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Abstract. This work shows an analytic solution to the central moments of the angle of linear polarization (AoLP)
when the linear Stokes parameters are independent and Gaussian distributed with different means but equal
variance. Such a result is useful for distinguishing AoLP features from noise in polarimetry. When the DoLP is
high relative to the measurement uncertainty of the linear Stokes vector, AoLP statistics have been shown to be
well approximated by a Gaussian distribution. When the DoLP is zero, AoLP values are uniformly distributed. In
general, the probability density function (PDF) of AoLP does not have a closed-form solution and this is the first
report, to our knowledge, on an exact analytic form for the central moments of the AoLP. This analytic form will be
useful when the AoLP is of interest even when the DoLP is low and the corresponding PDF on the AoLP is in
between the extreme cases of a Gaussian or a uniform distribution. We also show that a simple propagation of
error (PE) analysis underestimates the AoLP variance at extremely low DoLP but is verified for cases of DoLP
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1 Introduction
The Stokes vector that is limited to the three first components
is commonly referred to as the linear Stokes vector1 and
includes intensity and two linear Stokes parameters. From
its measurement, two primary parameters of interest are
calculated: the degree of linear polarization (DoLP) and
the angle of linear polarization (AoLP). The AoLP and
DoLP are nonlinear transforms of the two linear Stokes
parameters from Cartesian to polar coordinates. The AoLP
expresses the orientation of the linear polarization state.
The DoLP expresses the magnitude of the linear polarization
state. This work presents an exact analytic solution for the
central moments of the AoLP when the linear Stokes param-
eters are drawn from uncorrelated Gaussian distributions of
different means but equal variance. Fluctuations due to a
change in the object’s polarization state during data acquis-
ition (e.g., atmospheric turbulence) or fluctuations due to
system artifacts (e.g., error from mechanical motion of opti-
cal components) could potentially introduce significant cor-
relations. To test the validity of the uncorrelated assumption
both the polarimetric instrumentation and the postprocessing
calculations must be considered. If in postprocessing, differ-
ent raw measurements are used to calculate each linear
Stokes parameter then the measurement statistics will be
uncorrelated owing to the independence of each measure-
ment. Correlations would be introduced by reusing an indi-
vidual measurement in the calculation of both linear Stokes
parameters. Division of amplitude, aperture, or wavefront
polarimeters traditionally use independent measurements
to estimate each linear Stokes parameter. Traditional wire-
grid polarizers also produce linear Stokes parameters with

measurement noise that is uncorrelated since a different
pair of independent measurements are used to calculate each.

If the Stokes parameters are calculated by combining a
weighted sum of numerous independent measurements
then, owing to the central limit theorem, a Gaussian proba-
bility density function (PDF) is expected with increasing
confidence as the number of measurements used in the cal-
culation increases.2 For example, modulated polarimeters
collect a series of measurements while simultaneously
changing the instrument’s polarimetric response. Using
this strategy, the object’s polarization can be encoded tem-
porally, spatially, and/or spectrally in the measurements.
Then, in postprocessing numerous independent measure-
ments are combined, usually by fitting to a model, to
form an estimate of the object’s polarization.

