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ABSTRACT 

Traffic forecasting is one of the most important problems in the areas of intelligent transportation system, and it is the 

key link. It plays a major role in transportation service and navigation. However, urban traffic has its own characteristics, 

and the complex traffic system is highly nonlinear and stochastic, which makes traffic forecasting a very difficult 

problem. Although many previous methods can make the high performance for predicting in traffic forecasting, the 

existing research has not fully utilized the influence of spatial and temporal characteristics on prediction. In this article, 

we put forward a new model called Spatio-Temporal Multi-Attention Graph Network. Taking into account the similar 

features of traffic flow every day and the interaction between road network structures, the model takes advantages of the 

internal dependence between the dynamic spatial network and the time dimension information to improve accuracy of 

forecasting. Experimental results show that our model is nicer over the others, which has good performance and gain 

more precision prediction accuracy. 
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1. INTRODUCTION 

With the increasing complexity of actual traffic problems, the theories and methods of traffic prediction are still 

constantly renewal and development. Traffic forecasting is a very impotant issue in traffic control, it refers to the 

analysis of a large amount of historical data to predict the future traffic conditions as much as possible to help with traffic 

decisions to better control traffic and reduce traffic congestion. 

Long-term traffic flow forecasting is a very challenging task, which is determined by its high complexity, nonlinear time 

correlation, dynamic spatial correlation, and long-term accumulation of errors. With the development of science and 
technology, we can now obtain a large number of traffic time series data from the information collection equipment on 

expressways, which provides a good foundation for traffic big data forecasting. In the field of time series forecasting, 

traditional time-sequence analysis such as Autoregressive Integrated Moving Average (ARIMA)1 is still very popular, 

but it is difficult to deal with unstable and non-linear data. Recently years, the rapid growth of deep learning model has 

brought more possibilities, a lot of researchers have begun to use convolutional neural networks (CNN) in the feature 

extraction, but losing sight of spatiotemporal correlation. Defferrard et al.2 looks for potential data to find relations by 

Graph Convolutional Networks (GCN), but only for undirected graphs. Li et al.3 skilfully applies diffusion convolution 

to extract spatial features well, but the extraction of temporal features is not perfect.  

To attack the above problems, we propose a Spatio-Temporal Multi-Attention Graph Network (STMAGN), which has 

an appropriate architecture and gets good results. We extract the features of historical traffic data through the encoder, 

and the decoder uses the output sequences of previous structure. In order to reduce the impact of error propagation, we 

add a conversion layer before decoding. In this work, we use two mechanisms of attention to model the connection 
between time and space and gating them together to fuse information features. The multi-head attention is to discover the 

inherent correlation relationship of the time series from different angles. The model effectively captures the dynamic 

features and improves the prediction accuracy. 

2. PRELIMINARY 

We define the road network structure as a directed graph 𝒢 = (𝒱, 𝜀, 𝑊). Here, 𝒱 represents a collection of all nodes 
|𝒱| = 𝑁, indicating the connectivity among nodes. 𝑊 is the adjacency matrix representing the relationship among roads. 

The target of traffic forecasting is to use a large amount of historical data to predict various traffic parameters in the 
future, which is a standing dish question. Assuming we now have the information collected by the sensors on the road, 
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we use 𝑋𝑡 ∈ 𝑅𝑁×𝐶  to represents the observed traffic flow information, where 𝐶 represents various status information of 

the road. 

Given the observations of historical 𝑃 time steps X = (𝑋𝑡1
, 𝑋𝑡2

, ⋯ , 𝑋𝑡𝑝
) at 𝑁 vertices, our goal is to learn a sophisticated 

function 𝐹(⋅) to connect the future 𝑄 time steps with the historical 𝑃 time steps:  

[𝑋𝑡𝑝+1
, 𝑋𝑡𝑝+2

, ⋯ , 𝑋𝑡𝑝+1
] = 𝐹 ([𝑋𝑡1

, 𝑋𝑡2
, ⋯ , 𝑋𝑡𝑝

])                                                        (1) 

3. SPATIO-TEMPORAL MULTI-ATTENTION GRAPH NETWORK 

Figure 1 presents the whole structure of the STMAGN model mentioned in this article.  

 

Figure 1. Spatio-temporal multi-attention graph network. 

It is composed of an encoder-decoder structure and conversion layer. The encoder includes a spatio-temporal attention 
module with residual connection4 and an information fusion structure. The decoder includes a mask multi-head attention 

mechanism and gating structure. The conversion layer between them is responsible for converting the features extracted 

by the encoder into the decoder. 

Suppose we want to predict the data for a specific period of time, we will extract the time data of week, day and hour at 

the same time for modelling respectively to fully capture the periodicity of traffic flow. These inputs will be encoded by 

the encoder and transmitted to the conversion layer, and finally decoded by the decoder to obtain the output. 

