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Abstract. We describe an approach to produce short-term (1- to 3-day) forecasts of bio-optical
properties by coupling moderate-resolution imaging spectroradiometer satellite (MODIS) ocean
color imagery with a hydrodynamic model. The bio-optical property (chlorophyll in this case) is
treated as a conservative tracer; the satellite distribution is advected forward in time using the
current field from the hydrodynamic model. Uncertainties in both the satellite chlorophyll values
and the currents from the circulation model impact the final forecast; we apply ensemble tech-
niques to quantify the errors separately and in combination. For the ocean color imagery, we
further apply ensemble techniques to partition the chlorophyll uncertainties into components due
to atmospheric correction and bio-optical inversion, by applying noise to the near-infrared and
visible band sets separately. The standard deviation for each ensemble suite provides an indi-
cation of uncertainty, or confidence in the satellite chlorophyll values and the hydrodynamic
model current fields. By combining the two ensemble sets, we produce a final chlorophyll fore-
cast field and associated uncertainty map that include both sets of uncertainties. We examine
mean and individual forecast ensemble members (spread-skill statistics, RMS differences) to
assess predictive value. This work represents a significant advancement in representing errors
associated with satellite ocean color imagery and bio-optical forecasts. © The Authors. Published
by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this
work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
.1117/1.JRS.8.083652]
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1 Introduction

Satellite ocean color imagery can provide synoptic, surface estimates of water bio-optical proper-
ties, which are used in a wide variety of applications that are directly impacted by the penetration
of light in the water column. Thus, applications ranging from process-based ecological studies,
to coastal management, and target detection/diver visibility for the military can all benefit from
remotely sensed bio-optical property estimates. However, the bio-optical properties are not
directly measured by the satellite spectroradiometer, they must be derived through a series
of complicated steps, each of which has associated uncertainties.

The satellite measures spectral radiances reflected from the surface layer of the ocean, after
transmission upward through the atmosphere. Thus, these measured top-of-the-atmosphere (TOA)
radiances must undergo an atmospheric correction procedure to remove the light scattered into
the viewing cone of the sensor by the atmosphere, in order to retrieve the desired water-leaving
radiances (Lw).1 The water-leaving radiance or remote sensing reflectance (Rrs), following con-
version from radiance, is the important parameter related to the in-water bio-optical constituents.2
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The Lw or Rrs estimates can then be incorporated into bio-optical inversion algorithms to sub-
sequently derive estimates of the water bio-optical properties.3–6

Typically, to address uncertainties in satellite-retrieved water reflectances and bio-optical
properties (partitioned absorption coefficients, backscattering coefficients, chlorophyll concen-
tration, suspended particulates, diffuse attenuation, and euphotic depth), the satellite values are
compared to in situ measurements,7 but this approach has limitations. Due to cloud cover in the
satellite imagery, and the expense and spatial/temporal coverage limitations associated with in
situ data collection, there are often very few match-ups between the satellite and in situ values,
particularly for regional comparisons.8–11 Satellite ocean color image products, such as the
chlorophyll concentration, are typically provided without any indication of the uncertainty in
the estimation, so the end-users (scientists, coastal managers, and military personnel) have
very limited information on the reliability of the satellite retrievals for a specific image. Any
property field, whether derived from in situ measurements, remotely sensed imagery, or models,
has an associated uncertainty, and the property estimate is only as good as the knowledge of this
uncertainty. Furthermore, if the satellite-derived products, such as chlorophyll concentration or
inherent optical properties (IOPs), are subsequently used in primary production and/or electro-
optical sensor performance models, or assimilated into ecosystem models, then the satellite
uncertainties will propagate through the downstream products of those models as well.

To help address this shortcoming, we have extended an approach used by the environmental
modeling community to satellite ocean color imagery. There are many errors and sources of
uncertainty associated with operational forecasting, regardless of the forecast property. These
include incomplete and/or inaccurate observations, uncertainties introduced through data
assimilation, and unresolved dynamics and instabilities. Ensemble methods have been applied
in meteorology and physical oceanography to predict model errors and to improve weather and
ocean hydrodynamic forecasts,12,13 by perturbing the dominant sources of uncertainties (e.g.,
initial and boundary conditions, resolution, physics, atmospheric forcing, bathymetry girds,
included data sets, and coefficient values) in the forecast model. An ensemble, therefore, reflects
known sources of forecast uncertainty and allows them to be evaluated.14 The “spaghetti plots”
of potential hurricane tracks are a familiar example. An ensemble forecast suite is generated; the
ensemble mean represents the “best-guess” forecast track, and the ensemble variance or standard
deviation represents a proxy estimate for the uncertainty in the forecast. Statistics and metrics
can be utilized (ensemble mean, RMS error, and spread) to provide some estimate of how well
the ensembles capture “reality,” thereby providing insight into the underlying deterministic
processes and aiding decision support.

Although there are also multiple error sources throughout the processing of satellite ocean
color imagery, similar approaches have not been applied to satellite optical property estimates.
At each step of the processing, from measurement of TOA radiances, through atmospheric cor-
rection and bio-optical inversion, uncertainties propagate and are intertwined. Thus, ocean color
image processing should lend itself to an ensemble approach to address the error cascading
through the various steps; we have developed such an approach to partition and assess the
error sources.

In addition, we are interested in forecasting the bio-optical products (in this case, chloro-
phyll) by coupling the satellite images with a hydrodynamic model. There are two approaches
to produce short-term (1- to 3-day) forecasts of bio-optical properties: case (i) treats the property
as a conservative tracer and advect a satellite-observed distribution forward in time using current
fields from a hydrodynamic model, and case (ii) uses a fully coupled biophysical process model
that includes applicable sources and sinks. Here, we address only the first case, which does not
include biology in the simulation (it only accounts for dynamical processes, such as winds, cur-
rents, and tides). We would like to propagate the uncertainties in the chlorophyll image values
throughout the forecasting process, along with the uncertainties in the model current fields.

