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Abstract. Means of synthetic aperture radar (SAR) images represent the radiation densities of
scenes, and the preservation of means is significant in speckle denoising for the application of
SAR images. We provide an improved scheme of the minimum biased diffusion (MinBAD)
algorithm for speckle denoising using partial differential equations. Considering the character-
istics of SAR speckle and the radiation accuracy for postprocessing needs, several improvements
such as normalization, homomorphic transformation, and average-preserving processing are
introduced into the MinBAD algorithm. Besides the equivalent number of looks and edge pre-
serving index, a new index, radiation accuracy error, is defined to evaluate the denoising effect.
Experimental results for both artificial images and real SAR images are used to validate the
performance of the proposed unbiased-average MinBAD speckle reducing approach. © The
Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
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1 Introduction

Speckle denoising for synthetic aperture radar (SAR) images has been a critical and difficult
problem for several decades. Current typical denoising approaches can be classified into two
categories: temporal domain filtering and transform domain filtering. Representative temporal
domain filters include the average filter, median filter, Lee filter,1 maximum a posteriori-class
filters,2–4 and so on; and representative transform domain filters include the low-pass filter, wave-
let-based filter,5–8 and so on. Due to the high-frequency characteristics of noise and edges which
are difficult to distinguish, the overall effect of low-pass filters is not prominent. Awavelet trans-
form, which introduces multiple scale subimages, will improve the filtering effect. Over the last
few years, partial differential equation (PDE)-based denoising methodologies9–13 have become
an important type of denoising. Typical algorithms include the Perona–Malik (PM) algorithm9

and its variants. The main advantage of these anisotropic diffusion algorithms is to denoise while
minimizing the loss of information on the edges which yields satisfactory results.

Minimum biased diffusion (MinBAD) is a very useful approach, introduced by Kim et al.14–17

Excellent denoising abilities have been illustrated on artificial scenes and standard test images
such as the Lena image. Denoising abilities also fit to optical images very well. However, SAR
images have multiplicative noise and a large dynamic range. Denoising is affected by the direct

*Address all correspondence to: Jie Chen, E-mail: chenjie@buaa.edu.cn

Journal of Applied Remote Sensing 095081-1 Vol. 9, 2015

http://dx.doi.org/10.1117/1.JRS.9.095081
http://dx.doi.org/10.1117/1.JRS.9.095081
http://dx.doi.org/10.1117/1.JRS.9.095081
http://dx.doi.org/10.1117/1.JRS.9.095081
http://dx.doi.org/10.1117/1.JRS.9.095081
mailto:chenjie@buaa.edu.cn
mailto:chenjie@buaa.edu.cn
mailto:chenjie@buaa.edu.cn


MinBAD method. Additionally, preservation of the means of SAR subimages is very important
for applications, such as target detection, classification, and so on. Because the means represent
the radiation densities of the scene in SAR images, changing the means affects the results after
denoising. Most nonlinear filters, including median filters, MinBAD filters, and so on, will
change the energy and the means of subimages while denoising, and the radiation accuracy
is affected too. The previously mentioned speckle reducing methods mainly aim to decrease
the noise level, which is evaluated by the equivalent number of looks (ENL) and edge preserving
ability. We have found that edge preserving and radiation accuracy are more significant than
ENL when the ENL is at a high level for actual applications of SAR images.

Our aim is to find an approach with good edge and radiation preserving abilities while
denoising. This paper develops the MinBAD method for SAR image speckle denoising. The
characteristics and postprocessing demands of SAR images are also considered. The improved
steps include normalization, homomorphic transform and inverse transform, and average-pre-
serving processing.

The paper is organized as follows. In Sec. 2, the classic denoising PDEs models are pre-
sented, including PM andMinBADmodels. Section 3 introduces the unbiased-average MinBAD
approach schemes, and explains the three improved steps and the key numerical time parameters
for locally one-dimensional (1-D) methods. In Sec. 4, three evaluation indices including ENL,
edge preserving index (EPI), and radiation accuracy error (RAE) are defined. We then present the
experimental results for both artificial and real SAR images which validate the performance of
the proposed unbiased-average MinBAD speckle denoising approach. Finally, a conclusion is
given in Sec. 5.

2 Preliminaries

Anisotropic diffusion PDEs have been a popular tool for denoising since the PM model
was introduced in 1990.9 In this section, we briefly introduce the simplest linear diffusion
PDEs, PM anisotropic diffusion PDEs, and variants, and the MinBAD PDEs with some key
parameters.

