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Abstract. The term “shot effect” (schroteffekt) was coined in 1918 when Walter Schottky studied electrical noise
in vacuum tubes. Earlier still, the foundations of shot noise theory go back to Einstein, who in 1905 explained the
photoelectric effect as caused by discrete “particles” of light and Brownian motion as caused by discrete particles
of matter. When the numbers of particles that affect observable outcomes are large, shot noise effects (variability
in number as a fraction of the mean number) become small, and the continuum approximation (energy and
matter are continuous) becomes accurate. For most of the history of semiconductor lithography, the continuum
approximation has served well. But at small dimensional scales, where the number of discrete particles or events
is small, the counting statistics of shot noise can dominate. The 100-year history of shot noise in science and
engineering is today playing a role in our understanding of shot noise in lithography. © 2018 Society of Photo-Optical
Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMM.17.4.041002]
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“And for this reason it is the more right for you to give heed to
these bodies, which you see jostling in the sun’s rays, because
such jostlings hint that there are movements of the matter
too beneath them, secret and unseen. For you will see many
particles there stirred by unseen blows change their course
and turn back, driven backwards on their path, now this way,
now that, in every direction everywhere.”

Lucretius, On the Nature of Things, first-century BCE1

1 Introduction
One hundred years ago, a new form of noise was discovered
when Walter Schottky2 studied the output of vacuum tubes
run at low currents. He called this noise the “shot effect”
(schroteffekt).3 Earlier still, the foundations of shot noise
theory go back to Einstein, who in 1905 gave convincing
arguments that both light and matter are fundamentally
discrete in nature.4,5 Einstein’s photon theory of light
was inspired by Max Planck’s quantization of energy,
and his argument for the atomic theory of matter provided
an explanation for Brownian motion. Today, we recognize
that shot noise plays a role in any system where the number
of discrete events that are important is sufficiently small
so that the counting statistics of those events must be
considered.

In lithography, events such as photon absorption within a
photoresist, chemical conversion of a light-sensitive compo-
nent in that resist, and the chemical changes that make a
molecule soluble in developer are all discrete events that
experience shot noise. Consider a volume of photoresist
and ask, “How many events occurred within that volume
to change the solubility of that portion of resist?” If the vol-
ume of resist is sufficiently large that the number of events is
large, the variability of that number relative to its mean (the
shot noise) will be small, or even negligible. In this regime, it

is safe to make the continuum approximation, where the dis-
crete nature of light and matter is ignored. But if the volume
of resist of interest is small enough, shot noise will dominate
its behavior. As lithographic dimensions shrank from 25 μm
in the early days of semiconductor manufacturing to 25 nm
and below today, we have transitioned from a regime where
shot noise can be completely ignored to one where it domi-
nates errors in patterning.

This paper will review the history of shot noise, beginning
almost 200 years ago with Brownian motion. We will then
look at how the ideas of shot noise have been applied in
lithography for semiconductor manufacturing over the last
40 years.6

2 Brownian Motion
The term Brownian motion is named for Robert Brown (1773
to 1858), a well-known botanist of his day. In 1827, while
studying pollen suspended in water under a microscope, he
observed a random, quick motion of the pollen particles
that at first he attributed to the “vital force,” an ill-defined
concept of life that was in vogue at the time. Brown was
not the first to notice such movements, but he was the first
to make an extensive study of it. He quickly realized that
inorganic particles (and in fact, any properly sized particles)
would also exhibit the random motion, going so far as to
test ground particles from the Egyptian Sphinx (courtesy of
the British Museum where he worked). He systematically
ruled out causes for the motion, such as living creatures,
gradients and convection currents, evaporation, or vibrations.
In the end, he left its cause a mystery. In 1827, he self-
published a pamphlet describing his observations (Fig. 1),
the contents of which were republished in a scientific journal
the next year.7

The mystery of the cause of Brownian motion simmered
for over 75 years. Although hand-waving arguments were
quickly proposed, they were slowly dispelled in turn through
careful experiments, including the possibilities of chemical*Address all correspondence to: Chris A. Mack, E-mail: chris@Lithoguru.com
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and electrical attractions. What was left was the theory of
molecular motion: energetic water molecules constantly
colliding with the suspended particle randomly push it in
various directions. However, the atomic/molecular theory
of matter was still controversial at the time, and many
were unconvinced by this proposed cause of Brownian
motion.

