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Abstract. We achieved considerable laser diode (LD) improvement after annealing InGaP/
InAlGaP laser structure at 950°C for a total annealing time of 2 min. The photoluminescence
intensity is increased by 10 folds and full-wave at half-maximum is reduced from ∼30 to 20 nm.
The measured LDs exhibited significantly reduced threshold current (Ith), from 2 to 1.5 A for a
1-mm long LD, improved internal efficiency (ηi), from 63% to 68%, and increased internal
losses αi, from 14.3 to 18.6 cm−1. Our work suggests that the use of strain-induced quantum
well intermixing is a viable solution for high-efficiency AlGaInP devices at shorter wavelengths.
The advent of laser-based solid-state lighting (SSL) and visible-light communications (VLC)
highlighted the importance of the current findings, which are aimed at improving color quality
and photodetector received power in SSL and VLC, respectively, via annealed red LDs. © The
Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or
reproduction of this work in whole or in part requires full attribution of the original publication, including
its DOI. [DOI: 10.1117/1.JNP.10.036004]
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1 Introduction

Red laser diodes (LDs) emitting in the range of 630 to 690 nm are constructed from InGaP/
InAlGaP laser structures. In addition to their conventional applications in compact data storage
and pointing devices, these LDs have important applications in commercial laser projector TVs,
laser-based solid-state lighting (SSL), and spectral-efficient visible-light communications
(VLC). Related to SSL and VLC, Janjua et al.1 recently achieved simultaneous implementation
of 4.8 Gbps (gigabits per second) VLC and daylight illumination in which data were encoded
into the red LD, and the continuous-wave (CW) blue- and green-LDs served as the other two
primary colors for white light generation. An incremental intensity ratio of blue(B)–green(G)–
red(R) was required to achieve a reasonable correlated color temperature (CCT) and color ren-
dering index (Ra). Therefore, increasing the red LD intensities would be the best approach to
maximize the received power at the detector end in VLC.1 Moreover, blueshifting the wavelength
of the red LD increases the perceived brightness in human photopic vision and will, therefore,
lead to higher overall luminous brightness of the eventual RGB-laser light bulbs or projectors.

Despite the need for high-power and shorter wavelength red LDs, a reduction in the wave-
length below 630 nm by typical growth methods, such as metal-organic chemical vapor dep-
osition (MOCVD) or molecular beam epitaxy (MBE), is extremely difficult to achieve. If
aluminum-free active layers (InxGa1−xP layers) are used in the growth, then there is a limited
window in which the mole fraction x can be varied while keeping the layer matched to the GaAs
substrate.2 In contrast, aluminum-rich [InyðAlxGa1−xÞ1−yP] active layers can be used to grow
active layers. Increasing the Al content is the ideal solution because the lattice constant of
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the quaternary will hardly change. However, increasing the Al content x to more than 0.1
severely reduces the optical efficiency of the material due to oxygen-related deep-level defects
and increases the threshold current of LDs.3–5

The reason for this low efficiency is that Al is a reactive element that oxidizes even in a very-
high vacuum and high-temperature growth environment. Therefore, increasing the Al content
during growth to create efficient devices is the primary obstacle to producing efficient LEDs and
LDs with Al-rich active layers. These factors constitute a major obstacle in the production of LDs
emitting below 630 nm.6

Recently, we developed a quantum well intermixing technique7 that enables a further increase
in Al content in the active layer. We achieved lasing in the orange (608 nm) at room temperature
(RT).8 Using this technique, we were able to further blueshift the emission from 635 to 565 nm.
However, as the laser structure is intermixed, more point defects are introduced into the laser
structure, reducing the output power and the performance of the intermixed devices.
Consequently, we have lower output power at yellow emission.8

There were a number of investigations of the effect of annealing on the performance of the
InGaP/InAlGaP laser structure. One of the main concerns when annealing InGaP/InAlGaP laser
structure is the integrity of the top surface. Annealing at high temperatures causes the top surface
to roughen. Therefore, a layer of dielectric film is needed to protect the surface. Floyd et al.
performed annealing after capping the top surface by SiO2 film deposited using plasma-
enhanced chemical vapor deposition, and limited the annealing temperature to 400°C, and
obtained an improvement in threshold current Ith, from 20 to 18 mA.9 A similar procedure
was performed; the annealing temperature was set to 450°C for 30 min. Improvement in the
threshold current was observed for ridge lasers from 33 to 25 mA.10 Dekker et al. increased
the temperature to 875°C for 1 s11 without device demonstration. Improvements are illustrated
by the improved carrier lifetimes from time-resolved PL measurements and the reduction of
deep-level traps by deep-level trap spectroscopy. In this work, we annealed at a relatively
elevated temperature of 950°C for a relatively longer time, 2 min, and applied a relatively
thick film of SiO2 1.5 μm. We studied the effect of annealing on PL peak, PL intensity, the
threshold current (Ith), internal efficiency ηi, and optical losses hαii.