Physical models of polarization are often specified in
polar coordinates (e.g., astronomy and material scattering
properties), therefore, characterizing AoLP statistics is of
interest.3,4 Although an integral form of the PDF of the
AoLP is known, this is the first report, to our knowledge,
on an exact analytic expression for the central moments
of the AoLP and their relation to the measurement uncer-
tainty of the linear Stokes vector. When the DoLP is high
relative to the measurement uncertainty of the linear
Stokes vector, AoLP statistics have been shown to be well
approximated by a Gaussian distribution;5 this is consistent
with the results presented in this paper. As the DoLP
approaches the measurement uncertainty of the linear
Stoke parameters, the distribution on AoLP is no longer
well approximated by a Gaussian distribution; this is also
consistent with the results presented in this paper. This
low DoLP limit is of interest and importance to researchers
in astrophysics,5 reconnaissance,6 and atmospheric aerosol
retrieval.7
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2 Mathematical Results
Consider the two linear Stokes parameters q and u as inde-
pendent and normally distributed random variables with
equal variance, prðqÞ ¼ N ðq̄; σ2u;qÞ and prðuÞ ¼ N ðū; σ2u;qÞ.
Here, all quantities are normalized by the intensity (i.e., the
first linear Stokes component), as in q ¼ Q∕I and u ¼ U∕I
where I denotes the intensity. In practice, the PDF on q and u
will depend upon how these quantities are measured. If in
postprocessing the Stokes parameters are calculated from
a sum, or weighted sum, of raw measurements then we
can argue from the central limit theorem that the prðuÞ
and prðuÞ will be approximately Gaussian if the raw mea-
surements are sufficiently independent. From prðuÞ and
prðuÞ, a transformation of random variables is used to obtain
prðθÞ as a function of the means and variance of the two lin-
ear Stokes parameters. Beginning with the joint PDF

prθ;dðθ; dÞ ¼ prq;u½d cosð2θÞ; d sinð2θÞ�
����

× det

�
cosð2θÞ 2d sinð2θÞ
sinð2θÞ −2d cosð2θÞ

����� ¼ 2d
2πσ2u;q

× exp

�
−
½d cosð2θÞ − q̄�2 þ ½d sinð2θÞ − ū�2

2σ2u;q

�
;

(1)

where θ is the AoLP and d is the DoLP. Here, the transfor-
mations q ¼ d cosð2θÞ and u ¼ d sinð2θÞ have been used to
relate the linear Stokes parameters to the AoLP and the
DoLP. Marginalizing over AoLP yields the Rice distribution
on DoLP.8 Marginalizing over the DoLP to obtain the PDF of
AoLP

prðθÞ ¼
Z

1

0

dpprθ;dðθ; pÞ

¼ 1

π
e
−d̄2
2

Z
∞

0

dp̃ p̃ e
−p̃2
2 ep̃½q̄ cosð2θÞþū sinð2θÞ�; (2)

where all parameters denoted with the tilde have been nor-
malized by σu;q, e.g., ˜̄u ¼ ðū∕σu;qÞ and ˜̄d2 ¼ ˜̄u2 þ ˜̄q2. This
integral form is the moment generating function of the
Rayleigh distribution; it is not closed-form but can be
expressed using error functions as in Ref. 9.

The definition of the α-order central moment of the AoLP
is

hðθ − ϕ̄Þαi ¼
Z

ϕ̄þπ∕2

ϕ̄−π∕2
dθ prðθÞðθ − ϕ̄Þα: (3)

Here, ϕ̄ ¼ 1∕2 atan (ū∕q̄) is half the angle between the mean
of prq;uðq; uÞ and the q-axis, as depicted in Fig. 1. The dis-
tribution prðθÞ is symmetric about ϕ̄ and the expectation over
all possible values of θ is evaluated over a π interval centered
on ϕ̄. This definition of prðθÞ avoids the spurious values in
calculations of angular quantities if wrapping of the direc-
tional statistics is not accounted for.

In the Appendix, we show that the α-order central
moment of the AoLP can be equivalently expressed as

hðθ − ϕ̄Þαi ¼ 1

2αþ1π

X∞
n¼−∞

Bα
nfnð ˜̄dÞ; (4)

where the scalar Bα
n and the function fn are defined below.