In 1859, James Clerk Maxwell described the distribution
of velocities of idealized gas particles statistically, the first
statistical law of physics. Ludwig Boltzmann expanded on
this result in 1871 into what we now call the Maxwell–
Boltzmann distribution of particle velocities. The success of
this theory in predicting and explaining the properties of
gases prompted many to apply the same concepts to explain
Brownian motion. If the water molecules could be described

by the same distribution of velocities, perhaps the motion of
the suspended particle could be explained and predicted as
well. However, attempts to both predict and measure the
velocity of the Brownian particles proved a failure. By the
close of the 19th century, many saw Brownian motion as
a possible proof for the existence of atoms, but that proof
remained lacking.

It is hard to imagine today that in 1900 the atomic/
molecular theory of matter was very much in debate. Fueled
by the positivist school of philosophy, which eschewed
explanations that could not be directly observed with the
senses, many scientists considered atoms a convenient fic-
tion, but not real. The statistics of ideal gases seemed ideally
suited to explain Brownian motion, but the connection
remained elusive. In 1905, Albert Einstein finished his

Fig. 1 The front page of Robert Brown’s self-published pamphlet describing his observations and
experiments on what came to be called Brownian motion.
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doctoral dissertation, “A new determination of molecular
dimensions” (Fig. 2), later published in Annalen der Physik.8

In the dissertation and a second publication that year,5

Einstein applied Maxwell–Boltzmann statistics to the prob-
lem of Brownian motion. But instead of trying to mimic the
Maxwell–Boltzmann theory and predict the velocity of the
Brownian particle (an exercise that will later be proven to
be impossible), Einstein instead focused on the mean posi-
tion of the particle over time. In doing so, he provided the
first theoretical derivation of the diffusion equation and
showed that a Brownian particle’s position should follow
Gaussian statistics.

Einstein’s theoretical achievement was quickly appreci-
ated as providing the proof needed for the molecular theory
of matter, but only if the predictions of his theory could be
experimentally verified. The experimental verification came
a few years later by the careful and detailed work of the
French scientist Jean Baptiste Perrin.9 Perrin devised several
tests of the molecular theory of Brownian motion and began
by creating particles of uniform diameter and density, which
he measured. Since the particles were denser than water,
a suspension of these particles in water could test the
molecular theory of Brownian motion by looking at how

they settled. In the absence of molecular collisions, the par-
ticles should all settle to the bottom under the force of grav-
ity. But molecular collisions would force some particles to
stay suspended, creating an exponential concentration gra-
dient in the vertical direction in the same way as barometric
pressure varies with altitude. By measuring the concentration
gradient (counting particles using a Zeiss microscope in
water immersion mode, see Fig. 3), he was able to verify
the predicted exponential distribution of particle counts.
Further, by separately measuring quantities such as particle
size and density, Perrin was able to calculate the one
unknown quantity in his theoretical equation: Avogadro’s
number. His result of 7.05 × 1023 was only off by 17% from
the value we know today and was the most accurate meas-
urement of Avogadro’s number to date. Perrin also directly
verified Einstein’s predictions about Brownian motion by
measuring the particle position over time (Fig. 3).

Perrin’s work earned him the Nobel Prize in physics in
1926 and firmly established the atomic theory of matter:
matter is not a continuum but instead is made up of discrete
particles. But the study of Brownian motion was not com-
plete. In 1908, Paul Langevin10,11 developed a stochastic dif-
ferential equation for Brownian motion, adding an important
mathematical tool to its study. In 1930, Uhlenbeck and
Ornstein12 added friction to the motion of the particle, creat-
ing a more accurate model for Brownian motion (a model
which remains useful today in describing photoresist stochas-
tic behavior). The most complete model for Brownian motion
was developed by the mathematician Norbert Wiener. Known
as the Wiener process, it is a continuous-time stochastic proc-
ess such that the distance a particle travels in time interval Δt
is Gaussian with mean 0 and variance proportional to Δt, and
with independent, nonoverlapping time intervals. The use of
this model required the development of stochastic random
variables and their mathematical treatment. For example,
the position of a particle in a Wiener process is a stochastic
random variable that has no defined derivative (that is, unde-
fined velocity). Wiener developed time-series analysis tech-
niques for such variables13,14 and a stochastic version of
the Fourier transform.15,16 He also showed that the power
spectral density of a stochastic random variable is the Fourier
transform of its autocorrelation function. The study of
Brownian motion took another interesting turn when Benoit
Mandelbrot applied the new concept of fractals to its
description.17 Even today, Brownian motion remains an
active area of research, with many interesting applications.

