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Abstract. Image compression is an important component in modern imaging systems as the volume of the raw
data collected is increasing. To reduce the volume of data while collecting imagery useful for analysis, choosing
the appropriate image compression method is desired. Lossless compression is able to preserve all the infor-
mation, but it has limited reduction power. On the other hand, lossy compression, which may result in very high
compression ratios, suffers from information loss. We model the compression-induced information loss in
terms of the National Imagery Interpretability Rating Scale or NIIRS. NIIRS is a user-based quantification of
image interpretability widely adopted by the Geographic Information System community. Specifically, we present
the Compression Degradation Image Function Index (CoDIFI) framework that predicts the NIIRS degradation
(i.e., a decrease of NIIRS level) for a given compression setting. The CoDIFI-NIIRS framework enables a user to
broker the maximum compression setting while maintaining a specified NIIRS rating. © 2018 Society of Photo-Optical
Instrumentation Engineers (SPIE) [DOI: 10.1117/1.OE.57.4.043108]
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1 Introduction
Many imaging sensors, including synthetic aperture radar
(SAR), light detection and ranging (LiDAR) sensors, hyper-
spectral cameras, and wide-area motion imagery (WAMI)
sensors, have been developed to obtain target scene images
for various applications such as object detection, entity
classification, multiple-target tracking, and activity-based
intelligence.1 The amount of the raw data obtained with
these sensors is large. For example, a hyperspectral camera
captures multiple (usually 100+) images of the same target
scene with different wavelengths, and the amount of data
obtained is usually in the order of several megapixels
(an example is 200 × 200 × 115 pixels in Ref. 2). Another
example is WAMI, which generates images over city-sized
areas to enable monitoring of vehicle and pedestrian
movements.3,4 A typical WAMI image data size is over
144 megapixels (12;000 × 12;000 pixels), and the next-
generation WAMI image data size will be in the level of
1.6 gigapixels (40;000 × 40;000 pixels).5

To transmit the raw data to the users or processing units,
either a wideband channel or a long-time interval is
needed.6,7 To reduce the required communication bandwidth
or the transmission time, the raw data should be compressed.
Lossless compression is able to preserve all the information,
but has limited reduction power. On the other hand, lossy
compression, which may result in very high compression
ratio, suffers from interpretability loss as quantified by the
National Imagery Interpretability Rating Scale (NIIRS).8,9

NIIRS is a subjective quantification of image interpret-
ability according to the types of tasks a certified image
analyst (IA) is able to perform with the imagery for a given

rating level. NIIRS has been defined for the following four
types of imaging modalities: visible (EO), infrared (IR),
radar (SAR), and multispectral.10–13 NIIRS is a 10-level scale
with each level defined by a set of information extraction
tasks called criteria. Example criteria for EO, IR,14,15 and
SAR16 are given in Table 1. The criteria consist of a verb
indicating the level of recognition (e.g., distinguish, detect,
or identify), the target or object of interest (e.g., building),
and some qualifier (e.g., type, size, or feature).

Imagery collection and the selection of the compression
impact the performance of image fusion methods.17 When
a user interprets an image as per high level information
fusion,18 there is a need to understand the context in
which the compression level is desired.19 Adaptive context
management is desired to determine the correct level of
performance desired.20 One way to determine the balance
between user needs and the compression level desired is
through the performance analysis of image quality.21–23

Through the use of image quality, various image processing
methods have been developed for cloud architectures.24,25 An
open research question is the alignment of machine-level
image interpretability with that of human observers,26,27

although initial comparisons suggest the human perception
and machine-level processing are sensitive to different
image characteristics.28,29 Many examples to compute the
NIIRS have been reported11 and updates are included in
the Motion Imagery Standards Board. Recent efforts include
the Video-National Imagery Interpretability Rating Scale
(VNIIRS)30–33 which can be used for video analysis,34,35

but they still require extensive validation of how to be
applied in dynamic imagery collections.
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The general image quality equations (GIQEs) include
GIQE3 (i.e., version 3), GIQE4, and GIQE5. GIEQ3 and
GIQE4 were developed for hardcopy images.36,37 GIQE5
focuses on softcopy images. Griffith presented a preliminary
version of GIQE5.38 Both hardcopy and softcopy methods
are a function of ground sampling distance (GSD), relative
edge response (RER), and the signal-to-noise ratio (SNR).