Therefore, a strong requirement exists to provide the users of the bio-optical properties,
including coupled biophysical modelers who will assimilate the imagery and Navy mission plan-
ners and warfighters, with estimates of uncertainty in the derived satellite products and bio-
optical forecasts. New measurement systems are now available with optical instrumentation
(AERONET-OC, gliders, scanfish, and moorings), new satellite sensors are online [(hyperspec-
tral imager for the coastal ocean, (HICO); visible infrared imaging radiometer suites, (VIIRS)],
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and climatological image archives are all available to help constrain the data ranges and calibrate
the ensembles, so the framework is in a place to develop these methodologies for ocean color.
Application of ensemble techniques to satellite ocean color processing will greatly improve the
value of the derived optical products to the end-users.

Our objectives are: 1) to apply noise to satellite TOA radiances in an ensemble approach to
quantify uncertainties in satellite-derived ocean color chlorophyll estimates; 2) to determine
whether the ensembles are realistic; 3) to generate ensembles using different wavelength sets
to partition the uncertainties into components due to atmospheric correction and bio-optical
inversion; 4) to generate a separate ocean hydrodynamic ensemble set to quantify uncertainties
in the model currents; and 5) to produce short-term chlorophyll forecasts and associated uncer-
tainty maps using a hydrodynamic model simulation that incorporates both sets of uncertainties
(chlorophyll and currents).

2 Methods

To assess uncertainties in ocean color bio-optical properties, we repeatedly apply realistic noise
to the satellite TOA radiances (Lt). This leads to an ensemble of radiance values at each image
pixel (and subsequently an ensemble of chlorophyll images). We apply�2% random noise to the
TOA radiances at each wavelength (i.e., different noise applied at each wavelength), with the
same noise applied at each pixel in an image. The 2% value was selected as reasonable because
the spectral vicarious calibration gain coefficients used to correct the moderate-resolution
imaging spectroradiometer (MODIS) Aqua TOA radiance values during standard NASA
ocean color processing are generally in the range of �2–3% (http://oceancolor.gsfc.nasa.gov/
VALIDATION/operational_gains.html).

The 2–3% gains derived through the MODIS vicarious calibration process are really “system
gains” that are used to adjust the sensor Lt radiances to force closer agreement between satellite-
derived and in situ bio-optical measurements. Thus, they represent the “mismatch” between the
satellite Lt values and those that would be required to yield the “correct” bio-optical property
values; they do not strictly represent uncertainties in the Lt radiances (which were about 3%
prelaunch but are more on the order of 1.0% or less following vicarious calibration).15

However, the gains do indicate the % change in Lt that is required to improve the match-
ups. Hence, we use them as an indication of a reasonable magnitude of noise to apply to create
the ensembles. The 2% level we used is just an example to demonstrate the process; perhaps the
level could be adjusted with further testing/evaluation. However, the range of chlorophyll values
that result from application of these uncertainty/noise levels yields standard deviations (which
we use as a proxy for uncertainty) that are similar to generally accepted uncertainty values for
satellite-derived chlorophyll estimates (35%–50%).8,16 This lends further credence to our selec-
tion of 2% noise levels. If 2% was radically too high, our results would show unreasonably high-
chlorophyll standard deviations, which is not the case. We also compare the range of ensemble
variability to observed satellite climatological variability, to further assess the appropriateness of
this selection of 2% random noise (Sec. 3.2). Finally, keep in mind that the actual noise applied
during the ensemble generation was generally less than 2% (that is the maximum amount
applied, the random noise applied to the individual ensembles was between 0% and 2%).

To partition the error sources in a satellite-derived bio-optical product, we apply the noise to
separate wavelength sets. For example, to examine the effect of sensor radiance measurement
uncertainty on the atmospheric correction process, we apply noise only to the TOA radiances in
the two near-infrared (NIR) MODIS channels used in the atmospheric correction routines to
select the aerosol models (748- and 869-nm bands). To examine the effect of measurement
uncertainty on the bio-optical inversion process, we apply noise only to the TOA radiances
in the seven visible MODIS channels (412, 443, 488, 531, 547, 667, and 678 nm) used in
the algorithms to estimate water bio-optical properties, such as chlorophyll, absorption, and
backscattering coefficients (see Sec. 2.1 for further clarification on the chlorophyll algorithm
used and the effects of the modified radiance values). To examine the combined uncertainty
due to both the atmospheric correction and bio-optical inversion processes, we apply noise
to both the NIR and visible band sets. Figure 1 schematic summarizes the ensemble approach
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applied to satellite ocean color imagery. Here, we only examine the effect of noise applied to the
TOA radiances; we do not examine the effect of noise on the coefficients in the bio-optical
inversion algorithms, which can be addressed separately.

For the ocean color error partitioning, the generation of the random TOA radiance noise is
repeated 100 times to create an ensemble suite of 100 chlorophyll images for the analysis. For the
bio-optical forecasting, only 20 ensemble members are generated; each will be advected forward
in time by the hydrodynamic model currents to create 1- to 3-day forecasts of the chlorophyll
distribution, as described below.

In addition to developing ensembles to examine uncertainties in the satellite products, we
generate ensembles from a hydrodynamic model to examine uncertainties in the ocean currents.
For the hydrodynamic ensembles, we perturb the model initial and boundary conditions and
atmospheric forcing 32 times, to create an ensemble suite of 32 different model current fields.