3 Discrete Light and Discrete Current: The Photon
and the Electron

The year 1905 was special not just for Einstein’s theoretical
proof of the existence of atoms, but for the concept of
the photon: light is not a continuum of energy but instead
is made up of photons, small units of energy that interact
with matter discretely. Einstein examined the photoelectric
effect, where light shining on a metal plate in a vacuum
can release electrons. A surprising experimental result by
Philipp Lenard in 1902 was that while the number of elec-
trons emitted was a function of the intensity of light, the
energy of the emitted electrons was independent of the inten-
sity of light. And if the frequency of the light was below
a certain threshold, no electrons would be emitted regardless
of the light’s intensity. This behavior was completely

Fig. 2 The front page of Albert Einstein’s 1905 PhD dissertation.
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anomalous under the paradigm of continuous light energy.
Einstein was able to make sense of it by applying Max
Planck’s concept of the energy quantum: light is made up of
discrete “particles,” each with an energy fixed by the fre-
quency of the light. The intensity of the light is then deter-
mined by the number of photons.

The twin ideas of discrete matter and discrete energy
events produced a remarkable paradigm shift from the con-
tinuum ideas prevalent in the 19th century. Even the atom
was shown to be made of more elementary particles. In
1896, Joseph J. Thomson showed that cathode rays were
made of negatively charged particles (later named electrons)
and measured their mass and charge. In a series of experi-
ments in 1908 to 1911, Ernst Rutherford, Hans Geiger,
and Ernest Marsden showed that atoms are composed of
a central positively charged nucleus surrounded by electrons.

The theoretical and experimental ideas of matter and
energy as made up of discrete particles inspired mathemati-
cians to delve into appropriate mathematical tools for their
description, especially random variables with a Poisson
distribution. For example, in 1909, Campbell18 derived the
moments (mean and variance) of a sum of Poisson processes,
motivated by the latest developments in physics: “The trend
of modern theory is everywhere to replace by discontinuity
the continuity which was the basis of science in the last
century.”

4 Walter Schottky and the “Shot Effect”
It took some time for the full implications to become appar-
ent of energy and matter (and their interaction) as composed
of discrete, stochastic particles or events. In 1918, Walter
Schottky2 was studying the behavior of vacuum tubes, such
as a vacuum diode, under low-current conditions (Fig. 4).
The measured current was noisy, a not unexpected result.
But unlike other types of noise, this noise had a frequency
spectrum that was constant over all frequencies and was
not temperature dependent. Schottky called this noise the
“Schroteffekt,” the shot effect.2,3 In coining this phrase,
Schottky said, “The expression ‘shot’ points, as it does in
common language use, to the occurrence of a large number
of homogeneous elementary particles.”3

At the time, other forms of electrical noise had well-
known frequency and temperature dependences that differed
greatly from Schottky’s new shot effect. Johnson noise, ther-
mal noise of current flowing through a conductor or resistor,
varied greatly with temperature. Flicker noise had a 1∕fα
frequency dependence. But the shot effect was white noise,
with a flat frequency response over most of the frequency
range. As Schottky said, “Because of the atomic structure of
electricity the electrical transition is represented not as a
continuously flowing current but as a hail of charge quanta
which would cause current fluctuations even for a very
regular temporal distribution.”3

According to Partridge,19 noted lexicographer of slang,
the word “noise” derives from nausea, from “the noise
made by an ancient shipful of passengers groaning and vom-
iting in bad weather.” The Oxford English Dictionary defines
noise as “random fluctuations that obscure or do not contain
meaningful data or other information.” Over time, the phrase
“shot effect” became “shot noise.” It is used to describe
any random uncertainty in a physical quantity caused by
the counting statistics of the discrete events that underlie
the phenomenon. The most common statistical distribution
appropriate for shot noise is the Poisson distribution, char-
acterized by a variance of the distribution equal to its mean.