2.1 Perona–Malik and Its Variants

Linear filtering operators can be expressed by the linear diffusion form

∂u
∂t

¼ ∇ · DðxÞ∇u; (1)

where x ∈ Ω and Ω is the space domain of the image, and uðx; t ¼ 0Þ ¼ u0ðxÞ is the noised
image and the initial diffusion image. Clearly, the average operator satisfies this model. The
linear diffusion model unavoidably smears sharp edges embedded in u0ðxÞ while filtering out
noise. To remedy this shortcoming, Perona and Malik allowed the diffusivity coefficient D to be
adapted to the image itself instead of being prefixed:

D ¼ Dðx; u;∇uÞ: (2)

In general, the desirable diffusivity coefficient D must qualitatively attain edge selectivity.
That is, D is large when j∇uj is small on intraregions and D is large when j∇uj is large
on intraregions or near edges. Then, the following nonlinear diffusion model can be defined
by

∂u
∂t

¼ ∇ · ½gðj∇ujÞ∇u�; (3)

where gðxÞ is the diffusion function, and gðxÞ → 0 as x → ∞. Usually, one of the following
expressions may be chosen
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gðxÞ ¼ 1

1þ ðxkÞ2
(4)

or

gðxÞ ¼ exp

�
−
�
x
k

�
2
�
; (5)

where k is the threshold of the image gradient magnitude. This traditional anisotropic diffusion
approach can filter the additive noise and preserve the edges of the image, but the actual chal-
lenge is how to robustly compute the diffusion coefficient D or the threshold k at the very begin-
ning of the initial value problem if u0 is highly oscillatory. Another challenge is being able to
distinguish speckle noises and edges for SAR images.

However, Perona and Malik presented an anisotropic diffusion approach, and this nonlinear
diffusion model has been recently developed. Speckle reducing anisotropic diffusion13 is a good
approach as well. Also, the general adaptive speckle filters such as the Lee filter and Frost filter18

are proven to be some of the forms of the PM model in Ref. 13.

2.2 Minimum Biased Anisotropic Diffusion Approach

In Refs. 14–17, Kim et al. presented an anisotropic diffusion model

∂u
∂t

¼ j∇uj∇ ·

�
∇u

k∇uk
�
; (6)

where k∇uk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2x þ u2y

q
and j∇uj is the minimum biased anisotropic diffusion (MinBAD)

term, and can be calculated by the following schemes. Given a grid point ði; jÞ, let ðl; mÞ be
one of the eight neighboring points. Let

Dðl;mÞ
ði;jÞ ðuÞ ¼

jui;j − ul;mjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði − lÞ2 þ ðj −mÞ2

p ; (7)

where ðl; mÞ ∈ ½i − 1; iþ 1� × ½j − 1; jþ 1�, ðl; mÞ ≠ ði; jÞ. Let the above eight differences be
ordered as

Dðl1;m1Þ
ði;jÞ ðuÞ ≤ Dðl2;m2Þ

ði;jÞ ðuÞ ≤ · · ·≤ Dðl8;m8Þ
ði;jÞ ðuÞ; (8)

where ðlk; mkÞ, k ¼ 1;2; : : : ; 8 represent the eight neighboring points. Then, the essentially mini-
mum-biased finite-difference scheme for j∇uj at ði; jÞ is defined as

j∇uji;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Dðl1;m1Þ

ði;jÞ ðuÞ�2 þ ½Dðl2;m2Þ
ði;jÞ ðuÞ�2

q
; (9)

and the minimum slope (Min-Slope) scheme is defined as

j∇uji;j ¼ Dðl1;m1Þ
ði;jÞ ðuÞ: (10)

The MinBAD and Min-Slope scheme can be understood as follows: (1) for a flat area inside
of the target or the background, the eight differences are very small, and one iteration will
keep most of the information; (2) for the edge lines, at least two of the eight differences
are very small. Then after one iteration, the edge will preserve; and (3) for single noise points,
almost eight differences are sufficiently large, and the noise will be removed quickly after one
iteration.