We then use these ensemble sets to perform two sets of chlorophyll forecasts. For the first
case, we do not include any uncertainty in the initial chlorophyll field; we simply use the original
chlorophyll image without any noise applied. This means we are treating the satellite chlorophyll
distribution as error-free and assuming no uncertainty in the values. The single initial image is
advected separately 32 times using the ocean ensemble suite, resulting in 32 different chloro-
phyll forecast realizations. Thus, the variability in the chlorophyll forecast is only due to the
uncertainty in the model currents. For the second case, we no longer assume that the chlorophyll
field is perfectly known; we use the 20 chlorophyll ensemble members (with noise applied to
both the visible and NIR band sets) as an indication of possible variability. Each chlorophyll
ensemble member is advected forward in time using each hydrodynamic ensemble member
to create a forecast ensemble suite with 640 ensemble members (i.e., 20 × 32 ¼ 640 separate
chlorophyll forecast images). Thus, the variability in these chlorophyll forecasts is due to uncer-
tainties in both the model currents and the initial chlorophyll image. From each ensemble set
(with and without noise included in the initial chlorophyll image), we derive mean and standard
deviation images for the chlorophyll forecasts. The standard deviation images serve as a proxy
for uncertainty. Thus, by comparing the differences in the two forecasts, we can assess the
separate effects of the chlorophyll and current uncertainties.

2.1 Satellite Imagery/Processing

The Naval Research Laboratory (NRL) at the Stennis Space Center (SSC) in Mississippi has
developed an automated processing system (APS) that ingests and processes AVHRR, SeaWiFS,
MODIS, MERIS, OCM, HICO, and VIIRS satellite imagery.17 APS is a powerful, extendable,
and image-processing tool. It is a complete end-to-end system that includes sensor calibration,

Fig. 1 Schematic representation of the ensemble process applied to satellite ocean color imagery.
The goal is to derive an uncertainty estimate for the bio-optical products (chlorophyll in this
example), using the ensemble standard deviation as a proxy.
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atmospheric correction (with NIR correction for coastal waters), and bio-optical inversion. APS
incorporates the latest NASA MODIS code and enables us to produce the NASA standard
MODIS products, as well as Navy-specific products using NRL algorithms. We can quickly
reprocess many data files (hundreds of scenes/day), and we maintain compatibility with
NASA/Goddard algorithms and processing code in the SeaWiFS Data Analysis System
(SeaDAS); APS is updated as SeaDAS is updated.

All imagery was processed with consistent atmospheric correction and bio-optical algorithms
using the NRL APS Version 4.6, which is consistent with SeaDAS Version 6.3 (both SeaDAS
and APS have been modified and updated). The OC3M algorithm was used to estimate chloro-
phyll concentration;4 it requires radiances at 443, 488, and 547 nm. Thus, adding noise to the
other MODIS visible wavelengths will not directly impact the chlorophyll estimates (the other
visible wavelengths are used in other bio-optical algorithms, but those are not presented here).
However, an iterative, NIR atmospheric correction tuned for coastal waters was applied,18 as was
a correction for absorbing aerosols.19 Perturbing the 667-nm radiances has an effect on the NIR
atmospheric correction, and the absorbing aerosol correction can potentially affect radiance
values at all the visible wavelengths [the absorbing aerosol algorithm increases normalized
water-leaving radiances (nLw) (with greater increases at blue wavelengths) by reducing the
aerosol radiance subtracted during the atmospheric correction]. Thus, application of these algo-
rithms will indirectly affect the chlorophyll estimates.

With the NRL APS, the architecture is in place for the image ensemble analysis. From
an initial MODIS image, we simply create an ensemble of new images by applying the
�2% random noise to the TOA radiance values. Each ensemble image is then reprocessed
through APS to yield an ensemble of derived products, such as nLw and chlorophyll (that
we examine here) among others.

2.2 Hydrodynamic Model

To advect the surface MODIS satellite chlorophyll field and produce 24-, 48-, and 72-h forecast
simulations, we used currents derived from the Relocatable Navy Coastal Ocean Model (RELO-
NCOM). RELO-NCOM is based on a standardized development and an efficient configuration
management to facilitate transitions of new tools and real-time configurations of regional high-
resolution (order 1 km) ocean predictions. The physics and numerical procedures of NCOM are
based on the Princeton Ocean Model and a Sigma/Z-level Model (SZM). It solves a three-dimen-
sional (3-D), primitive equation, baroclinic, hydrostatic and free surface system using a Cartesian
horizontal grid, a combination of σ∕z level (i.e., bottom-following/constant depth) vertical grid,
and implicit treatment of the free surface.20 It uses the Mellor–Yamada level 2.5 turbulence clo-
sure scheme, and the Smagorinsky formulation for horizontal mixing.21 For mesoscale real-time
applications, boundary conditions are taken from an operational run of the global NCOM
(GNCOM). The domain of this particular experiment covered the entire Gulf of Mexico
(18°N 98°W, 40°N 79°W), from April 1, 2011, to October 30, 2011. The atmospheric forcing
was taken from the regional 15-km coupled ocean/atmosphere mesoscale prediction system run
by the Fleet Numerical Meteorological and Oceanographic Center. Tides were introduced at the
boundaries and through local tidal potentials. The horizontal grid spacing was set at 3 km and
used 50 σ∕z levels in the vertical. The model assimilates local in situ observations along with
satellite altimetry and sea-surface temperature data using a combination of model analysis and
data; all available observations from global and local databases were assimilated over the full
period.