As an example of Poisson counting statistics, consider the
concept of concentration, the average number of molecules
per unit volume.20 Let C be the average number of molecules

Fig. 3 Illustrations from Jean Perrin’s work on measuring Brownian
motion.9

Fig. 4 Illustrations from Schottky’s 1918 paper where he examined
the role of shot noise in a simple cathode tube and one connected
to an RLC circuit.2
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per unit volume, and dV a volume small enough so that at
most one molecule may be found in it (thus requiring that the
concentration be fairly dilute, so that the position of one
molecule is independent of the position of other molecules).
The probability of finding a molecule in that volume is just
CdV. For some larger volume V, the probability of finding
exactly n molecules in that volume, PðnÞ, will be given
by a binomial distribution. But for any reasonably large
volume (CV > 1), this binomial distribution will also be
well approximated by a Poisson distribution

EQ-TARGET;temp:intralink-;e001;63;642PðnÞ ¼ ðCVÞn
n!

e−CV: (1)

The average number of molecules in the volume will be CV,
and the variance will also be CV. The relative uncertainty in
the number of molecules in a certain volume will be

EQ-TARGET;temp:intralink-;e002;63;573

σn
hni ¼

1
ffiffiffiffiffiffiffihnip ¼ 1

ffiffiffiffiffiffiffi
CV

p : (2)

Thus, if the mean number of particles in the process is
large, the relative uncertainty in that number is small and
the impact of shot noise is also small. But as the mean num-
ber of particles becomes small (for example, by examining a
very small volume of material so that the expected number of
particles in that volume is small), the relative uncertainty in
that number becomes great.

For a given concentration, the relative importance of shot
noise is determined by the size of the volume of interest. As
will be described next, the scaling of lithography to small
dimensions has meant that the volume of interest shrinks
and the importance of shot noise in lithography processes
continues to grow.

5 Shot Noise in Lithography
Today, shot noise is widely recognized as a serious problem
when printing near the resolution limit of extreme ultraviolet
(EUV) lithography.21,22 But the concept of shot noise as
a limiter to lithographic performance is not new to EUV.
In the 1970s, x-ray lithography was considered a potential
successor to optical lithography. Like EUV today, x-ray
light sources were not as bright as desired, so researchers
wondered how low the exposure dose could be made before
print quality becomes limited by shot noise. By 1976, Spiller
and Feder and coworkers at IBMwere exploring the trade-off
between resolution and resist sensitivity (what we now think
of as a part of the resolution–linewidth roughness–sensitivity
trade-off).23,24 Describing photoresist as a detector,

“Theoretically the final limit for the sensitivity of any detector
is determined by the shot noise of the absorbed photons. . .
resists with lower resolution can have higher sensitivities
than resists with high resolution.”25

They went on to show that the shot-noise limited resist
sensitivity must scale as 1∕R3, where R is the resolution.26

They showed that the minimum incident dose Einc required
to print a feature of dimension δ using photons of energy
hν in a resist with absorption coefficient α will be

EQ-TARGET;temp:intralink-;e003;63;102Einc ¼
n hν
α δ3

; (3)

where n is the mean number of photons absorbed in the
volume that are required to avoid detrimental shot noise
effects. The implications of this scaling are unpleasant if one
is limited by available light: if the feature size is reduced by
a factor of 0.7, the dose required to print it must rise by
a factor of 3. A similar scaling law for electron beam lithog-
raphy was also derived in 1976.27

Further insights into the stochastic limits of x-ray lithog-
raphy were provided by a number of researchers who tried to
turn the Spiller and Feder scaling relationship into hard num-
bers as to what dose would be required for which feature size.
Smith28 derived a simple relationship between lithographic
feature edge error (Δx), the image intensity slope at the edge,
the Poisson statistics photon shot noise σphoton, and what he
called the “development uncertainty band” δN related to
photoresist contrast

EQ-TARGET;temp:intralink-;e004;326;576Δx ¼ δN þ σphoton
image slope

: (4)

Neureuther and Willson,29 in a remarkable 1988 paper,
explored the impact of the photoresist in far more detail.
They recognized that stochastics must be considered in
two ways:

First the occurrence of a large random defect at anyone of
some 1011 sites on chip could produce a catastrophic failure
and second, intra- and interfeature variations in linewidths
at any of several hundred sites could cause unacceptable
performance degradation or reliability failure.