3.1 Spatial-temporal embedding 

In practice, the evolution of traffic state will be affected by the basic traffic network structure, so it is necessary to build 

the network structure and input it into the prediction model. As shown in Figure 2, we model spatial dependence by 

associating traffic flow with diffusion process, which clearly captures the randomness of road network. 
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Figure 2. Spatio-temporal embedding. 

The characteristic of the diffusion process is a random walk on graph, and the restart probability is 𝛼, with a probability 

matrix of information transfer 𝐷𝑂
−1𝑊3. 𝐷𝑂 = 𝑑𝑖𝑎𝑔(𝑊). The matrix will restrain itself to an equilibrium probability 

condition 𝑃 ∈ 𝑅𝑁×𝑁. Teng et al.5 pointed out that the ultimate stable state can be obtained by the following: 

𝑃 = ∑ 𝛼∞
𝑘=0  (1 − 𝛼)𝑘(𝐷𝑂

−1𝑊)𝑘                                                               (2) 

where 𝑘 is the diffusion steps. In this work, we take the truncation of finite 𝑘 steps and model the spatial dependence by 

bidirectional diffusion. Hence, we can express spatial embedding in the following form: 

   𝑒𝑣𝑖
𝑆 = ∑ 𝜃𝑘((𝐷𝑂

−1𝑊)𝑘 + (𝐷𝐼
−1𝑊𝑇)𝑘)∞

𝑘=0                                                       (3) 

The spatial embedding only provides static representation and cannot represent the dynamic correlation. Therefore, we 

put forward another way, which encodes time dimension as a vector. We divide a day into 𝑁 parts, encoded the time 

steps into 𝑅𝑁 and 𝑅7 by one-hot coding and spliced into 𝑅𝑁+7, represented as 𝑒𝑡𝑗
𝑇 6. 

In our model, we both unify these features into 𝑅𝐷 through a fully connected neural module and fuse them as spatio-

temporal embedding (STE). Therefore, the STE includes both road network structure and time features. 

3.2 Multi-head attention  

Since the attention mechanism was proposed, it has been applied extensively in many fields. It can find out the 

relationship between them according to the raw data and extract the most important features. Multi-head Attention is to 

calculate the attention of the data in different subspace with the total number of parameters unchanged, and the last step 

is to merge the attention information in different subspace7. The dimension of each vector is reduced by this way when 
calculating the attention of each head and the over-fitting phenomenon is also avoided; because attention has different 

parameters in different subspace, Multi-head Attention looks for the correlation between sequences relations from 

different angles in fact. 

For the next state of node 𝑖 at time 𝑡, we update it with the sum of the corresponding weights of all nodes can be 

expressed as follow: 

𝐻𝑙 = ∑ 𝛼 ⋅ 𝐻𝑙−1                                                                                 (4) 

α is the attention score indicating the significance of node,𝐻𝑙−1  indicates the last hidden state and 𝐻𝑙  indicates the 

current state. Adopting the scaled dot-product approach7 to learn attention score. 

<𝑓1(𝐻𝑙−1‖(𝑒𝑣𝑖
+𝑒𝑡𝑗

))>,𝑓2(𝐻𝑙−1‖(𝑒𝑣𝑖
+𝑒𝑡𝑗

))>

√𝑑
                                                            (5) 
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where ‖  indicates the splicing process, (𝑒𝑣𝑖
+ 𝑒𝑡𝑗

)  represents spatio-temporal embedding vector, 𝑓1  and 𝑓2  are an 

activation function with two different parameters, 𝑑 is the dimension after vector splicing. Then, 𝜆𝑘 is normalized to α by 

SoftMax8, by splicing K attention mechanisms with different learning styles, we can get: 

𝐻𝑙 = ‖𝑘=1
𝐾 ∑ 𝛼 ⋅ 𝑓3(𝐻𝑙−1)                                                                (6) 

𝑓3  is another activation function. Therefore, we successfully capture the inner spatial relationship among nodes. 

3.3 Gate fusion 

In order to further integrate the spatio-temporal relationship, we designed a gated fusion module to adaptively fuses 

spatiotemporal information as shown in Figure 3. 

After the input passes through the spatial and temporal attention mechanism, the output is represented as 𝐻𝑆
𝑙 and 𝐻𝑇

𝑙 , 𝐻𝑆
𝑙 

and 𝐻𝑇
𝑙  merge into: 

𝑟𝑙 = 𝜎(𝑊1(𝐻𝑆
𝑙 ∥ 𝐻𝑇

𝑙 ) + 𝑏1)                                                                             

𝐻𝑙 = (1 − 𝑟𝑙)𝐻𝑆
𝑙 + 𝑟𝑙𝐻𝑇

𝑙                                                                    (7) 

where 𝑊1  and 𝑏1 are different learnable parameters, 𝜎 is the sigmoid function, 𝐻𝑆
𝑙  and 𝐻𝑇

𝑙  is the result of spatio and 

temporal attention. 

 

 

 

Figure 3. Fuse spatio attention and temporal attention information 
together.  

