as satisfying either a signal-absent hypothesis (H0) or signal-present hypothesis
(H1):

EQ-TARGET;temp:intralink-;e007a;116;493H0∶ gt ¼ f þ nt; (7a)

EQ-TARGET;temp:intralink-;e007b;116;450H1∶ gt ¼ f þ sþ nt; (7b)

where s denotes the considered signal placed at the fixed location and nt is i.i.d. zero-mean
Gaussian noise having the standard deviation of 2%. Two studies were conducted in which
the background objects f corresponded to ground truth brain images or synthetic images pro-
duced using an AmbientGAN. As such, this study sought to determine whether the GAN-
generated objects could “fool” the HO on the specified detection task. An example of the “real”
object f, the corresponding noisy signal-absent image gt, and the considered signal are shown
in Fig. 6.

The considered signal detection task was performed on a region of interest (ROI) of dimen-
sion of 64 × 64 pixels centered at the signal location. The signal-to-noise ratio of the HO test
statistic SNRHO was employed as the figure-of-merit for assessing the IQ:7

EQ-TARGET;temp:intralink-;e008;116;320SNRHO ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sTROIK

−1sROI
q

; (8)

where sROI ∈ R4096×1 denotes the vectorized signal image in the ROI, and K ∈ R4096×4096

denotes the covariance matrix corresponding to the ROIs in the noisy MR images. When
computing SNRHO, K−1 was calculated using a covariance matrix decomposition.7 The values
of SNRHO were computed by use of 15,000 generated objects produced by each trained gen-
erative model. They were compared to the SNRHO computed by use of 15,000 ground truth
objects.

4.5 Training Details

All ProGAN, ProAmGAN, and Sty2AmGAN models were trained by use of Tensorflow56

on 2 NVIDIA Quadro RTX 8000 GPUs. The Adam algorithm,57 which is a stochastic gradient
algorithm, was employed as the optimizer in the training process. To implement the
ProAmGAN, the ProGAN code; available in a Github repository: https://github.com/tkarras/
progressive_growing_of_gans, was modified according to Fig. 2. Specifically, for each consid-
ered imaging system, the corresponding measurement operator was applied to the generator-
produced images for simulating the measurement data and the reconstruction operator was
applied to the measurement data for producing the reconstructed images used as the input to
the discriminator. The default ProGAN architecture with the latent space having the

Fig. 6 (a) An example of a ground truth, or “real,” object f, (b) the corresponding noisy signal-
absent image gt , and (c) the considered signal s.
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dimensionality of 512 and the initial image resolution of 4 × 4 was employed to implement the
ProAmGANs for the considered numerical studies. Additional details about the ProGAN archi-
tecture and the progressive growing training method can be found in the literature.33

The Sty2AmGAN was implemented by modifying the StyleGAN2 code (available in a
Github repository: https://github.com/NVlabs/stylegan2) by augmenting the StyleGAN2 with
the measurement operator Hn and the reconstruction operator O according to Fig. 2. For the
considered experimental study, the default StyleGAN2 architecture (i.e., “config F” 35) with
the input latent space having the dimensionality of 512 was employed to implement the
Sty2AmGAN. Additional details regarding the StyleGAN2 architecture and the corresponding
training strategy can be found in the literature.35

During the training of ProAmGANs and Sty2AmGANs, the latent vectors were sampled
from the standard normal distribution to generate fake images. We visually examined these
generated fake images and stopped the training after these images possessed a plausible visual
quality or did not visually improve significantly. We acknowledge that this stopping rule is
subjective, and it remains an open problem to quantitatively evaluate AmbientGANs to be
applied in situations where ground-truth objects are not accessible.

5 Results

5.1 Stylized Imager That Acquires Fully Sampled Data

Images that were synthesized by use of the advanced-AmbientGANs and ProGANs that were
trained using fully sampled noisy k-space data or images reconstructed from them, respectively,
are shown in Figs. 7 and 8. These correspond to measurement noise levels of 4 and 16,
respectively.

It is observed that the ProGAN-generated images contain significant noise when σnðgÞ ¼ 16,
while the ProAmGAN and Sty2AmGAN generated clean images that do not contain significant
noise. This demonstrates the ability of the ProAmGAN and Sty2AmGAN to mitigate measure-
ment noise when establishing SOMs.

The FID scores, estimated standard deviation of the noise in the generated images σnðf̂Þ, and
SNRHO were evaluated for the ProGANs, ProAmGANs, and Sty2AmGANs. These metrics are
shown in Table 1. The ProAmGANs produced FID scores that were smaller than those produced
by the ProGANs, which indicates that the ProAmGANs outperformed the ProGANs. In addition,
Sty2AmGANs can further improve the synthesized IQ and produced FID scores smaller than the
ProAmGANs. It was also observed that ProAmGANs can produce images having artifacts that
did not appear in Sty2AmGAN-produced images. Examples of such images are shown in Fig. 9.
The estimated standard deviation of the noise in the ProGAN-generated images increased nearly
linearly as the standard deviation of measurement noise was increased; while the estimated stan-
dard deviation of the noise in the ProAmGAN and Sty2AmGAN-generated images were almost
unchanged. The SNRHO values corresponding to the ProGANs had negative biases to the refer-
ence value that were computed by use of ground-truth objects, and this negative bias became
more significant as the measurement noise level increased. This is because the ProGANs capture
both the object variability and the noise randomness, instead of object variability alone, which
degrades the estimated observer performance. The SNRHO values corresponding to the
ProAmGANs and Sty2AmGANs were closer to the reference value.