For the chlorophyll forecasts, a “pseudo 3-dimensional” Eulerian advection scheme was used
(without molecular or turbulent diffusion terms). With this approach, there are essentially two
vertical layers, a 1-m-thick surface layer and a conceptual deep layer to preserve continuity (i.e.,
there is vertical flux between the two layers, but they move together horizontally). These sim-
ulations only include current advection and an assumed uniform vertical chlorophyll distribution
based on the surface values. Future enhancements will include addition of diffusion terms, full
3-D vertical layering, and the capability to include more realistic vertical chlorophyll profiles.
The forecast simulations do not include any assimilation of in situ chlorophyll data or additional
satellite imagery, so currently the values are unconstrained. Also, with this approach, there is

Gould et al.: Combining satellite ocean color and hydrodynamic model uncertainties. . .

Journal of Applied Remote Sensing 083652-5 Vol. 8, 2014



an implicit assumption that the bio-optical property (chlorophyll) is conservative. Although this
is not strictly true, of course, it may be approximately valid over the short time scales (1–3 days)
that we are examining, particularly in coastal areas where transport processes might be expected
to dominate biological processes. Therefore, we consider the optical properties to be “pseudo-
conservative” tracers for our purposes. This allows us to ignore growth and grazing terms for
this case and treats the distributional changes as though they are entirely due to dynamical
processes.22

3 Results

3.1 Generating Ensembles

Figure 1 illustrates the process we used to generate ensembles for an ocean color satellite image.
As mentioned above, we generated a suite of 100 individual chlorophyll ensemble members
from a single image by randomly applying �2% noise to the TOA radiances in the visible
and NIR bands. Different random noise was applied to each band, but there was no variation
from pixel to pixel (i.e., it was constant across the scene). By perturbing the radiances, we are
simulating measurement uncertainty or sensor degradation, which affects the atmospheric cor-
rection process and subsequently the downstream water-leaving radiance estimates (and even-
tually the derived bio-optical products, following application of the bio-optical inversion
algorithms). Thus, from the single original image, we create a set of 100 separate chlorophyll
estimates, each representing some deviation from the unperturbed chlorophyll estimate. We then
calculate the standard deviation at each pixel using this image set, and we use this estimate of
variability as a proxy for uncertainty. The assumption here is that the ensemble set is realistic,
that we are applying a reasonable amount of noise to the radiances, and that the noise encom-
passes natural variability. We need to test this assumption, to ensure that the ensemble variability
will represent accurate estimates of product uncertainties.

As an example test case to demonstrate the methodology, we selected a clear MODIS image
covering the northern Gulf of Mexico (October 14, 2011). Figure 2(a) shows the chlorophyll
image from the unperturbed, original image following standard processing (consistent with
NASA algorithms). The mean chlorophyll image from the 100-member ensemble suite is
shown in Fig. 2(b), and the associated uncertainty image (the ensemble standard deviation)
is shown in Fig. 2(c). Note that the ensemble mean image looks very similar to the unperturbed
chlorophyll image, as we would expect if our ensemble suite is realistic.

Fig. 2 MODIS October 14, 2011, Mississippi Bight region (a) chlorophyll, original image, standard
processing, (b) mean ensemble chlorophyll, and (c) ensemble chlorophyll standard deviation
(proxy for uncertainty). For the ensemble suite, 100 ensemble members were generated, with
�2% random noise applied to the Lt values for the visible and NIR wavelengths.
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3.2 Assessing Ensemble Representativeness

An initial step with the use of ensembles is to assess whether the ensemble suite adequately
represents reality. In other words, is the ensemble variability representative of natural variability?
For this assessment, since we applied noise to the image TOA radiances (Lt), we compared the
ensemble Lt radiances (mean, minimum, and maximum values) to the Lt radiances from the
original image (nearly identical; not shown), and to Lt radiances derived from selected clear
MODIS scenes covering the same area over a 2-year period from 2006 to 2007 (Fig. 3). We
refer to the 2-year values as climatological values. The values in Fig. 3 are spatial averages across
the Mississippi Bight region (i.e., the entire scene in Fig. 2), as well as temporal averages over
the 2-year period for the climatology. For the most part, the ensemble mean and the minimum/
maximum values fall within the envelope of variability described by the climatology. Hence,
the ensemble suite is not generating “unusual” variability outside the realm of observed natural
variability, and our assessment is that the ensemble suite is realistic. However, the Lt radiances
for this image (original as well as ensemble mean values) are lower than the climatological
means at all wavelengths (solid red versus solid blue lines, Fig. 3).

We also examined the effect of the Lt noise on the derived nLw values, to verify that the
radiance values following atmospheric correction were also realistic. Again, we compared
the ensemble values to the original values [Fig. 4(a)] and the climatological values
[Fig. 4(b)]. These are mean values averaged across the entire image, as in Fig. 3. The mean
ensemble nLw values at the short wavelengths are slightly higher than the original values
[Fig. 4(a)]. Both the ensemble and original nLw values are significantly lower than the clima-
tological values at 412 nm, but the mean and standard deviation values are generally similar at
the other wavelengths [Fig. 4(b)].

To more closely examine the nLw spectral variability of the ensemble suite, and to further
assess the validity of the ensembles, we compared the individual ensemble spectra to the spec-
trum of the original, unperturbed MODIS image, at two locations (instead of looking at spatial
and temporal averages, as in Figs. 3 and 4). The first location is a coastal aerosol robotic network
(AERONET) site in the northern Gulf of Mexico (28.867°N, 90.483°W; http://aeronet.gsfc.nasa
.gov/new_web/photo_db/WaveCIS_Site_CSI_6.html). Coincident in situ nLw measurements
collected over 3 years (2010–2012) are available at this site, for comparison to the image spectra
[Fig. 5(a)]. The second location is a randomly selected, clear water, open-ocean site [28.75°N,
86.5°W; Fig 5(a)] to provide a contrast to the more turbid coastal site; there were no coincident

Fig. 3 Lt radiance (mean, minimum/maximum values) versus wavelength, averaged spatially
across the entire Mississippi Bight region (shown in Fig. 2). Climatological radiances (from
2-year MODIS climatology covering 2006–2007) and ensemble radiances (generated from
October 14, 2011 image).
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in situ measurements at this location. The ensemble and original spectra were extracted and
averaged over 3 × 3 pixel boxes centered at the AERONET and open-ocean locations.