As expected, the central moments are circularly symmetric
with respect to the average value of the AoLP, in other words,
only the DoLP and the uncertainty of the linear Stokes
parameters σu;q are in this expression; ϕ̄ is not. The term
that can be factored as independent of the DoLP and only
dependent upon the order of the moment is

Bα
n ¼

1

2π

Z
π

−π
βαe−inβdβ; (5)

where β ¼ 2θ − 2ϕ̄ describes the angular deviation as
depicted in Fig. 1. For the first and second moments,
which are calculated in Secs. 3 and 4

B1
n ¼

� ð−1Þni
n ∀ n ≠ 0

0 otherwise
; (6)

B2
n ¼

� 2ð−1Þn
n2 ∀ n ≠ 0.1 × cm

π2

3
otherwise:

(7)

The other term depends on the DoLP and the linear Stokes
uncertainty, but not the α moment

Fig. 1 In (a) and (b), the yellow points are samples from prq;uðq; uÞ
where the spread of this distribution is characterized by
˜̄d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ū2 þ q̄2

p
∕σu;q and both low and high examples of this value

are provided. Two points are labeled: the mean ˜̄r and the n’th sample

r̃ n . ϕ̄ is the angle of linear polarization (AoLP) of ˜̄r and θn is the AoLP
of r̃ n . The AoLP’s central moments are related to the angular spread
from ϕ̄. A histogram of (θ − ϕ̄) is given in (c) and (d); the red line is a
least-squares fit to a Gaussian distribution.
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fnð ˜̄dÞ ¼
� ffiffiffiffi

π3

2

q
e
−d̄2
4 d

�
In−1

2

�
d̄2
4

	
þ Inþ1

2

�
d̄2
4

	�
∀ n ≠ 0

2π otherwise:

(8)

Here, I is a modified Bessel function of the first kind.
Appendix contains a detailed derivation of Eq. (4)
from Eq. (3).

The analytic expression for the AoLP central moments is
an infinite sum which, in practice, must be truncated, there-
fore, the computed value depends upon the number of terms
retained

hðθ − ϕ̄Þαi ≈ h dðθ − ϕ̄ÞαiðKÞ ¼ 1

2αþ1π

XK
n¼−K

Bα
nfnð ˜̄dÞ: (9)

When performing this computation, it is useful to notice that
f−n ¼ fn. The analytic form for the square root of the second
central moment, i.e., the standard deviation, of the AoLP is
shown in Fig. 2(b) for K ¼ 500.

3 Computational Results
To verify the precision of the new analytic expression for the
central moments of the AoLP, the square root of the second
central moment (i.e., α ¼ 2) is compared to two other
numerical methods for calculating the AoLP standard
deviation.

When a random variable of unknown variance has a non-
linear relationship to random variables of known variance the
propagation of error (PE) method approximates the unknown
variance by a truncated Taylor series as described in Ref. 10.
When the linear Stokes parameters are uncorrelated, the PE
approximation of the AoLP variance is

σ2θ ≈ σ2u

�
∂θ
∂u

	
2

þ σ2q

�
∂θ
∂q

	
2

: (10)

By applying the assumption of equal variances for each lin-
ear Stokes parameter, the PE approximation becomes

σ̂PEθ ¼
1

2d̃
¼ σu;q

2d
; (11)

which is displayed in Fig. 2(c).
The AoLP variance can also be calculated directly from

Nsamp linear Stokes parameter samples

σ̂2θðNsampÞ ¼
1

Nsamp

XNsamp

n¼1

kðθn − ϕ̄Þk2

¼ 1

Nsamp

XNsamp

n¼1

�
1

2
acos

�
r̄ · rn
jr̄jjrnj

	�
2

; (12)

where rn is the n’th sample generated by sampling from the
Gaussian distributions prðqÞ and prðuÞ, the mean values of
these distributions are r̄ ¼ ½ū; q̄�, and the dot product r̄ · rn is
used to calculate half of the angle between the vectors
(θn − ϕ̄) (depicted in Fig. 1). This sample variance is asymp-
totically unbiased, therefore, it will approach the true value
of the AoLP variance as Nsamp increases. To verify the pre-
cision of the analytic form, a true value for the AoLP vari-
ance is needed. To provide this comparison, the sample
variance is calculated using a very large number of samples.
The calculation using Nsamp ¼ 106 is displayed in Fig. 2(a).
The analytic form is closer to the sample variance than the PE
approximation; the maximum difference is given as a text
box in Fig. 2 and is 0.03 deg for the analytic form and
4.72 deg for the PE approximation.