In this paper, we present the Compression Degradation
Image Function Index (CoDIFI) framework that predicts
the NIIRS degradation of an image due to compression.
The foundation of this framework is the GIQE, which relates
the image quality measure in NIIRS to sensor parameters and
acquisition conditions with the goal of objectively predicting
the NIIRS rating of images obtained from an imagery col-
lection setting with known sensor parameters and acquisition
setting. Specifically, parameters such as GSD, RER, edge
overshoot (H), noise gain (G), and SNR are involved in
GIQEs. Based on GIQE, we derive the general image quality
degradation equations (GIQDEs) to predict the interpretabil-
ity loss due to compression. A major feature of GIQDE is
that it eliminates the inclusion of GSD, which cannot be
inferred easily from the imagery, in its final form when
the image quality degradation is a result of data compression.

In this paper, a two-stage CoDIFI framework is presented.
In the first stage, automated image analytics estimate the
RER as well as the edge overshoot of a given image. In
the second stage, image analysis is performed on a synthetic
binary edge image to build the CoDIFI model that relates
NIIRS degradation and ratio of edge gradients before and
after compression. Using the CoDIFI model, the compres-
sion-induced NIIRS degradation can be inferred by edge gra-
dients obtained before and after compression. The proposed
CoDIFI-NIIRS framework can be utilized to predict the
NIIRS degradation for a given compression setting, thus,
enabling a user to broker the maximum compression setting
while maintaining a specified NIIRS rating.

This paper is organized as follows. In Sec. 2, two versions
of GIQEs are reviewed. Section 3 derives the GIQDE for
GIQE version 3. The automated image analytics developed
to estimate edge profiles is presented in Sect. 4. In Sec. 5,
the CoDIFI model construction is explained. Finally, experi-
ments are presented in Sec. 6, as well as performance vali-
dation in Sec. 7 followed by conclusions in Sec. 8.

2 General Image Quality Equation
The NIIRS rating of a given image is obtained from certified
IAs, who are usually not available. Many efforts have been
made to relate the measure of image quality in terms of
NIIRS to sensor parameters, and the results are the
GIQEs.37 GIQEs predict NIIRS as a function of the imaging
sensor and the acquisition setting of relevant parameters:

GSD, RER, SNR, noise gain (G), and edge overshoot height
(H). The parameters RER, G, and H are defined after image
enhancements are performed. The GIQE for an EO sensor is
given as37

EQ-TARGET;temp:intralink-;e001;326;583

GIQE3 ¼ 11.81þ 3.32 · log10

�
RERGM

GSDGM

�
− 1.48 ·H −

G
SNR

(1)

and
EQ-TARGET;temp:intralink-;e002;326;517

GIQE4 ¼ 10.251 − a · log10ðGSDGMÞ þ b

· log10ðRERGMÞ − 0.656 · HGM − 0.344 ·
G

SNR
;

(2)

where GSDGM is the geometric mean of ground sample dis-
tance in inches, RERGM is the geometric mean of the nor-
malized RER, HGM is the geometric mean of edge overshoot
due to modulation transfer function compensation (MTFC)/
enhancement, G is the noise gain due to MTFC/enhance-
ment, SNR is the signal-to-noise ratio, and a ¼ 3.32 if
RERGM ≥ 0.9; 3.16 if RERGM < 0.9, b ¼ 1.559 ifRERGM ≥
0.9; 2.817 if RERGM < 0.9.

GIQE3 was released in December 1994 to the unmanned
aerial vehicle/sensors community whereas GIQE4 was
published in November 1997 for the development of the
commercial space imaging industry.37 Both GIQEs were
empirically determined using linear regression technique
assuming hardcopy viewing. One major difference between
GIQE3 and GIQE4 lies in the definition of GSD. In GIQE3,
GSD is defined in the plane orthogonal to the line of sight
while, in GIQE4, GSD is defined in the ground plane.
The derivation and validation of GIQE4 was based on a set
of 359 images whose characteristics are listed in Table 2.38

Table 1 Example EO, IR, RADAR, and multispectral NIIRS level 3 criteria for ground order of battle.