At the AERONET location, the ensemble mean and standard deviation [Fig. 5(a), solid and
dashed red lines, respectively] fall within the observed envelope of measured variability from the
in situ data set (3-year mean and standard deviation, solid and dashed green lines, respectively),
for most wavelengths. Note that the purpose of this comparison is not to validate the satellite data
against the AERONET data, but simply to demonstrate that the generated ensembles are realistic
and not outside the longer-term envelope of variability for the region. However, the mean ensem-
ble nLw spectral shape differs from the in situmeasured spectral shape; relative to the AERONET
mean spectrum, the ensemble mean spectrum has higher nLw values at 443 nm and lower values
at 531 nm (the individual ensemble spectra match this pattern as well). The nLw spectral shape
from the original, unperturbed image (blue line), also follows this pattern; however, indicating
that the differences in the ensemble versus in situ spectral shapes are not due to improper ensem-
ble generation, but due to differences between the original versus in situ spectral shapes.

As at the AERONET site, the ensemble mean spectrum at the open-ocean site [Fig. 5(b), solid
red line] closely matches the original spectrum (blue line), although the ensemble values are
slightly higher than the original spectrum at 412 and 443 nm. Note that at both sites, the spectral
shapes of the individual ensemble members can differ significantly from the mean spectrum. In
some cases, the individual spectra are not even realistic, particularly in the 443- to 547-nm wave-
length range at the AERONET location, and in the 412- to 488-nm range at the open-ocean

Fig. 4 nLw radiance (mean� standard deviation) versus wavelength, averaged spatially across
the entire Mississippi Bight region (shown in Fig. 2) a) original October 14, 2011 radiances and
ensemble radiances and b) climatological radiances and ensemble radiances.

Fig. 5 nLw radiance versus wavelength. Comparison of 100 individual ensemble members (black
lines) with ensemble mean� standard deviation (red lines) and original, unmodified spectrum
(blue line) from the same location, for October 14, 2011 MODIS image a) coastal AERONET
(WaveCIS) location. 3-year mean� standard deviation of in situ data (green lines) is also overlaid
and b) open-ocean location (NOTE: no in situ data for comparison at this location).
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location. These spectral shape differences will undoubtedly lead to widely varying and probably
unrealistic chlorophyll values derived from the individual spectra (although the mean spectrum is
fine) and point to the need for spectral constraints when generating the noise ensembles; this is
discussed further below and it is a topic of our current research.

Since the ultimate goal is to derive water bio-optical properties from the ocean color imagery,
we further compared the chlorophyll frequency distribution from the original, unperturbed image
to the ensemble frequency distribution [log chlorophyll; Fig. 6(a)]. As a result of the slightly
higher nLw radiances for the ensemble mean at blue wavelengths (412 and 443 nm) compared to
the original values [Fig. 4(a)], the ensemble chlorophyll values are slightly lower than the origi-
nal chlorophyll values, i.e., the chlorophyll distribution is skewed to slightly lower values across
the scene [Fig. 6(a)]. This is also apparent in the frequency distribution of the percent differences
between the original chlorophyll values and the ensemble chlorophyll values [Fig 6(b)].
The ensemble mean chlorophyll value is about 5% lower than the original value (ranges
from about 15% lower to about 5% higher than the original chlorophyll).

These results indicate that although our mean Lt and nLw ensemble variability falls within the
range of variability observed in the climatology and in situ data sets, the “unconstrained” spectral
noise on the Lt values might be creating some unrealistic individual ensemble members. By
“unconstrained,” we mean that the noise applied to one wavelength is independent of the
noise applied to another wavelength, which could potentially lead to the undesirable effect
of creating Lt spectral shapes (and subsequently nLw spectral shapes) that are not realistically
observed in nature (e.g., see some of the individual ensemble spectra in Fig. 5). This effect would
be particularly troublesome at blue and green wavelengths, since the spectral shape in this por-
tion of the spectrum determines the blue–green ratio, which is used in the OC3M chlorophyll
algorithm. Furthermore, a 2% increase in Lt at 443 nm and a 2% decrease at 547 nm has a more
significant impact on the chlorophyll retrieval than a 2% increase at both wavelengths. Thus,
these altered spectral shapes could significantly change the derived chlorophyll value. We are
currently developing a method to apply spectral constraints during the generation of the Lt

ensembles that should eliminate the erroneous individual spectral shapes and yield an ensemble
chlorophyll frequency distribution that is more consistent with the original distribution.

In Fig. 6, we compared the ensemble mean chlorophyll to the original chlorophyll (from the
unperturbed image) and observed that, on average, the ensemble chlorophyll was slightly less
than the original chlorophyll. We have also compared the ensemble chlorophyll range to the
climatological range observed in the 2-year MODIS climatology. Figure 7 shows the spatial
distributions of the differences between the ensemble minimum chlorophyll value at each
pixel and the climatological minimum chlorophyll value [Fig. 7(a)], and the difference between
the climatological maximum chlorophyll value and the ensemble maximum chlorophyll value
[Fig. 7(b)]. Pixels in yellow indicate areas where the ensemble range (minimum or maximum)
falls outside of the climatological range. The minimum ensemble chlorophyll values fall slightly
below the minimum climatological chlorophyll values at many of the offshore pixels [Fig. 7(a)],

Fig. 6 Chlorophyll frequency distributions, ensemble mean versus original (a) log chlorophyll
values and (b) percent difference between ensemble mean and original chlorophyll values.
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suggesting again that perhaps the ensembles require adjustment (through application of spectral
constraints to the Lt noise values applied).