The denoising results were excellent after a few iterations. Figure 1 shows one set of results
filtered by the MinBAD method. Figures 1(a), 1(c), and 1(e) are images with random pulse
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additional noise and Figs. 1(b), 1(d), and 1(f) are the corresponding denoised images. In Fig. 1,
the peak signal-to-noise ratio (PSNR) is defined as

PSNR ¼ 10 log10
2552

1
MN Σ

M
i¼1ΣN

j¼1juði; jÞ − u0ði; jÞj2
; (11)

where uði; jÞ and u0ði; jÞ are the denoised image pixel and original image pixel at ði; jÞ, and M
and N are the image width and height. We can see the MinBAD method can remove noise and
preserve the edge well for optical images, especially for high-SNR images.

3 Unbiased-Average Minimum Biased Diffusion Approach

From the above filtered images, we can find that the MinBAD approach has excellent denoising
ability, and the edge retention is also better. However, if the means of the SAR image blocks
change, the radiation resolution and accuracy will change. Our goal is to find a mean-preserving
anisotropic diffusion approach for SAR images while denoising. This methodology should retain
the radiation relationship between the SAR image and the actual scene.

Fig. 1 Denoise results by minimum biased diffusion (MinBAD) method: (a) image with 10%
additional noise (PSNR ¼ 15.61 dB); (b) denoised image (PSNR ¼ 34.31 dB, three iterations);
(c) image with 50% additional noise (PSNR ¼ 8.60 dB); (d) the denoised image (PSNR ¼
26.92 dB, five iterations); (e) Lena image with 60% additional noise (PSNR ¼ 11.47 dB); and
(f) the denoised Lena image (PSNR ¼ 24.07 dB, five iterations).
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The MinBAD model is also a nonlinear filter. The energy of filtered images is usually not
equal to that of the original image. The postapplications of SAR images are mainly based on the
image grayscales, which represent the energy of the images. Additionally, the speckle noise is
quite different from the general noise of optical images. Based on the basic approach of
MinBAD, some improved steps are provided.

Figure 2 presents the improved MinBAD denoise scheme.
The main improving steps are detailed in the following subsections.

3.1 Normalization

Because the dynamic range of SAR images is usually very large, in order to improve the denois-
ing approach’s generality, normalization is suggested before filtering processing

u0normal ¼
u0

maxðu0Þ ; (12)

where u0 is the original image. The superscripts 0 and n following u here and below represent
the discrete time t ¼ 0 or t ¼ n · Δt, where Δt is the iteration time step, and the subscripts
normal and ln below following u represent the image data in normalization or logarithm
scale.

3.2 Homomorphic Transformation and Inverse Transform

The speckle noise of SAR images is multiplicative noise, and the general denoising methods
are mostly suitable for additional noise. Logarithm calculation on the normalization image will
change the multiplicative noise to additional noise. Also, this homomorphic transformation will
compress the dynamic range of the SAR image during the filtering process

u0ln ¼ lnðu0normal þ 1Þ: (13)

Fig. 2 Unbiased-average MinBAD scheme.
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Here, we add 1 to avoid the negative values in the image u0ln. Then the denoising processing with
the MinBAD approach will be implemented on the image u0ln. After the anisotropic diffusion on
u0ln, the denoised image is defined as unln. The dataset should be transformed to the original time
domain:

unnormal ¼ expðunlnÞ − 1: (14)

3.3 Average-Preserving Processing

PDE-based approaches including anisotropic diffusion methods are usually nonlinear algo-
rithms. Therefore, the energy of the processed image is different from that of the original
image. In other words, the grayscale will change after filtering. As we know, the grayscale cor-
responds to the radar cross section of the scene. Therefore, this filtering process will affect the
actual radiometry of the SAR image. These filters are average-biased in some sense. In order to
decrease the average difference between the original image and filtered image, a mean adjust
processing should be added. A detailed approach is as follows. Before the above normalization
and logarithm processing, the mean of the original image is calculated and recorded. After filter-
ing processing and inversion of logarithm and normalization processing, we update the mean to
the old one. That is

un ¼ unnormal

meanðu0Þ
meanðunnormalÞ

: (15)

3.4 Locally One-Dimensional Methods Scheme

Generally, the numerical solutions of PDEs are implemented by the iterations of differential
equations where the iteration efficiency and convergence are very important. According the con-
clusion of Ref. 15, the alternating direction implicit (ADI)19 method was recommended instead
of the fractional step20 and additive operator splitting21 methods for the locally 1-D iteration(�

