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ABSTRACT 
 GaN-based nanowire heterostructure arrays epitaxially grown on (001)Si substrates have 
unique properties and present the potential to realize useful devices. The active light-emitting 
region in the nanowire heterostructures are usually InGaN disks, whose composition can be 
varied to tune the emission wavelength. We have demonstrated light emitting diodes and edge-
emitting diode lasers with power outputs ~10mW with emission in the 600-1300nm wavelength 
range. These light sources are therefore useful for a variety of applications, including silicon 
photonics. Molecular beam epitaxial growth of the nanowire heterostructure arrays on (001)Si 
substrates and the characteristics of 1.3μm nanowire array edge emitting lasers, guided wave 
photodiodes and a monolithic photonic integrated circuit designed for 1.3μm operation are 
described.  

Keywords: III-nitrides, InGaN/GaN and InGaN/InGaN dot-in-nanowires, Lasers and detectors 
on (001)Si, monolithic photonic integrated circuit, molecular beam epitaxy 

1. INTRODUCTION 
III-nitride based nanowires and quantum-confined heterostructures have emerged as a 

promising nanostructured technology for the development of visible light emitting diodes 
(LEDs) and lasers [1]–[3]. Ga(In)N nanowires grown on (001) silicon by molecular beam 
epitaxy (MBE) are relatively free of extended defects compared to planar GaN grown on foreign 
substrates [4]–[9]. The nanowire geometry prevents the propagation of threading dislocations 
into the active region of the heterostructure because the free surface at the nanowire sidewalls 
allows for the elastic relaxation of the strain [10]. Therefore, threading dislocations generated at 
nanowire/silicon interface are expected to bend toward the sidewalls near the bottom of the 
nanowires (NWs) [11]. Auger coefficients measured in InGaN/GaN disks-in-nanowires are ~2-3 
orders of magnitude smaller than those measured in heteroepitaxial bulk materials [12]. This is 
important in the context of LED and laser efficiency at high injection currents. Achieving 
emission at longer wavelengths (green and beyond) with planar InGaN quantum wells (QWs) 
with high radiative efficiency is difficult. This is due to the strong polarization field and 
associated quantum-confined Stark effect (QCSE) [13], the presence of compositional 
inhomogeneities in the ternary alloys with high In composition [14], [15] and an increasing rate 
of non-radiative recombination due to the lack of confinement of carriers in the in-plane 
direction in the wells. It has been reported that the internal quantum efficiency of planar quantum 
wells decreases with an increase of emission wavelength at a rate of ~ 0.6-0.7% per nanometer 
[16]. In contrast, Ga(In)N nanowires and InGaN/GaN disks-in-nanowires (DNW) have reduced 
strain-induced polarization field even with high In compositions. This is due to the radial strain 
relaxation during their epitaxy resulting from their large surface-to-volume ratio. As a 
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