Neureuther and Willson described two feature size-scal-
ing regimes. In addition to the 1∕R3 dose scaling of Spiller
and Feder, they described a “fixed resist aspect ratio” scaling
where absorption is made to increase as 1∕R so that required
dose scales as 1∕R2. They derived a model for the dose
required to avoid various types of stochastic defects (insol-
uble bits of resist at different locations on a device), though
their dose limit was “based on the occurrence of a defect so
infrequent that constructing an experiment to observe this
effect would be extremely difficult.”30

The need to consider shot noise effects in EUV lithogra-
phy was appreciated as early as 1994.31,32 Most of this early
work sought to understand the effects of shot noise and other
stochastic factors on the roughness of photoresist edges.
Scheckler et al.31 extended the stochastic defect model of
Neureuther and Willson to chemically amplified resists and
predicted, for a given resist, that a 54-mJ∕cm2 dose would
be required to print 70-nm features. In 2001, O’Brien and
Mason33 explored a different approach to predicting stochastic
defects in contacts. By counting the total number of photons
absorbed inside a contact hole, they considered shot noise as
simply an exposure dose error. For a contact with a given
exposure latitude, the probability that shot noise will produce
a contact so undersized that it will not print can be deter-
mined from the Poisson distribution of photon counts. When
a device has billions (or hundreds of billions) of contacts,
even low probability contact failures can produce a high
probability of device failure. In their model, the required dose
is inversely proportional to the exposure latitude squared and
proportional to the “number of sigmas” in the probability dis-
tribution that matter squared. For example, a five-sigma failure
rate is about 1 failure per 3.5 million contacts, a six-sigma
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failure rate is about 1 failure per billion contacts, and a seven-
sigma failure rate is about 1 failure per trillion contacts.
Thus, the required dose not only scales with feature size,
but also with the number of features found on a device.

More recently, the reduction in exposure latitude for
undersized contacts has been added to O’Brien and Mason’s
model, predicting a much higher probability of contact hole
failure.21 These models, while calibrated with experimental
data, must still be extrapolated very far along the tail of
a probability distribution.22 Even if the critical dimension
distribution of a million contacts was measured, it is still very
hard to accurately predict the expected number of failures for
100 billion contacts.

One certain consequence of the statistics of stochastic
effects will be the need to use higher than desired exposure
doses in manufacturing. Early targets for EUV dose to size
were 5 mJ∕cm2. The throughput specifications for ASML’s
NXE:3100 assumed a 10-mJ∕cm2 dose and the NXE:3300
assumed a 15-mJ∕cm2 dose.34 Today, a 20-mJ∕cm2 dose is
widely assumed when making throughput calculations,
though a workable resist with such a dose to size is more
aspirational than realistic. The realities of high-yield manufac-
turing with EUV will require much higher doses, and these
doses must increase every time the feature size is reduced.

The exact stochastic limits of EUV lithography remain
uncertain. From a theoretical perspective, the volume V that
should be used in a Poisson calculation of shot noise has
not been exactly pinned to a measureable quantity, though
a recent proposal to relate this volume to the total resist
blur as manifest in a roughness correlation length has some
potential.35 From a stochastic defect perspective, further
work is required to either measure or predict killer stochastic
defects in one out of 1011 features. Still, progress in these
areas could provide answers in the very near future.

6 Conclusions
One hundred years ago a new term, and a new concept,
entered the lexicon of science: shot noise. This idea was
a natural consequence of the changing view of the micro-
scopic world from the continuous to the discrete. For
large-scale phenomenon, where the number of particles or
events in a volume of interest is large, the relative variation
about the mean is small so that a continuum view of the
world is quite accurate. But as the scale of interest shrinks,
the importance of shot noise grows quickly.

Shot noise has been an understood part of lithographic
phenomenon for over 40 years. But models that can predict
the lithographic impact of stochastic phenomenon with
sufficient accuracy are still lacking. Each new generation
of lithographic process, with its smaller dimensions, suffers
from increased stochastic variations. So for each new gener-
ation of lithographic process, there is a fear that stochastic
variation will lead to unacceptable yield loss and a hard
limit to progress, and a hope that this limit will occur at
least one more generation in the future.
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