5.2 Stylized Imager That Acquires Incomplete Data

Images that were synthesized using the ProAmGANs and Sty2AmGANs that were trained using
undersampled k-space measurement data acquired with different acceleration factors are shown
in Figs. 10 and 11, respectively. The images produced by the ProAmGANs and Sty2AmGANs
corresponding to the acceleration factor R ¼ 1.25 and 2 are visually plausible; while when the
acceleration factor was increased to 4, the generated-images were obviously contaminated by
artifacts and some structures were distorted. This demonstrates that the ProAmGAN and
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Sty2AmGAN were adversely affected by the incompleteness of the measurement data acquired
by imaging systems having nontrivial null-space.

The quantitative metrics that include FID scores and SNRHO are summarized in Table 2. The
FID scores produced by the Sty2AmGANs were smaller than those produced by the
ProAmGANs. This indicates that the Sty2AmGANs outperformed the ProAmGANs in terms
of FID scores. For both the ProAmGANs and Sty2AmGANs, the FID scores corresponding

to the generated objects f̂ were increased when the acceleration factor R increased, which indi-
cates that the ProAmGAN and Sty2AmGAN were detrimentally affected by the null space of the
imaging operator. However, the FID scores corresponding to the measurement components of

the generated objects f̂meas were not significantly affected, which suggests that the ProAmGAN
and Sty2AmGAN can reliably learn the distribution of the measurement components of the
objects. The SNRHO values produced by the ProAmGANs and Sty2AmGANs increased when
the k-space sampling acceleration factor R increased. This suggests that the ability of
AmbientGANs to learn object variation that limits observer performance can be decreased when
the null space of the imaging operator becomes large.

Fig. 7 ProGAN-generated (top row), ProAmGAN-generated (middle row), and Sty2AmGAN-
generated (bottom row) images corresponding to σnðgÞ ¼ 4.
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Table 1 The FID score of the objects, the estimated noise standard deviation, and the SNRHO

(the reference value 1.72) corresponding to the objects produced by the ProGANs, ProAmGANs,
and Sty2AmGANs that were trained with fully sampled noisy k-space measurement data.

ProGAN ProAmGAN Sty2AmGAN

σnðgÞ ¼ 4 σnðgÞ ¼ 16 σnðgÞ ¼ 4 σnðgÞ ¼ 16 σnðgÞ ¼ 4 σnðgÞ ¼ 16

FID (f̂) 25.31 146.92 17.60 37.66 13.84 21.24

σnðf̂Þ 1.77% 6.43% 0.59% 0.51% 0.59% 0.59%

SNRHO 1.62 1.10 1.73 1.78 1.70 1.66

Fig. 8 ProGAN-generated (top row), ProAmGAN-generated (middle row), and Sty2AmGAN-
generated (bottom row) images corresponding to σnðgÞ ¼ 16.
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Fig. 10 (a) ProAmGAN-generated images corresponding to the k-space sampling acceleration
factorR of 1.25. (b) The corresponding images forR ¼ 2. (c) The corresponding images forR ¼ 4.

Fig. 9 ProAmGAN-produced images having significant artifacts near the skulls that were not
observed in Sty2AmGAN-produced images. These images were produced by the ProAmGAN
corresponding to σnðgÞ ¼ 4.
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Fig. 11 (a) Sty2AmGAN-generated images corresponding to the k-space sampling acceleration
factorR of 1.25. (b) The corresponding images forR ¼ 2. (c) The corresponding images forR ¼ 4.

Table 2 The FID score of the objects, the FID score of the measurement components, and the
SNRHO (reference value 1.72) corresponding to the objects produced by the ProAmGANs and
Sty2AmGANs that were trained with undersampled k-space data with different acceleration
factors.