To investigate the sensitivity between number of terms
retained in Eq. (9) and the AoLP variance, a comparison
is shown in Fig. 3(a). The number of terms required for con-
vergence depends upon the AoLP variance. Accuracy at low
AoLP variances (i.e., high DoLP) requires retaining more
terms. For low DoLP environments and σθ > 10 deg, con-
vergence is achieved at even 20 terms. This convergence
behavior is advantageous since the analytic expression for
AoLP variance is most useful in low DoLP environments.
In relatively high DoLP environments, the analytic expres-
sion is not necessary because simpler approximations for
the variance of AoLP, such as the PE method, are valid.

Fig. 2 The AoLP standard deviation is reported in degrees and calculated from (a) sample statistics
[Eq. (12)], (b) the new analytic form presented in this work [Eq. (9)], and (c) the propagation of error
approximation [Eq. (11)]. The maximum differences between methods (b) and (c) with respect to method
(a) are 0.03 deg and 4.72 deg, respectively. This agreement between an asymptotically unbiased
estimate and the analytic form is expected and verifies the precision of the analytic expression and
its derivation presented in the Appendix.
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Figure 3(b) is a comparison between the PE estimate and
the analytic expression for the AoLP variance at low DoLP.
For σu;q ¼ 0.005, the two methods agree above about 2%
DoLP. For DoLP lower than 2%, the methods begin to dis-
agree and the PE analysis predicts lower values for σθ. At 1%
DoLP, the difference between the two methods is approxi-
mately 5 deg. This difference is potentially significant
because statistical testing becomes most useful when the
DoLP is low.

4 Example Application in Imaging Polarimetry
Figure 4 shows a cloud measurement from the Ground-based
Multiangle SpectroPolarimetric Imager (GroundMSPI).11

This is an ideal application for our analytic AoLP variance
since 47% of the pixels in the scene are at or below 2%
DoLP; see Fig. 4(b). AoLP statistical analysis can be used
to test GroundMSPI’s sensitivity in distinguishing single
from multiple scattering events. In the case of single scatter-
ing, the AoLP of the cloud will either be the same as the
AoLP of the sky or 90 deg from it as described in
Refs. 12 and 13. Given GroundMSPI’s measurement uncer-
tainty in the Stokes parameters of �0.005,14 the analytic
form presented in this paper is used to calculate the standard

Fig. 3 (a) To show the effect of truncating the infinite sum in Eq. (4),
the calculation is compared for different numbers of terms retained.
Convergence with respect to K is slowest at low values of σθ. The
results become indistinguishable between K ¼ 250 and K ¼ 500.
The black line is σ̂PEθ and does not agree with the sample statistics
or the analytic form at high values of σθ. (b) The under estimation of σθ
by σ̂PEθ is shown to occur at DoLP values below 2% when
σu;q ¼ 0.005.
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Fig. 4 An 865 nm GroundMSPI cloud measurement acquired on August 16, 2013 13:27 (PST) at 32°N,
110°W. Here, the solar angle is [23 deg, 40 deg] and the view angle ranged from [37 deg to 46 deg,
172 deg to 188 deg] within the field of view (FOV). Angles are expressed as [zenith, azimuth]. The result-
ing scattering angle over the FOV was 145 deg to 159 deg. The measured linear Stokes components are
used to calculate (b) DoLP and (c) AoLP. The assumption σq ¼ σu ¼ 0.005 is used to calculate (d), the
standard deviation of AoLP.
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deviation of the AoLP measured at each image pixel. Pixels
are selected from the GroundMSPI image based on three dif-
ferent σAoLP thresholds of: 3 deg, 6 deg, and 9 deg. These
thresholds result in including 40%, 48%, and 60% of the
image pixels; respectively. In Fig. 5, these AoLP values
are plotted versus DoLP to separate sky from cloud pixels.
The AoLP is plotted with error bars�2σθ from the measured
value. The �2σθ interval has been shown in Ref. 5 to pro-
duce a 95.45% confidence level on AoLP. The AoLP uncer-
tainty is lowest for the sky measurements since these have a
higher DoLP value than the cloud [see Figs. 4(b) and 4(d)].
As the σAoLP threshold is increased, more low DoLP cloud
pixels are included and a majority of these are�90 deg from
the sky’s AoLP, which indicates single scattering. Multiple
scattering would further decrease the DoLP, and at the lowest
σAoLP threshold, more low DoLP points that are intermediate
to sky and �90 deg sky AoLP appear.