3.3 Partitioning Chlorophyll Differences and Uncertainties

We examined the spatial distributions of the differences between the mean ensemble and original
chlorophyll values; Fig. 8 shows the percent differences between the two. We first apply noise to
the Lt values in both the visible and NIR channels [Fig. 8(a)]. This demonstrates the noise impact
on the complete processing. Then, by only applying noise to the Lt values in the two NIR bands
(748 and 869 nm), we can assess the effects of the noise only due to the atmospheric correction
process [i.e., differences due to different aerosol selection models, Fig. 8(b)]. Similarly, by only
applying noise to the visible channels (412, 443, 488, 531, 547, 667, and 678 nm), we can assess
the effects of the noise on the bio-optical inversion algorithms [Fig. 8(c)]. Figure 8(a) indicates
that the mean ensemble chlorophyll values are generally lower than the original chlorophyll
values across most of the image, by about 5–10% (mean difference, averaged across the entire
image is −4.8% when noise is applied to all channels [which is consistent with Fig. 6(b)].
A much lower percent difference is observed when noise is applied to just the NIR channels
[mean difference ¼ −0.5%, Fig. 8(b)]. When noise is applied to just the visible wavelengths
[Fig. 8(c)], the mean difference is −4.3%, indicating that a relatively larger proportion of

Fig. 7 Comparison of ensemble chlorophyll range to climatological range: (a) ensemble minimum
chlorophyll−climatological minimum chlorophyll. Yellow pixels indicate the minimum ensemble
chlorophyll value is lower than the climatological minimum value and (b) climatological maximum
chlorophyll−ensemble maximum chlorophyll. Yellow pixels indicate the maximum ensemble
chlorophyll value is higher than the climatological maximum value.

Fig. 8 Percent difference between the ensemble mean chlorophyll and the original chlorophyll for
the October 14, 2011 MODIS image (a) Lt noise applied to both NIR and visible wavelengths, (b) Lt
noise applied to just NIR wavelengths, and (c) Lt noise applied to only the visible wavelengths.
Blue pixels indicate that the original chlorophyll values were higher than the ensemble values,
yellow pixels, vice versa. White pixels indicate agreement within �2%.
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the observed chlorophyll differences is due to the bio-optical inversion algorithms, rather than
the atmospheric correction.

Using the noise partitioning approach described above (for Fig. 8), we can also examine the
separate effects of the atmospheric correction and bio-optical inversions on the uncertainty dis-
tributions (Fig. 9). Figure 9(a) shows the coefficient of variation (CV) expressed as a percentage
(CV, the ratio of the standard deviation to the mean * 100) across the image, when Lt noise is
applied to all wavelengths (both visible and NIR). The mean CV across the image is 33.6%.
Figure 9(b) shows the result when noise is applied only to the NIR bands (mean
CV ¼ 11.5%), and Fig. 9(c) shows the results for noise applied only to the seven visible
bands (mean CV ¼ 30.8%). As in Fig. 8, Fig. 9 indicates that most of the uncertainty is asso-
ciated with the bio-optical inversion algorithms (expressed by adding noise to the visible bands),
rather than with the atmospheric correction (expressed by adding noise to the NIR bands).

3.4 Forecasting Chlorophyll, Partitioning Uncertainties, and Assessing Skill

In addition to generating chlorophyll ensembles to create uncertainty maps for the chlorophyll
product, we also generated a short-term (3-day) forecast of the chlorophyll distribution (along
with an accompanying uncertainty image for the forecast), by coupling the satellite image with
current estimates from a hydrodynamic model. To do this, we examined a clear, 3-day period
(covering the Mississippi Bight region in the northern Gulf of Mexico) from October 14–17,
2011. This hydrodynamic approach treats the chlorophyll as a passive tracer and only accounts
for dynamical processes (winds, currents, and tides) and does not include biogeochemical
mechanistic processes (growth and grazing); it allows us to examine the effect of just current
variability on the bio-optical forecasts.

We created two sets of ensembles, one set for the ocean hydrodynamic model currents and
one set for the initial chlorophyll image to be advected using the currents; by examining them
separately or in combination, we can assess the uncertainty in the 3-day forecast due to the
uncertainty in the currents (top panel in Fig. 10), or due to the combined uncertainty in the
chlorophyll estimate and the currents (bottom panel in Fig. 10). An ensemble of 20 chlorophyll
images was generated for the initial October 14 MODIS scene by applying random noise (�2%)
to the Lt radiances for all the visible (7) and NIR (2) channels. An ensemble of 32 ocean model
members was generated by varying initial and boundary conditions, and atmospheric forcing.
Thus, a total of 640ð32 × 20Þ chlorophyll forecasts were generated by advecting each of the 20
chlorophyll ensemble members from October 14 for 3 days with each of the 32 ocean current
ensembles.

Fig. 9 Chlorophyll coefficient of variation for noise applied to separate band sets (partitioned
uncertainty) for the October 14, 2011 MODIS image (a) Lt noise applied to both NIR and visible
wavelengths, (b) Lt noise applied to just NIR wavelengths, and (c) Lt noise applied to only the
visible wavelengths.
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In Fig. 11(a), the unperturbed chlorophyll image for October 17 (end of the forecast period) is
shown, for comparison to the forecast chlorophyll images. The mean ensemble chlorophyll fore-
cast resulting from the 3-day simulation when only the hydrodynamic uncertainty was included
(mean of 32 ensemble members) is shown in Fig. 11(b) for October 17. In this case, we are
essentially assuming that the initial chlorophyll image is error-free. The mean ensemble chloro-
phyll forecast resulting from inclusion of both the hydrodynamic and chlorophyll uncertainties
(mean of 640 ensemble members) is shown in Fig. 11(c). Compare Figs. 2(a) to 11(a) to see the
observed change in the chlorophyll field over the 3-day period (unperturbed MODIS images for
October 14 and 17, respectively). Both of the mean forecast images [Figs. 11(b) and 11(c)] are
quite similar, and neither captured the eddy-like feature that likely sheds from the Mississippi

Fig. 10 Schematic illustrating advective bio-optical forecasting approach using only ocean current
ensembles (top panel) and using both chlorophyll and ocean current ensemble sets (bottom
panel).