Level

Modality

Visible IR Radar Multispectral

3 Identify radar and guidance
areas at an SAM site by the
configuration, mounds, and
presence of concrete aprons.

Identify individual thermally
active flues running between
the boiler hall and smoke stacks
at a thermal power plant.

Identify a barracks area based
on pattern of buildings.

Detect vegetation/soil moisture
differences along a linear
feature (suggesting the
presence of a fence line).

Table 2 Characteristic range used to derive and validate GIQE4.

Parameters Minimum Mean Maximum

GSD 3 in. 20.6 in. 80 in.

RER 0.2 0.92 1.3

G 1 10.66 19

SNR 2 52.3 130

G∕SNR 0.01 — 1.8

H 0.9 1.31 1.9
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Note that GIQE4 may not be accurate for an image whose
characteristic is outside of the listed range. GSD is the actual
ground distance in inches between two adjacent pixels. The
GSD value is usually included in or has to be calculated from
image metadata and cannot be obtained from simple image
analysis.

RER mainly affects the contrast of an image. It is esti-
mated using the Stennis Space Center specified edge target
as shown in Fig. 1(a) and its tilted version.39 An RER value is
obtained by estimating the slopes of edge profiles within the
image as shown in Fig. 1(b). In principle, RER estimates
effective slope of the imaging system’s edge response.

The edge overshoot height (H) of normalized edge
response is the result of the application of MTFC, whose
aim is to increase the image contrast but inevitably results
in edge overshoot/edge ringing artifacts. Figure 2 shows
the overshoot phenomenon, which is reproduced from
Ref. 40. Figure 2(b) is obtained by applying small low-
fidelity image-sharpening kernels on the image shown in
Fig. 2(a). Edge-ringing artifacts are clearly observed in
Fig. 2(b). The edge overshoot due to image sharpening is
given in Fig. 2(c).

The application of MTFC inevitably amplifies noise.
Noise gain G, due to the application of MTF, can be calcu-
lated from the coefficients, w, of MTFC kernels for a pixel
ðm; nÞ

EQ-TARGET;temp:intralink-;e003;63;227G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ðm;nÞ w2
m;n

q
P

ðm;nÞ wm;m
: (3)

For example, with the following MTFC, which is a sym-
metric 3 × 3 sharpening kernel, the G value can be computed
to be 3.51.

EQ-TARGET;temp:intralink-;sec2;63;139w ¼
2
4−0.2 −0.4 −0.2
−0.4 3.4 −0.4
−0.2 −0.4 −0.2

3
5:

Without the knowledge about the actual MTFC kernel,
G cannot be obtained. In Ref. 41, a fixed value of 4.16 was

used for both Quickbird and IKONOS images. Fortunately,
in the GIQDEs to be introduced next, the parameter G is no
longer involved when the change of SNR due to compression
is small.

Finally, SNR is defined as the ratio between the power of
image signal with the DC component excluded and the
power of noise signal. For a given noise free image I,
noise image N, and noise-corrupted image Y ¼ I þ N, the
SNR is computed as

EQ-TARGET;temp:intralink-;e004;326;414SNR ¼
P

M
i¼1

PN
j¼1 ½Yði; jÞ − Yavg�2P

M
i¼1

P
N
j¼1 Nði; jÞ2 ; (4)

Fig. 1 (a) Stennis Space Center specified edge target for RER estimation. (b) Normalized edge response
for RER estimation.

Fig. 2 An illustration of edge overshoot height due to image-sharpen-
ing. (a) Image before sharpening, (b) image after sharpening, and
(c) edge overshoot height.

Optical Engineering 043108-3 April 2018 • Vol. 57(4)

Blasch et al.: Prediction of compression-induced image. . .



where M and N are the height and width of the image and
ði; jÞ is the pixel location.

3 Image Quality Degradation Equation
In an analysis of the general image quality equation,42 it is
concluded that GIQE3 image quality predictions are more
accurate than those from GIQE4 in a certain scenario.
In addition, GIQE4 introduces discontinuity when RER is
equal to 0.9. For this reason, we adopt GIQE3 instead of
GIQE4 for the discussion in this section. However, similar
discussion can be made using GIQE4.