To further investigate the presence of multiple scattering,
Fig. 6(a) shows all AoLP measurements with a�2σAoLP con-
fidence interval that does not overlap the sky’s AoLP within
a 12 deg boundary. This thresholding results in including 4%
of the pixels and the location of these are displayed in
Fig. 6(b). A higher density of intermediate AoLP values
are seen as the DoLP decreases which would be expected
for the AoLP of multiple scattering events.13 This analysis
suggests the possibility that GroundMSPI is capable of
detecting multiple scattering events and that a very low num-
ber of multiple scattering events is present in this scene but is
not comprehensive enough to conclude that the intermediate
population of AoLP values is caused by multiple scattering.
Instead this analysis motivates further statistical AoLP stud-
ies on more polarimetric cloud images, as well as inspection
of instrument calibration data to check whether the Gaussian

Fig. 5 AoLP of GroundMSPI measurements in Fig. 4 is plotted versus
DoLP. This separates the sky pixels, which are more polarized, from
the cloud pixels. The sky’s average AoLP is 90 deg in scattering coor-
dinates as expected and denoted by a red line. Each AoLP point
includes an error bar of �2σAoLP. A single event scattering within
the cloud results in an AoLP that equals the sky’s AoLP or differs
by �90 deg.
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Fig. 6 (a) To distinguish multiple scattering, pixels with a�2σAoLP confidence interval that do not coincide
with the sky’s AoLP are displayed. The sky’s AoLP is defined as 90 deg or 180 deg within a 12 deg range.
These intervals are denoted by the red horizontal lines. This thresholding results in including 4% of the
pixels in the image. A higher density of intermediate AoLP values is measured as the DoLP decreases,
which would be expected for the AoLP of multiple scattering events. AoLP measurements that are below
the sky AoLP (plotted in blue) are more dense than above the sky AoLP (plotted in cyan). (b) The loca-
tions of intermediate AoLP values are displayed as an overlay of dots on the intensity image; blue or cyan
denotes the measurements below or above the sky AoLP.

Optical Engineering 113108-5 November 2014 • Vol. 53(11)

Kupinski, Chipman, and Clarkson: Relating the statistics of the angle of linear polarization. . .



noise assumption is valid. This cursory statistical analysis of
MSPI cloud images is presented to motivate the usefulness of
an analytic form for the AoLP variance when the linear
Stokes parameters are uncorrelated and normally distributed
with equal variance.

5 Conclusion
Here, we have provided an analytic form which relates the
central moments of the AoLP to the Gaussian statistics of the
linear Stokes vector. This expression yields a functional rela-
tionship between the measurement uncertainty in AoLP and
the measurement uncertainty in DoLP. This is especially use-
ful for high fidelity imaging polarimetry measurements of
low DoLP scenes. In such an environment, simple
Gaussian assumptions on the statistics of the AoLP are
not valid because the high measurement precision of the
AoLP statistics may contain useful information about the
scene. Additionally, we have shown that a simple PE analysis
underestimates the AoLP variance at extremely low DoLP
values, but is accurate at DoLP values that are high relative
to the Stokes measurement uncertainty. An example use of
the analytic form on AoLP variance is presented for an exam-
ple in imaging polarimetry.