2 Experiment

A single quantum well (SQW) InGaP/InAlGaP laser structure was grown on a 10 deg offcut
GaAs substrate using MOCVD, as shown in Fig. 1. The structure consisted of a 200-nm,
Si-doped, GaAs buffer layer with a carrier concentration of 1 to 2 × 1018 cm−3, a 1-μm-thick
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Fig. 1 A single QW InGaP/InAlGaP laser structure grown using MOCVD.
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n-In0.5Al0.5P lattice-matched lower cladding layer with a carrier concentration of 1 × 1018 cm−3,
a 6-nm-thick InGaP SQW layer sandwiched between two 80-nm undoped In0.5Al0.3Ga0.2P

waveguide layers, a 1-μm-thick Zn-doped In0.5Al0.5P lattice-matched upper cladding layer
with a carrier concentration of 1 × 1018 cm−3, a 75-nm lattice-matched p-In0.5Ga0.5P barrier
reduction layer with a carrier concentration of 3 × 1018 cm−3, and a 200-nm highly doped
p-GaAs contact layer with a carrier concentration of 2 to 3 × 1019 cm−3. The laser was designed
to have a peak emission at 635� 3 nm.

The laser sample was cleaved to ∼1 × 1 cm. The sample was cleaned, and a 1-μm film of
SiO2 was deposited. The samples were annealed using rapid thermal processing at 950°C for 30 s
after placing the sample between two fresh GaAs pieces to keep the As overpressure as described
in Refs. 12 and 13. The process was repeated four times. SiO2 film then was removed through
dry etching. The surface morphology of samples before and after annealing was characterized
using atomic force microscopy (AFM). The changes induced by the above procedure were mea-
sured at RT using PL spectroscopy equipped with a 473-nm cobalt laser as the excitation source.
The PL of the sample was measured after the process. Laser devices were fabricated from the
annealed sample and an as-grown laser sample to make broad area lasers with 75 μm stripes.
Laser devices of different cavity lengths were cleaved and characterized at RT.

3 Results and Discussion

The rapid thermal annealing process at a temperature of 950°C, or above the epitaxy growth
temperature for an extended period of up to 2 min, has been widely implemented as optimum
annealing conditions to out-annealed grown-in defects.13–16 To minimize group-V outdiffusion
that will increase surface roughness, and group-III vacancy generation that will result in a large
degree of quantum-well intermixing, four cycles annealing at 950°C for 30 s each was per-
formed. The focus in this paper is on the performance of LD after a low degree of intermixing,
limited to 5-nm blueshift. A different batch of laser wafers was used from the one used earlier in
Ref. 7, and therefore, further optimization was performed for the devices used herein. To min-
imize As outdiffusion, the annealing was performed with the laser sample sandwiched between
two fresh GaAs pieces. This procedure provides the As over-pressure during annealing. Figure 2(a)
shows the AFM image, which depicts the surface morphology of the as-grown sample, with root-
mean-square (RMS) roughness of 2.65 nm. Postgrowth annealing and removal of the SiO2 layer
resulted in the increase of RMS surface roughness to 4.62 nm, as shown in Fig. 2(b).

Figure 3 shows the PL of the sample before and after intermixing. The intensity of the PL
signal was enhanced ∼10 folds, from 70 to 735 counts and the full-wave at half-maximum
(FWHM) was reduced from ∼30 to 20 nm. The strong PL signal, the narrow FWHM, and
the good surface morphology after the intermixing process suggest that the fabricated devices
were comparable to as-grown lasers. The as-grown QWemitted at 641 nm (shown in Fig. 3). The
blueshift of 6̃ nm (15 meV) is due to the interdiffusion of Al and Ga atoms between the QWand
the barriers. The reduction in FWHM can be related to the removal of oxygen-related defects as
in Ref. 11. Here, we are using a similar design to our previously reported intermixing process,7

but with different growth. Therefore, the blueshift is lower than previously reported.