Denote the GIQE estimated NIIRS for an image data
before and after compression as
EQ-TARGET;temp:intralink-;e005;63;608

NIIRS0 ¼ 11.81þ 3.32 · log10

�
RER0

GSD

�

− 1.48 · H0 −
G

SNR0

(5)

and
EQ-TARGET;temp:intralink-;e006;63;527

NIIRS1 ¼ 11.81þ 3.32 · log10

�
RER1

GSD

�
− 1.48

· H1 −
G

SNR1

: (6)

Note that, in both cases, the parameters GSD and G are
not changed as they are sensor setting related parameters and
are not affected by compression. With Eqs. (5) and (6), the
change of NIIRS due to compression can be derived as
EQ-TARGET;temp:intralink-;e007;63;416

ΔNIIRS ¼ 3.32 · log10

�
RER1

RER0

�
− 1.48 · ðH1 −H0Þ

− G ·

�
1

SNR1

−
1

SNR0

�
: (7)

By expressing the SNR after compression SNR1 as its
Taylor series at SNR0, then
EQ-TARGET;temp:intralink-;e008;326;730

ΔNIIRS ¼ 3.32 · log10

�
RER1

RER0

�
− 1.48 · ðH1 −H0Þ

þG ·
ΔSNR
SNR2

0

≈3.32 · log10

�
RER1

RER0

�
− 1.48 · ðH1 −H0Þ; (8)

where ΔSNR ¼ SNR0 − SNR1 is assumed to be much less
than SNR0.

We call Eq. (8) the GIDQE, which predicts the interpret-
ability loss due to compression. From Eq. (8), it is observed
that the parameters GSD, G, and SNR involved in GIQE are
no longer required to predict the interpretability loss due to
compression.

4 Image Analytics for Edge Profile Estimation
RER and edge overshoot height (H) are defined through
edge profiles as can be seen in Figs. 1(b) and 2(c). This sec-
tion presents an image analytic approach that performs edge
profile extraction from which RER and H can be estimated.
Figure 3 shows the edge profile extraction workflow, which
involves a number of modules such as Canny edge detector,
Hough transform, and edge stripes determination.

The first two modules, Canny edge detector and Hough
transform, are employed to extract line edges from the input
image. For each extracted line edge, the edge stripes deter-
mination module extracts the corresponding edge stripe.
A sample extracted edge stripe is provided in Fig. 4(c).
Next, the edge intensity determination module is used to
determine the intensity value that defines the edge point
in each column of the edge stripes. Before an edge point
can be decided, it is necessary to define the maximum
and minimum intensity values, which will be normalized

Fig. 3 Edge profile extraction workflow along with a description of the output of each module and
the corresponding sample output in Fig. 4.
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to one and zero, respectively. To this end, considering the
possibility of having edge overshoot, the maximum intensity
for an edge is taken as the median of the intensities of the first
two rows of the bright side of each edge stripe. Rather than
the minimum value, the minimum intensity is taken as the
fifth percentile of the edge stripe to eliminate the possible
outliers in each edge stripe.

Once the maximum and minimum intensity values are
defined for each edge stripe, their mean value is taken as
the intensity value that defines an edge point. After the
edge intensity of each edge stripe is obtained, the edge center
of each edge profile can be assessed. The edge profile is
determined by searching for the location of each edge profile

whose intensity is within a δ-neighborhood of the edge inten-
sity determined in the previous step. Here, δ is a predefined
small value that determines the precision of the edge center,
which is set it to be 0.001 in this work. Once the edge center
is found for each edge profile, it is resampled at an array of
positions centered at each edge center. Figures 4(d) and 4(e)
show the edge profiles of an edge stripe before and after the
edge profiles alignment module.