Figure 4. Control information transmission. 

3.4 Gating 

In order to make the final results obtain the characteristics of long-time period, we introduce a gating mechanism to 

correct the attention results as shown in Figure 4, so as to reduce the prediction error. 

In this way, the network model can not only remember the information of the past, but also selectively forget some 

inessential information and shape long-term relationships, the calculation process is as follows:  

𝑧1, 𝑧2 = 𝑠𝑝𝑙𝑖𝑡(𝜎(𝑊2(𝑋 ∥ 𝑖𝑛𝑝𝑢𝑡) + 𝑏2))  

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑡𝑎𝑛ℎ(𝑧1) ⊗ 𝜎(𝑧2)                                                                                            (8) 

where split means separating the output results, 𝑡𝑎𝑛ℎ is another activation function, the gating mechanism can combine 

the obtained output with historical information to get more accurately results. 

4. EXPERIMENTS 

4.1 Datasets 

We used our model to make traffic predictions on real data set PeMS-bay. In this data set, we take the traffic speed every 

five minutes and normalize the data to the interval [0, 1]. In order to build the road network, we calculate the paired road 

distance and use the threshold to construct adjacency matrix9 𝑊𝑖𝑗 = 𝑒𝑥𝑝 (−𝑑𝑖𝑠𝑡(𝑣𝑖 , 𝑣𝑗)
2

σ(−2))  if dist(𝑣𝑖 , 𝑣𝑗) ≤ δ , 

otherwise 0, where 𝑊𝑖𝑗  represents the weight of the adjacency matrix. 𝑑𝑖𝑠𝑡(𝑣𝑖 , 𝑣𝑗) indicates the distance between sensors. 

𝜎 is the standard deviation indicates the degree of dispersion of the distance, and 𝛿 is the limit value remove unnecessary 

data. 
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4.2 Result analysis 

In order to make the model results easier to understand, we visualize the experiments results. Figure 5 shows 

experimental results on actual traffic data set of the model. From these figures, we conclude that when the average road 

speed fluctuates little, the model can generate a relatively smooth curve to fit the road traffic conditions. Even if the road 

conditions change suddenly, the model can capture this change according to the spatio-temporal characteristics and 

generate more accurate prediction curve. 

      

 

Figure 5. Result on real data of PeMS-bay. 

4.3 Baselines and comparison 

We compare our model with other baselines. Table 1 shows the average results of traffic forecasting estimated 

performance in the next one hour. It can be seen that our STMAGN gets a good form in all aspects of all evaluation 

indicators, especially in the long-term prediction stage, it has achieved far better results than other models. In addition, 

we can observe that the results of traditional sequences approaches are not perfect in general, which shows that these 

methods have limited capacity for increasingly complex transportation systems. Through comparison, the methods on 

account of deep learning have generally achieved good results.  
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Table 1. Comparison of results between STMAGN and the others. 

 Horizon 3 Horizon 6 Horizon 12 

 MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE 

PEMS-BAY  

ARIMA 1.61 3.30 3.50% 2.32 4.78 5.42% 3.40 6.51 8.32% 

SVR 1.87 3.60 3.81% 2.50 5.17 5.52% 3.29 7.09 8.02% 

VAR 1.72 3.16 3.60% 2.30 4.26 5.02% 2.94 5.46 6.50% 

FNN 2.22 4.40 5.20% 2.28 4.65 5.41% 2.46 4.97 5.91% 

FC-LSTM 2.07 4.21 4.80% 2.21 4.55 5.22% 2.35 4.95 5.72% 

STGCN 1.37 2.96 2.89% 1.81 4.25 4.17% 2.49 5.70 5.81% 

DCRNN 1.37 2.95 2.91% 1.75 3.99 3.91% 2.07 4.72 4.92% 

ASTGCN 1.52 3.13 3.22% 2.01 4.27 4.48% 2.61 5.42 6.00% 

STMAGN 1.48 3.02 3.42% 1.73 3.73 4.14% 1.93 4.19 4.79% 

4.4 Effectiveness of each module 

In order to study the impact of each module, we evaluate in three different ways, like removing conversion layer or STE 

or gating from the model. Figure 6 shows the impact after removing these components, thus proving the effectiveness of 

each module. 

           

Figure 6. Effectiveness of each part of the model. 

The experimental results show that removing any module has an established impact on the final prediction accuracy, 

especially the accuracy of modules without STE is dropping fast. 

5. CONCLUSION 

In our work, we put forward a spatio-temporal multi-attention graph network (STMAGN) to predict traffic situation. 

Specifically, we use a spatial and temporal attention mechanism to simulate intricate traffic situations, and propose 

bidirectional diffusion convolution and one-hot encoding to capture the dynamic spatio-temporal features more 

effectively and integrate them together. In addition to the above methods, we also apply the conversion layer to avoid 

error accumulation and the gating mechanism to obtain more accurate output. Experiments on real data set show that the 

prediction accuracy of model has good prediction accuracy. 
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