Fig. 11 (a) MODIS image for October 17, 2011 (gray pixels are clouds), (b) forecast ensemble
mean chlorophyll for October 17, 2011 (3-day simulation), only hydrodynamic uncertainty
included, and (c) forecast ensemble mean chlorophyll for October 17, 2011 (3-day simulation),
both hydrodynamic and chlorophyll uncertainties included.
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River plume and advected toward the east [high-chlorophyll feature near 29°N, 88°W in
Fig. 11(a)].

The standard deviation image corresponding to Fig. 11(b), for the simulation including only
the hydrodynamic uncertainty, is shown in Fig. 12(a). The highest standard deviation values (i.e.,
greatest uncertainty in the currents) are along the Mississippi River delta. The standard deviation
image corresponding to Fig. 11(c), for the simulation including both the hydrodynamic and
chlorophyll uncertainties, is shown in Fig. 12(b). Now, high-standard deviation values are
observed along the Louisiana, Mississippi, and Alabama coastlines, in addition to the high val-
ues near the delta. Thus, the addition of the chlorophyll uncertainty has increased the forecast
uncertainty along the coastlines [i.e., the standard deviation field that would result if image 12(a)
was subtracted from image 12(b)]. Figure 12(c) shows the forecast mismatch (i.e., the difference
between the forecast and observed chlorophyll distributions, without regard to sign, |Figs. 11(c)–
11(a)|), for the forecast that includes both hydrodynamic and chlorophyll uncertainties. If we
compare Fig. 12(c) to the corresponding forecast standard deviation [Fig. 12(b)], we see that
the patterns match quite well (except for the eddy-like feature mentioned above); the largest
ensemble standard deviations correspond to the largest forecast observation mismatches.
This indicates that the forecast mismatch is related to both the hydrodynamic and chlorophyll
uncertainties and that the chlorophyll is behaving conservatively over most of the image area
(i.e., our assumption that the chlorophyll is behaving as a passive tracer over this relatively short
time period is valid). Thus, we can account for most of the mismatch by the uncertainties in the
currents and in the satellite-derived chlorophyll estimates.

By subtracting Fig. 12(b) from Fig. 12(c), we can get an indication of the chlorophyll sources
and sinks (Fig. 13). In this figure, the red pixels indicate a chlorophyll “sink,” where observed
values were lower than the forecast values, and the blue pixels indicate a chlorophyll “source,”
where the observed values were higher than the forecast values. White pixels indicate differences
close to 0. These sources and sinks are due to errors in the model currents and/or processes that
affect the chlorophyll concentrations that are not accounted for in the model, such as growth and
grazing. This image is essentially an assessment of the forecast mismatch after trying to account for
the uncertainty. Notice that, except for the eddy feature, the sources and sinks are located along the
coast and near the Mississippi River delta. The eddy feature highlighted as a source is most likely

Fig. 12 (a) Forecast ensemble chlorophyll standard deviation for October 17, 2011 (3-day sim-
ulation), only hydrodynamic uncertainty included, (b) forecast ensemble chlorophyll standard
deviation for October 17, 2011 (3-day simulation), both hydrodynamic and chlorophyll uncertain-
ties included, and (c) forecast mismatch. Forecast ensemble mean chlorophyll for October 17,
2011 (3-day simulation, both hydrodynamic and chlorophyll uncertainties included) minus
observed chlorophyll distribution for that day (MODIS image for October 17, 2011), without regard
to sign, i.e., |Figs. 11(c)–11(a)|. Black pixels indicate clouds.
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due to erroneous current forecasts in that area and probably represents a separation of high-chloro-
phyll water from the Mississippi River plume, rather than in situ phytoplankton growth.

For a more quantitative evaluation of the forecast skill, we can examine spread-skill statistics.
Spread-skill scatter plots of the standard deviation of the observed mismatch between the fore-
cast and observed distribution versus the ensemble predicted standard deviation are shown in
Fig. 14. Each point in Fig. 14 represents a bin of 1000 pixels. Good spread-skill (a linear dis-
tribution following the one-to-one line) indicates that the predicted standard deviation increases
with the mismatch standard deviation. For the forecast with only hydrodynamic uncertainty
included [Fig. 14(a)], there is good spread-skill at standard deviations less than about 1.6,
but deviation from the 1∶1 line are observed at standard deviations above this value. The points
above the 1∶1 line indicate sources and sinks not accounted for in the model (i.e., the red and
blue pixels in Fig. 13). For the forecast with both hydrodynamic and chlorophyll uncertainties
included [Fig. 14(b)], there is improved spread-skill, indicated by the more linear distribution
over a larger range (higher coefficient of determination, R2). The distribution of points below the
1∶1 line up to X values of about 2.5 indicates a slight overprediction of uncertainty from the
ensembles, whereas the points above the 1∶1 line at higher values indicate an underprediction.
In general, the forecast demonstrates good spread-skill with both properties increasing fairly
linearly.

Fig. 13 Difference image [Figs 12(c)–12(b)], representing source and sinks, where blue pixels
represent a chlorophyll source (observed values > forecast values), and red pixels indicate a
chlorophyll sink (observed values < forecast values). White pixels indicate differences close to
0, and black pixels indicate clouds.