1þ Δt
2
A1

�
u�ln ¼

�
1 − Δt

2
A1 − Δt

2
A2

�
un−1ln�

1þ Δt
2
A2

�
unln ¼ u�ln þ Δt

2
A2un−1ln

; (16)

where u�ln is the intermediate image. The two operators A1 and A2 are defined as

An−1
1 unln ¼ −j∇un−1ln jDx

�
Dxunln

k∇un−1ln k
�
; (17)

An−1
2 unln ¼ −j∇un−1ln jDy

�
Dyunln

k∇un−1ln k
�
; (18)

where Dx and Dy are the differential coefficients along with x and y, respectively.
Usually, the smaller the iteration time stepΔt, the more accurate the results and the slower the

convergence. Sometimes a proper time step is needed and determined by experimenting.
Following Wachspress,22 a single frequency parameter ξ and the cyclic parameters of length
ξ1 and ξ2ðξ1 > ξ2Þ are calculated by the following expressions, respectively:15

ξ ¼ ðα0β0Þ1∕2; (19)

ffiffiffiffiffiffiffiffiffi
α1β1

p
¼ 1

2

�
ξk þ

α0β0
ξk

�
1∕2

; ðk ¼ 1;2Þ; (20)

where α0 ¼ ½ðπ∕2MÞkA1k∞�δ½ðπ∕2MÞkA1k∞�1−δ,M is the length of number of grid points in the
x-direction, A1 is the diffusion operator matrix and the time step 1 can be chosen during the
initial A1 calculation, δ ∈ ð0;1Þ is determined by the noise level, β0 ¼ kA1k∞, α1 ¼

ffiffiffiffiffiffiffiffiffi
α0β0

p
,

and β1 ¼ α0 þ β0∕2. For the actual SAR image, we cannot obtain the accurate noise parameters
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Fig. 3 Simulation results for artificial scene synthetic aperture radar (SAR) image: (a) original
image, (b) filtered image via MinBAD approach, and (c) filtered image via unbiased-average
MinBAD approach.
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such as SNR; however, δ is not sensitive to the time step and it can be calculated approximately
by the following expression:

δ ¼ stdðu0lnÞ
maxðu0lnÞ

: (21)

Then we can obtain the optimum ADI time parameters as follows:

Δt ¼ 2ξ−1; (22)

Δt1 ¼ 2ξ−11 ; Δt2 ¼ 2ξ−12 : (23)

The time step calculated by Eq. (22) can be used while the same time step is chosen for
Eq. (16), and the different times calculated by Eq. (23) are used for the above equation and
the below equation of Eq. (16), respectively. In practice, the iteration of ADI with the above
time steps is very fast. Two or three iterations may yield a very small error.

4 Experiments and Analysis

4.1 Evaluation Indices

In order to evaluate the speckle denoising effect, three indices including ENL, EPI, and RAE are
defined.

ENL is the most common index to describe the noise level for SAR images, and it is
defined as

ENL ¼ mean2ðunÞ
varðunÞ ; (24)

where meanðuÞ and varðuÞ are the mean and variance of the block image u, and un is the result-
ant image after n iterations.

EPI is used to measure the edge preserving ability. In this paper, the definition is

EPI ¼ ΣM−1
i¼1 ΣN−1

j¼1 juniþ1;j − uni;jj þ juni;jþ1 − uni;jj
ΣM−1
i¼1 ΣN−1

j¼1 ju0iþ1;j − u0i;jj þ ju0i;jþ1 − u0i;jj
; (25)

where the subscripts i and j indicate the row and column numbers of an image pixel, u0 is the
original image, and un is the resultant image after n iterations.

Namely, RAE is used to measure the radiation difference between the filtered image and the
original image. RAE is defined as

Table 1 Denoise evaluation indices for artificial scene.

No. of region

Original MinBAD Unbiased-average MinBAD

ENL EPI Mean ENL EPI RAE (dB) ENL EPI RAE (dB)

1 2.849 1 314,340 57.331 0.0724 −0.390 56.873 0.0812 0.018

2 2.845 1 156,860 51.962 0.0816 −0.390 53.013 0.0885 0.012

3 2.846 1 78,510 47.291 0.0909 −0.400 49.020 0.0964 −0.001

4 2.843 1 39,216 42.461 0.1009 −0.407 44.935 0.1052 −0.010

Note: MinBAD, minimum biased diffusion; ENL, equivalent number of looks; EPI, edge preserving index; and
RAE, radiation accuracy error.
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Fig. 4 Simulation results for real SAR image: (a) original image, (b) filtered image via MinBAD
approach, and (c) filtered image via unbiased-average MinBAD approach.
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RAE ¼ 10 log10
meanðunÞ
meanðu0Þ ; (26)

where u0 is the original image, and un is the result image after n iterations.