Fig. 2 The AFM images for InGaP/InAlGaP LDs: (a) the as-grown surface and (b) the surface after
annealing and removal of SiO2 film.
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As-grown and annealed samples were fabricated in the same manner. Figure 4 shows the
lasing spectrum of the fabricated devices with a 1-mm length. The devices were pumped at
a 1.1Ith, and the lasing spectrum was measured by placing an optical fiber close to the laser
facets. The as-grown laser devices emitted at 644 nm, whereas the lasing wavelength of the
annealed devices was ∼638 nm. The small redshift between the measured PL and electrolumi-
nescence (EL) of both the annealed and as-grown devices at peak emission is due to heating.

Next, we cleaved the as-grown and annealed laser samples to lengths of 0.4, 0.6, and 0.8 mm
and measured the thresholds of multiple devices at each length. Figure 5 shows the threshold
current of the annealed devices compared to the as-grown devices. The threshold current Ith of
the annealed laser with a length of 1 mm is 1.5 A, whereas the as-grown laser has a threshold
current of 2 A, which is ∼25% lower. As the length of the devices is reduced, the threshold
current difference between the annealed and as-grown devices becomes smaller. The slope effi-
ciency of the annealed devices is lower than that of the as-grown devices.

Figure 6 shows LI and IV curves at high-current pumping for 0.4- and 1-mm devices. The
roll over for the annealed devices with respect to the as-grown device samples is faster, and the
turn-on voltage is higher. We believe that the increase in the series resistance is due to annealing
at elevated temperature, which causes As and dopants to diffuse out of the contact layer.
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Fig. 3 The PL signal of the annealed laser structure compared to the as-grown PL signal.
Annealed sample emissions are blueshifted by ∼6 nm with an increase in the PL intensity
(10 folds) and a reduction in the FWHM by ∼10 nm.
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Fig. 4 The EL of as-grown and annealed devices cleaved to 1-mm long devices. The as-grown
and annealed devices have lasing peaks at 644 and 638 nm, respectively.
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To determine the internal optical loss hαii and the internal quantum efficiency (IQE, or ηi), of
the fabricated devices, we followed the standard procedure in Ref. 17 and plotted the inverse
differential quantum efficiency ð1∕ηdÞ against the device length L in Fig. 7. The quantum effi-
ciency ηi of the annealed devices is 68%, which is better than that of the as-grown devices.
However, the internal optical loss increased from 14.3 to 18.6 cm−1. The annealed devices
have a rougher surface and higher resistance compared to that of the as-grown sample, leading
to the increase in turn-on resistance, and hence a reduction in slope efficiency. On the other hand,
the higher IQE is due to the out-annealing of grown-in defects.
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Figure 8 shows a plot of the threshold current density of the annealed and as-grown laser
devices versus the inverse length. The transparency current (Jth0) for the as-grown devices is
1850 A∕cm2, while it is 1100 A∕cm2 for the annealed devices.

In this process on the InGaP/InAlGaP material system, annealing has improved the perfor-
mance of the laser devices. Adding the results we achieved before from orange and yellow devi-
ces,8,18,19 the results can be explained if we split the process into three subprocesses. The first
subprocess is the creation of defects. These defects are created at the interface of the capping
dielectric-laser interface and propagate throughout the laser structure. The point defects are cre-
ated due to the difference in expansion coefficients.20 Defects, created during annealing, increase
the nonradiative recombination centers and the optical losses for light propagation inside the
structure. Such effects have already been discussed in Ref. 21. We believe the defects created
during the annealing process are responsible for the increase in αi in the annealed devices. The
amount of defects can be controlled by reducing the annealing time or reducing the applied strain
from the dielectric film. The second subprocess is the interdiffusion of group-III atoms between
the QW and the barriers. As a result, the bandgap of the QW is blueshifted as more Al atoms
diffuse into the QW. As the temperature and time are increased, the amount of diffusion
increases. These two subprocesses are well known in the literature and expected.22 We have
experienced similar effects when applying a large degree of intermixing.8,18 The third subpro-
cess, which we are emphasizing, is the reduction of deep-level traps. The considerable improve-
ment in PL intensity and reduction in FWHM with the enhancement in the threshold current Ith
can be related to the reduction in deep-level traps and oxygen-related defects due to the elevated
temperature as explained in Ref. 9. However, the improvement we are getting in this work is
higher than reported.
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4 Conclusion

In this work, we performed annealing on the InGaP/InAlGaP laser structure, and obtained con-
siderable improvement in the PL intensity, and internal quantum efficiency, as well as a reduction
in the threshold current of the laser. We related this improvement to the out-annealing of the
oxygen-related defects. A small reduction in wavelength is due to the interdiffusion of Al
atoms from the quantum barrier to QW. This technique represents a solution to achieve
high-efficiency InAlGaP devices at the shorter wavelengths of yellow and orange.
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