To compute RER value, edge profiles have to be normal-
ized to from 0 to 1 as shown in Fig. 1(b). In the module Edge
intensity determination, the maximum and minimum inten-
sity values within an edge stripe have been decided. Denote
them as Imax and Imin. Edge profiles normalization is

Fig. 4 Illustration of the proposed edge profile extraction workflow. (a)–(g) are the outputs at various
stages of the workflow depicted in Fig. 3.
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performed as In ¼ ðI − IminÞ∕ðImax − IminÞ, where In is the
normalized intensity and I is the original intensity of a pixel
of the raw edge profile, and Imax and Imin are the maximum
and minimum intensity values determined for each edge
stripe. Figure 4(f) shows the edge profiles normalized
from those shown in Fig. 4(e). The last module, edge profiles
finalization, produces a single edge profile for each edge
stripe along with a quality measure. The final single edge
profile is obtained by averaging the raw edge profiles of
each edge stripe. However, not all averaged edge profiles
of each edge stripe are equally reliable. The edge profiles
module produces, in addition to the mean edge profile,
a quality measure based on the variance of the raw edge pro-
files defined as

EQ-TARGET;temp:intralink-;e009;63;598QÎ ¼
1

N

XN
i¼1

jÎi − Îmeanj2; (9)

where N is the number of raw edge profiles in the edge stripe
in consideration, Îi is the i’th raw edge profile, and Îmean is
the mean edge profile. Figure 4(g) shows a sample mean
edge profile. To select the one that best represents the
given image for RER computation, the process begins by
first selecting a set of mean edge profiles whose variances
are within the least 10% of the mean edge profiles available
in the given image. Then the mean RER value is used as the
RER value of the image.

After obtaining the edge profile, it is straightforward to
determine the RER by taking the difference of the edge pro-
file values at location þ0.5 and −0.5 as shown in Fig. 1(b).
To estimate edge overshoot height, we follow the approach
described in Ref. 43. First, obtain normalized edge profile
from −3 to 3 pixels from edge center. Then, the maximum
value between þ1 and þ3 pixels from the center is taken as
the edge overshoot H if it is greater than 1. Otherwise, the
value atþ1.25 pixel from the edge center is used asH value.
This approach is graphically shown in Fig. 5. There are two
cases in Fig. 5. Case 1 indicates undershoot in the edge pro-
file. In this case, the value at position 1.25 pixel is adopted as
H value, which is about 0.8. In case 2, the maximum value
between 1 and 3 occurs at position 1.75 with value 1.2,
which is greater than 1. Therefore, the H value in case 2
is determined to be 1.2.

5 Compression Degradation Image Function Index
Model

As will be seen in the experimental results presented in
Sec. 6, the estimated NIIRS degradation is not a smooth
function of compression ratio by directly plugging the
parameters estimated in Sec. 4 in Eq. (8). This is not surpris-
ing as the image analytics presented in Sec. 4 is able to
reliably extract edge profiles only in the simplest case,
for example, a binary edge image as displayed in Fig. 6.
Therefore, for images that lack clear, strong, straight line
edges, the proposed edge profile extraction approach is
doomed to failure. For this reason, an alternative approach
is desired for practical application.

From the derived GIQDE given by Eq. (8) and the def-
initions of RER and H as shown in Figs. 1 and 2, it seems
reasonable to conclude that NIIRS degradation is directly
related to the gradients calculated at edges before and
after compression. For this reason, we assume that NIIRS
degradation can be modeled as a function of the ratio of
edge gradients obtained before and after compression.
That is,

EQ-TARGET;temp:intralink-;e010;326;518ΔNIIRS ¼ π

�
∇ðE1Þ
∇ðE0Þ

�
; (10)

where E0 is the edges in the image before compression and
E1 is the edges in the compressed image, ∇ is the gradient
operator, and πð·Þ is the model to be estimated. We name the
model πð·Þ as the CoDIFI in this work.44

Once this model πð·Þ is available, reduction of NIIRS rat-
ing can be predicted simply by the ratio of gradients obtained
before and after compression at the same edge points. In this
work, a simple neural network (NN) (shown in Fig. 7) is
employed to obtain the πð·Þ model.

The training data are obtained by applying the image ana-
lytics presented in Sec. 4 to a series of sequentially degraded

Fig.5 Edge overshoot height estimation from edge profile.

Fig. 6 An ideal edge for edge profile extraction.