4.2 Results and Analysis

Three datasets including an artificial scene and two real SAR images are utilized in this
paper. The artificial image is composed of four distributed blocks with different backscatter
coefficients and speckle noise. The first real SAR image is an airborne image from
spotlight SAR image with 0.6 m resolution from the UK Defence Evaluation and
Research Agency enhanced surveillance radar. The second real SAR image is a highspot
SAR image from TerraSAR, whose pixel space is 0.5 × 0.5 m.

Figure 3 illustrates the speckle denoising effect via the MinBAD approach and unbiased-
average approach for the artificial scene first. This scene includes four distributed targets,
whose means are 8, 4, 2, and 1 times the minimum subimages located in the rightdown position.
The evaluation indices for four block images are listed in Table 1.

In Table 1, the means for the original subimages are listed, and the RAEs of the filtered
images are listed directly. According to the evaluation indices, we find that the improved
approach retains the means for all the gray levels while having good denoising performance.
The absolute RAEs of MinBAD are up to 0.390 dB, and those of unbiased-average
MinBAD are less than 0.018 dB. In addition, the ENL and EPI indices of the corresponding
areas are similar by the two approaches. Comparing to these indices, the excellent RAE is
obvious.

Furthermore, Fig. 4 illustrates the speckle denoising effect via the MinBAD approach and
unbiased-average MinBAD approach for the real airborne SAR image. And the evaluation indi-
ces for five blocks of images are listed in Table 2.

According to Table 2, we find a similar phenomenon as the simulated artificial scene. For this
SAR image, the m values of tested subimages range from 2103 to 19,624. The absolute RAEs of
MinBAD are greater than 0.369 dB, and those of unbiased-average MinBAD are no more than
0.157 dB. In other words, the unbiased-average MinBAD approach has perfect applicability for
different scenarios in average preserving. This approach could be called an unbiased-average
approach.

The third experiment illustrates the denoising results on the TerraSAR image in Fig. 5. We
also choose five subimages from the image. The evaluation indices for the five blocks of images
are listed in Table 3.

According to Table 3, the absolute RAEs of MinBAD are greater than 1.083 dB, and those of
unbiased-average MinBAD are no more than 0.267 dB. Additionally, the ENL and EPI indices of
our approach are better than those of MinBAD.

For all of the above simulations, two iterations and Eq. (23) were implemented, and the ENL
indices are sufficiently high for all the subimages. Thus, we find that the proposed approach has
perfect efficiency.

Table 2 Denoise evaluation indices for airborne synthetic aperture radar (SAR) image.

No. of region

Original MinBAD Unbiased-average MinBAD

ENL EPI Mean ENL EPI RAE (dB) ENL EPI RAE (dB)

1 3.268 1 19,624 25.590 0.1165 −0.558 25.341 0.1346 0.015

2 3.523 1 11,599 30.246 0.1249 −0.501 30.195 0.1420 0.062

3 3.132 1 14,394 18.564 0.1268 −0.534 19.090 0.1445 0.029

4 4.083 1 2103 23.698 0.2115 −0.369 24.970 0.2254 0.157

5 2.778 1 18,285 13.143 0.1262 −0.567 12.867 0.1467 0.010
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Fig. 5 Simulation results for real TerraSAR image: (a) original image, (b) filtered image via
MinBAD approach, and (c) filtered image via unbiased-average MinBAD approach.
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5 Conclusions

Radiation accuracy is very important for SAR systems and applications. To find a good edge and
radiation preserving approach while denoising SAR images, we proposed an improved
unbiased-average MinBAD approach for SAR image speckle denoising from the MinBAD
method. Three significant steps including normalization, homomorphic transform and inverse
transform, and the average-preserving processing are introduced in the unbiased-average
MinBAD methods. Also, the RAE index is defined to evaluate average preserving while
ENL and EPI are analyzed for speckle denoising. Simulation results demonstrate the effective-
ness of the proposed approach for different scenes and different grayscales. The performance of
RAE via the unbiased-average MinBAD approach is much better than that of MinBAD.
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