Fig. 14 Spread-skill metric plots, observed mismatch standard deviations versus ensemble pre-
dicted standard deviations (a) 3-day simulation, only hydrodynamic uncertainty included, and
(b) 3-day simulation, both hydrodynamic and chlorophyll uncertainties included.
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Finally, we examine the ensemble root-mean-square (RMS) difference to assess the spread of
the ensemble variability and look for outliers in the ensemble suite (Fig. 15). This matrix represents
the RMS difference between an individual ensemble forecast image and the reference image (the
unperturbed October 17 image), for each of the 640 ensemble members. The vertical dimension
represents the 20 image ensemble members and the horizontal dimension represents the 32 ocean
current ensemble members. The horizontal banding at image ensemble members 7 and 18 (higher
RMS differences compared to the other image ensemble members) indicates that these two ensem-
ble members have chlorophyll values significantly different from the others. These two are outliers
and could be removed (or the image ensemble suite should be adjusted using spectral noise con-
straints as discussed above) to improve the estimates of the forecast uncertainty.

4 Concluding Remarks

We developed, applied, and evaluated ensemble methodology to satellite ocean color imagery.
We extended advances by the numerical modeling community to represent observational and
algorithm error sources for ocean ensembles, and we evaluated the ensemble representations
and assessed ensemble metrics. We investigated uncertainties (coupled and uncoupled) associ-
ated with satellite instrumentation errors, bio-optical algorithm processing errors, and advective
model current errors. We recognize that these errors do not cover the complete uncertainty space
associated with satellite-derived observations, but we consider them as most critical for repre-
sentation of satellite ocean color forecast product uncertainties.

We first assessed whether our ensemble members were realistic, and whether they adequately
captured observed environmental variability, by comparing the ensemble spectral radiances
(Lt and nLw) to the original, unperturbed radiances, and to natural variability observed in cli-
matological ocean color imagery and in situ radiance measurements from the same geographic

Fig. 15 Ensemble RMS difference matrix. Vertical dimension represents the 20 image ensemble
members, horizontal dimension represents the 32 ocean current ensemble members. Colors re-
present the RMS difference between the individual ensemble forecast image and the reference
image (October 17 unperturbed), for each of the 640 ensembles.
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region. We observed a slight (5%) bias in the mean ensemble chlorophyll values compared to the
original chlorophyll values, which was due to the inclusion of spectral outliers in the ensemble
set. We are currently developing a method to spectrally constrain the radiance ensembles to
address this issue.

Next, we partitioned the chlorophyll variability into separate components due to the atmos-
pheric correction and due to the bio-optical inversion, by applying noise to the NIR and visible
wavelength band sets separately and together. We observed that most of the variation in the
derived chlorophyll values was due to the bio-optical inversion algorithms. Also, based on
our initial results, it seems that adding Lt radiance noise to the NIR wavelengths might
have a greater impact on chlorophyll uncertainty in clear, offshore waters than in the more turbid
coastal waters [based on the pattern observed for the CV, in Fig. 9(b)]. However, our results are
based on limited test cases and would require additional analyses to make any definitive
comments regarding derived uncertainties in clear versus turbid waters.

Finally, we produced chlorophyll forecast images by advecting the satellite imagery forward
in time using hydrodynamic model currents. We again applied an ensemble approach, to assess
the uncertainties in the resulting forecast. We applied the ensembles in two ways, to partition the
uncertainties. In the first case, we generated only hydrodynamic ensembles to assess forecast
uncertainties only due to uncertainties in the model currents. In the second case, we generated
both hydrodynamic and chlorophyll ensembles, to assess forecast uncertainties due to uncertain-
ties in both the currents and in the satellite-estimated chlorophyll values. This approach allowed
us to spatially separate the dominant sources of uncertainty in the forecast images. The results
demonstrated that the regions of highest hydrodynamic uncertainty do not necessarily corre-
spond to the regions of highest satellite uncertainty [Figs. 12(a) and 12(b)], and even when
both sets of uncertainty are included, the forecast chlorophyll image can show mismatches
with the observed image [Fig. 12(c)]. The mismatches are due to incorrect advection by
the currents in the hydrodynamic model and to the simplified modeling/advection approach
that does not include chlorophyll source/sink terms. For example, the eddy-like feature
observed to the east of the Mississippi River delta in the MODIS image from October 17
[Fig. 11(a)] does not show up in either forecast [the one that includes only hydrodynamic uncer-
tainty Fig. 11(b) or the one that includes both the hydrodynamic and satellite uncertainties
Fig. 11(c)].

An ensemble approach allows quantitative error evaluations and error cascading to estimate
uncertainties in satellite-derived surface bio-optical properties. This approach also enables us to
gain a better understanding of the uncertainties at all levels of the processing of satellite ocean
color imagery, as we demonstrated by partitioning the chlorophyll uncertainty into separate com-
ponents due to the atmospheric correction and bio-optical inversion algorithms. In addition, by
combining the chlorophyll ensemble suite with a hydrodynamic ensemble suite, we can produce
chlorophyll forecasts that include both sources of uncertainty. Our analyses indicate that the
ensemble standard deviation represented the forecast uncertainty, so that the standard deviation
images can be used as a proxy for uncertainty. Thus, the ensemble approach can provide impor-
tant new information in the form of uncertainty maps to accompany satellite ocean color image
products, rather than providing only “best guess” optical products to end-users as has been done
in the past. This work will also lead to improved bio-optical forecasts from data assimilative
forecast systems, by providing uncertainty estimates to accompany the bio-optical fields assimi-
lated into coupled biophysical ecological models.
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