Fig. 7 Structure of the NN employed to model the relationship
between the gradient ratio and NIIRS degradation.
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images of the image given in Fig. 6. The degraded images are
generated by sequentially blurring the simulated edge image
shown in Fig. 6 with fixed sized (½23 × 23�) Gaussian low-
pass filters with different standard deviation values ranging
from 0.2 to 3. Figure 8 shows some of the resulting degraded
images. After the generation of training data, a simple NN
with one hidden unit was trained to model the relationship
between the gradient ratio and NIIRS degradation. Figure 9
shows the resulting CoDIFI where the blue asterisk symbol
indicates the training data.

6 Experimental Comparisons of Estimated NIIRS
Loss

In the experiments, two approaches are used to estimate
NIIRS degradation due to compression. The first approach
directly applies Eq. (8) with parameters estimated from
the automated image analytics presented in Sec. 4. The
second approach applies the CoDIFI model constructed in
Sec. 5 to estimate NIIRS degradation due to compression.
A more detailed description follows.

Approach 1: Estimation of RER and H.

Step 1.1: Use the approach presented in Sec. 4 to estimate
RER0 and H0 and record the locations of each
edge stripe.

Step 1.2: Apply a selected compression scheme and associ-
ated parameter set.

Step 1.3: Use the same edge stripes from step 1 to estimate
RER1 and H1, i.e., the first three modules are
skipped because the edge stripes have been
obtained in step 1 and are reused.

Step 1.4: Use Eq. (8) to compute NIIRS degradation.

Approach 2: gradient ratio at edge points

Step 2.1: Use Canny edge detector to detect edges in the
image before compression. Save all the edge
points.

Step 2.2: Compute gradients at each edge point.
Step 2.3: Apply a selected compression scheme and associ-

ated parameter set.
Step 2.4: Compute gradients at the same edge points

detected in step 2.1 in the compressed image.
Step 2.5: Compute the gradient ratio at each edge point and

take the mean value ρ.
Step 2.6: Use CoDIFI to find the NIIRS degradation value

corresponding to ρ.

Ten urban and 10 rural images as shown in Figs. 10 and
11 are used in the experiment. Urban images are character-
ized by more distinctive edges than rural images; thus, the
edge profile-based approach is expected to work more rea-
sonably in urban images. For compression schemes, JPEG
and JPEG2000 are adopted and experimental results are
shown in Figs. 12–15.

Figure 12 shows the results for the JPEG compression and
Fig. 13 for JPEG2000 using the urban images.

In Figs. 12–15, the NIIRS degradation is plotted as a
function of compression ratio and is estimated by the edge
profile-based (EPB) approach and the CoDIFI model. From
these two approaches over two scenarios, the following
observations are presented to provide a high-level assess-
ment of comparisons.

1. The curves resulting from both approaches show the
same general trend, and they align better in the urban
images than rural images. Hence, the CoDIFI method
is consistent with the methods for NIIRS assessment.

2. The EPB method failed to produce smooth curves
while the CoDIFI-based method is able to produce
much smoother results. Hence, the CoDIFI method
might be considered for future use.

Fig. 9 The obtained CoDIFI based on GIQE version 3.

Fig. 8 Sample degraded images used to generate the training data. Degraded edge image (a) std = 0.2,
(b) std = 2, and std = 3.
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3. For the EPB approach, curves from urban images
had a general trend while, for the rural images, they
were inconsistent. Hence, EPB cannot be applied in
practice.

4. For the CoDIFI method, the JPEG compression results
in slight concave down curves while JPEG2000 com-
pression results in slight concave up curves. Hence,
selection of the compression method would affect
the NIIRS degradation score.

From these two approaches, the following observations
resulted.

1. The curves resulting from both approaches reasonably
match, and they match better in the urban images than
rural images.

2. The EPB method failed to produce smooth curves
while the CoDIFI-based method is able to produce
much smoother results.

3. For the case of CoDIFI method, JPEG compression
results in concave down curves while JPEG2000 com-
pression results in concave up curves.