Appendix
Substituting Eq. (2) into Eq. (3) yields an expression for the
AoLP central moments involving two integrals

hðθ− ϕ̄Þαi

¼ 1

π
e
− ˜̄d2
2

Z
∞

0

dp̃p̃e
−p̃2
2

Z
ϕ̄þπ∕2

ϕ̄−π∕2
dθep̃ð ˜̄q cosð2θÞþ ˜̄u sinð2θÞÞðθ− ϕ̄Þα:

(13)

From Fig. 1, it can be seen that ˜̄q ¼ ˜̄d cosð2ϕ̄Þ and
˜̄u ¼ ˜̄d sinð2ϕ̄Þ. Using the equality cosðAÞ cosðBÞþ
sinðAÞ sinðBÞ ¼ cosðB − AÞ and the change of variables β ¼
2θ − 2ϕ̄ allows the angular integral from Eq. (13) to be
expressed as

1

2αþ1

Z
π

−π
dββαep̃

˜̄d cosðβÞ: (14)

To represent βα on the ½−π; π� interval, the function can be
expanded in a Fourier series

βα ¼
X∞
−∞

Bα
ne

inβ; (15)

where the Fourier coefficients are defined by

Bα
n ¼

1

2π

Z
π

−π
dββαe−inβ: (16)

This integral can be represented recursively for n ≠ 0 by
integrating by parts

Bα
n ¼

ð−1Þnπα−1i
2n

½1 − ð−1Þα� þ α

in
Bα−1
n (17)

and the integral can be solved for n ¼ 0

Bα
0 ¼

παþ1

2πðαþ 1Þ ½1 − ð−1Þαþ1�: (18)

When α ¼ 0 the integral in Eq. (16) simplifies to

B0
n ¼

1

2π

Z
π

−π
dβe−inβ ¼ δn0; (19)

where δ is the Kronecker delta function. Since the Fourier
coefficients have closed-form solutions, substituting Eq. (15)
into Eq. (14) is helpful because it leads to an expression

1

2αþ1

X∞
n¼−∞

Bα
n

Z
π

−π
dβeinβep̃

˜̄d cosðβÞ (20)

that can be related to a modified Bessel function

InðxÞ ¼
1

2π

Z
π

−π
ex cosðθÞeinθdθ: (21)

Now the integral expression over the angle is replaced by an
infinite sum involving modified Bessel functions

2π

2αþ1

X∞
n¼−∞

Bα
nInðp̃ ˜̄dÞ: (22)

By substituting these results into Eq. (13), the AoLP central
moments are

hðθ − ϕ̄Þαi ¼ 1

2α
e
− ˜̄d2
2

X∞
n¼−∞

Bα
n

Z
∞

0

dp̃ p̃ e
−p̃2
2 Inðp̃ ˜̄dÞ: (23)

Noting the recurrence relations for derivatives of modified
Bessel functions

d

dx
InðxÞ ¼

1

2
In−1ðxÞ þ

1

2
Inþ1ðxÞ (24)

and using integration by parts from page 259 of Ref. 15 leads
to the equality

Z
∞

0

dp̃ p̃ e
−p̃2
2 Inðp̃ ˜̄dÞ ¼

˜̄d
2

ffiffiffi
π

2

r
e

˜̄d2
4

�
In−1

2

� ˜̄d2

4

	

þ Inþ1
2

� ˜̄d2

4

	�
∀ n ≠ 0: (25)

For n ¼ 0, relating the modified Bessel function to a
Bessel function with a purely complex argument allows a
solution using integration by partsZ

∞

0

dp̃ p̃ e
−p̃2
2 I0ðp̃ ˜̄dÞ ¼

Z
∞

0

dp̃ p̃ e
−p̃2
2 J0ðip̃ ˜̄dÞ ¼ e

˜̄d2
2 (26)

Substituting these integral solutions into Eq. (23) leads to
Eq. (4) which is presented in the body of this paper. This
analytic expression offers a solution for the central moments
of the AoLP that involves an infinite series of modified
Bessel functions to avoid evaluating the expected value
over two integrals. This infinite series has been shown to
be computationally useful because it converges relatively
quickly as presented in Fig. 3(a).
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