ProAmGAN Sty2AmGAN

R ¼ 1.25 R ¼ 2 R ¼ 4 R ¼ 1.25 R ¼ 2 R ¼ 4

FID (f̂) 20.64 39.25 118.27 16.40 37.76 109.41

FID (f̂meas) 12.83 13.25 8.96 10.52 12.51 11.80

SNRHO 1.75 1.80 1.84 1.66 1.73 1.77
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5.3 Experimental Emulated Single-Coil MRI Data

Images produced by the ProGAN, ProAmGAN, and Sty2AmGAN are shown in the top row,
middle row, and bottom row of Fig. 12, respectively. The ProGAN-produced images were con-
taminated by noise because the ProGAN was trained directly by use of noisy reconstructed
images. Both the ProAmGAN and Sty2AmGAN produced images that did not appear to be
degraded by noise, which demonstrates the ability of advanced AmbientGAN strategies to mit-
igate the measurement noise when establishing an SOM. The Sty2AmGAN can further improve
the training of the AmbientGAN for establishing the SOM. For example, the images produced by
the ProAmGAN were more blurred than those produced by the Sty2AmGAN. Because the
ground-truth objects corresponding to the synthesized images were not accessible in this exper-
imental study, only a subjective visual assessment was performed. The style-based generator
used in Sty2AmGAN can provide additional ability to control scale-specific image
features.58,59 To demonstrate this, as shown in Fig. 13, we controlled the style-based generator
of the Sty2AmGAN to produce knee images having similar large-scale structures but different
fine-scale subcutaneous fat textures. These images were produced by use of the same latent

Fig. 12 Results from emulated single-coil MRI data. (a) ProGAN-generated images.
(b) ProAmGAN-generated images. (c) Sty2AmGAN-generated images.
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vector but different latent noise maps that are extra inputs to the style-based generator. More
details about the latent noise maps and the scale-specific manipulation of the style-based gen-
erators can be found in the references.34,35

6 Discussion and Conclusion

It is known that it is important to address object variability when computing objective measures
of IQ for use in imaging system characterization or optimization. When computer-simulation
studies are employed, SOMs are the means by which this can be accomplished. However, estab-
lishing realistic SOMs from experimental image data has remained challenging and few methods
are available to accomplish this.

Motivated by this need, a methodology for training AmbientGANs by use of medical image
data was proposed in this study. The trained generator of the AmbientGAN represents the
sought-after SOM. The proposed methodology enables the use of advanced GAN training meth-
ods and architectures in the AmbientGAN training and therefore permits the AmbientGAN to be
applied to realistically sized medical image data. To demonstrate this, two specific advanced
AmbientGANs were considered: ProAmGANs and Sty2AmGANs.

Stylized numerical studies were systematically conducted in which Sty2AmGANs and
ProAmGANs were trained on simulated measurement data corresponding to an object ensemble
and a variety of stylized imaging systems. Both visual examinations and quantitative analyses,
including task-specific validations, demonstrated that the proposed ProAmGANs and
Sty2AmGANs hold promise to establish realistic SOMs from imaging measurements. In addi-
tion, an experimental study was conducted in which the ProAmGAN and Sty2AmGAN were
trained on emulated experimental MRI measurement data. This demonstrated the effectiveness
of the methods under less stylized conditions in which modeling error was present.

In addition to objectively assessing imaging systems and data-acquisition designs, the SOMs
established by the proposed advanced AmbientGAN methods can be employed to regularize
image reconstruction problems. Recent methods have been developed for regularizing image
reconstruction problems based on GANs such as compressed sensing using generative
models60 and image-adaptive GAN-based reconstruction methods.61,62 Sty2AmGANs can also
be used for prior image-constrained reconstruction.59 Furthermore, the established SOMs may be
employed to produce clean reference images for training deep neural networks for solving other
image-processing problems such as image denoising63,64 and image super-resolution.65 However,
it should be noted that the AmbientGANs-established SOMs were not uninfluenced by the im-
aging systems. As shown in the numerical studies, the IQ of the AmbientGAN-generated images
was affected to varying extents when different levels of measurement noise and different degrees
of incompleteness of the measurement data were considered. In addition, the generated images
can be contaminated by artifacts and distorted structures. The artifacts generated by
AmbientGANs and the impact of imaging systems on the training of AmbientGANs may limit
the use of the proposed AmbientGANs in certain medical imaging applications. It will be

Fig. 13 Sty2AmGAN-generated objects having similar large-scale structures but different fine-
scale subcutaneous fat textures. Textures in the red and blue rectangles have different
appearances.
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important to investigate the extent to which the AmbientGANs can be successfully applied for
solving specific medical imaging problems.

There remain additional topics for future investigation. We have conducted a preliminary
objective assessment of the AmbientGANs by use of the HO7,66 and a binary signal detection
task. In this preliminary study, the generated images were objectively assessed by use of binary
signal detection studies. It will be important to validate the SOMs established by use of the
proposed methods when clinically relevant tasks are addressed by a variety of numerical observ-
ers such as the ideal observer that deploys higher-order statistical information of images67–70 and
anthropomorphic observers that mimic human performance.71 Moreover, it will also be impor-
tant to validate the AmbientGANs-established SOMs by use of other image features such as
variations of certain textures and shape distributions of different organ structures of the syn-
thesized objects. To implement the proposed AmbientGAN methods, the imaging forward oper-
ator needs to be accurately modeled. In addition, in practice, medical imaging measurement data
are frequently acquired under inhomogeneous imaging conditions. It will be important to inves-
tigate the impact of the modeling error of the imaging forward operator and the inhomogeneous
imaging conditions on the ability of AmbientGANs to establish SOMs for certain observers
and tasks.
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