Fig. 11 Ten rural images used in the experiment. (a) Rural image 1,
(b) rural image 2, (c) rural image 3, (d) rural image 4, (e) rural image 5,
(f) rural image 6, (g) rural image 7, (h) rural image 8, (i) rural image 9,
and (j) rural image 10Fig. 10 Ten urban images used in the experiment. (a)Urban image 1,

(b) urban image 2, (c) urban image 3, (d) urban image 4, (e) urban
image 5, (f) urban image 6, (g) urban image 7, (h) urban image 8,
(i) urban image 9, (j) urban image 10.
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4. For the EPB approach, curves from rural images com-
bined with JPEG compression are most ragged.

The first two observations reveal the limit of the EPB
approach. That is, EPB performs well only when the line
edges can be reasonably extracted. Since many line edges can
be observed in urban images, the results from urban images
are more reasonable than those from rural images, where line

edges are rarely present. They also imply the validness of
the CoDIFI-based approach because it produces similar but
much smoother curves. The third observation indicates that
JPEG compression may outperform JPEG2000 in terms of
interpretability loss at very low compression rate. The rough-
ness of the curves resulting from applying JPEG compression
on rural images may due to the blocky artifact of JPEG com-
pression as well as the lack of line edges in rural images.

Fig. 12 Experimental result using JPEG compression on urban images.
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7 Validation of the CoDIFI Method
Experimentation using an independent NIIRS-assessment
method provides an empirical validation of CoDIFI.
Previous research has demonstrated the value of NIIRS-
based methods for assessing compression of imagery9 and
video data.45,8,46 Additional investigations have shown rela-
tionships between loss in image interpretability and objective
image metrics.35 The approach is to compare the NIIRS loss

as rated by expert human observers to predict NIIRS loss
reported by CoDIFI.

The imagery data used for validation are new images that
were not used in the development of CoDIFI. A set of still
frames were extracted from Air Force Research Laboratory’s
VIVID data set available from the Sensor Data Management
System.47 The VIVID data are described in Ref. 48 with
a video analysis in Ref. 49. The validation set consisted of

Fig. 13 Experimental result using JPEG2000 compression on urban images.

Optical Engineering 043108-10 April 2018 • Vol. 57(4)

Blasch et al.: Prediction of compression-induced image. . .



30 images extracted from the VIVID data set (Fig. 15).
Images ranged from NIIRS 4 to almost NIIRS 7 and included
a range of scene content, backgrounds, and viewing geom-
etries. For a given compression method, each of these “parent”
images were compressed at various compression ratios to
produce multiple compression products. Ratings by four
expert human observers quantified the delta NIIRS between
the parent image and each compressed image. Likewise,

CoDIFI generates a predicted NIIRS loss for each com-
pressed image. The comparison of these two ratings for
the images in Fig. 16 is the basis for the validation analysis.

Analysis using H.264 compression will demonstrate the
validation process. The approach is iterative in which vali-
dation analysis supports improvements in CoDIFI and sub-
sequent analysis confirms the improvement in performance.
The relationship between the CoDIFI-predicted NIIRS loss

Fig. 14 Experimental result using JPEG compression on rural images.
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and the expert observer delta-NIIRS ratings demonstrates
that the two values align well. A slope of 1 and an intercept
of 0 would indicate perfect alignment between the CoDIFI
predictions and the expert ratings. The regression analysis
yields a slope of 0.972, which is not statistically different
from 1 (t-statistic ¼ 0.718). The intercept value of 0.15,
which is statistically different from zero, is small in practical
terms. Visual inspection of the data confirms the strong

agreement shown by the regression model (Fig. 17)
(Table 3).

8 Conclusion
In this paper, we presented the CoDIFI-NIIRS framework
that can be employed to predict the compression-induced
image quality loss in terms of NIIRS. The CoDIFI model

Fig. 15 Experimental result using JPEG2000 compression on rural images.
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is built on an automated image analytic that estimates line
edge profiles on simulated edge images. The EPB approach
in turn estimates the NIIRS degradation based on the derived
GIDQE. Though our CoDIFI framework produces reason-
able results, it is not fully validated. Our validation analysis
demonstrates that CoDIFI predictions of NIIRS loss align
well with expert ratings from human observers.

Future efforts include assessing the timeliness of the
methods for automated systems, extensions with video
sequences subject to motion artifacts, blur,50 and resolution
changes, and applicability to image fusion.51
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