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ABSTRACT

We propose a consistency-based material decomposition algorithm. The method is free from any calibration
procedure. The inverse spectral mixing model is approximated by a polynomial whose indeterminates are the
raw-data values and whose coefficients are estimated by minimizing a consistency-based cost function. The
consistency is in both the material sinograms and their mono-energetic combination. A small a priori on the
object is incorporated in the minimization problem as a constraint. The method was evaluated on dual-energy
simulations of a numerical phantom made of water and bone.
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1. INTRODUCTION

This work is related to projection-domain material decomposition of energy-resolved X-ray projections, which
aims to decompose energy-resolved projections onto a basis of material specific functions (Ref. 1). Since the
early work of Alvarez and Macovski (Ref. 2), it is known that the linear attenuation coefficient µ can be modeled
as a linear combination

µ(~x,E) =

M∑
m=1

am(~x)fm(E), (1)

of a small number M of energy-dependent basis functions fm. In Equation 1, fm can for example be the linear
attenuation of the material m (expressed in cm−1) and am(~x) the unitless proportion of material m at spatial
position ~x. In typical photon-counting detectors, several photon counters are maintained at different energy
ranges, based on pulse height analysis. We denote B the total number of energy bins. Each detector pixel
returns B measurements mb, modeled by the Beer-Lambert’s law:

mb =

∫ ∞
0

I0
b (E) exp

(
−

M∑
m=1

Amfm(E)

)
dE (2)

where I0
b (E) is the effective spectrum of the bin b and Am =

∫
L am(~x) d~x is the line integral of the material map

am along the X-ray path L. In other words, Am is the equivalent length of material m in the object µ along L.
In this work, the basis materials will be water and bone, so that M = 2 in the sequel.

By material decomposition, we mean recovering the coefficients Am from the measurements mb (or from their
log sb, see Equation 4 below). Several approaches have been proposed. A rigourous and natural way is to inverse
the forward model (m1, ...,mB) = Φ(A1, ..., Am) of Equation 2. This has been done with a maximum likelihood
approach in Ref. 3 further regularized in Ref. 4 or with a regularized least-square approach in Ref. 5. In all
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cases, the forward model needs to be known and the quality of the decomposition depends on the accuracy of the
model. In particular, the effective spectra need to be calibrated, e.g. with a spectrometer for the source spectrum
and monochromatic sources for the detector response. To avoid such a cumbersome procedure, it is possible to
calibrate a parametric model either of the direct mapping Φ (Ref. 2) or of the inverse mapping (A1, ..., AM ) =
Φ−1(m1, ...,mB) (or Φ−1(s1, ..., sB)). In Ref. 6, the measured attenuations are related to the coefficients Am via
a polynomial model. The polynomial coefficients are learnt from a set of calibration measurements at various
combinations of basis material lengths, which cover the range of length combinations that will be present in
the imaged object. This procedure only requires a specific calibration phantom with known thicknesses of the
basis materials but it is a time-consuming procedure. In Ref. 7, the authors introduce an empirical dual-energy
material decomposition method. It is three-step: first, a calibration phantom, made of the basis materials, is
scanned. Second, the reconstructed phantom image is segmented and regions of interest (ROI) of each material
are selected. Third, the coefficients of a polynomial approximation of the inverse mapping Φ−1 are estimated
so that the reconstruction obtained by applying the polynomial coefficients to the measures fits the segmented
ROIs. The procedure is called empirical because the inverse mapping Φ−1 is indirectly estimated to retrieve the
Am from the mb measurements without knowing I0

b .

The aim of the project is to avoid the calibration scan in the material decomposition. The polynomial coef-
ficients of the inverse mapping are estimated by enforcing data consistency conditions on the material-specific
sinograms. Consistency conditions have been successfully used in a number of CT artefacts correction problems,
e.g., geometric calibration, beam-hardening correction, scatter correction. In this paper, we consider 2D par-
allel geometry only and its corresponding set of consistency conditions known as Helgason-Ludwig consistency
conditions. The proposed method does not require a calibration scan, only the scan of the object of interest.
The decomposition of the sinograms is exclusively based on the raw data, plus a tiny a priori knowledge on the
object.

2. THEORY

The method minimizes a consistency-based cost function (subject to some constraints) which is described in this
section. For simplicity, we focus on a 2D parallel scanning geometry. Projections are acquired over a 180 degree
angular range. In a coordinate system (O, x, y), we denote the projection angle θ (due to discretization, θ is
assumed to vary in a set of discrete values Θ, whose cardinal is denoted |Θ|) and the corresponding unit vector
~θ = (cos θ, sin θ). The latter indicates the direction of the 1D linear detector, which is placed perpendicular to
the direction of the X-rays. Position along the detector is denoted p (again, due to discretization, we denote δp
the detector spacing and P the finite set of all pixel positions). Without loss of generality, we assume that the
center of the detector is at the origin O of the coordinate system, that it rotates around O and that the object
of interest fits the resulting field of view. At projection angle θ, the X-ray line L(θ, p) intercepted at position p

of the detector has equation ~x · ~θ = p.

2.1 Photon-counts and attenuations

Assuming a photon counting detector with B bins and according to Equation 2, the photon counts may be
corrupted with Poisson noise. The measures become

m∗b(θ, p) ∼ Poisson(mb(θ, p)). (3)

We only use mb(θ, p) in the rest of the paper and explicitely indicate wether data are corrupted with noise. The
projections are then log-transformed according to

sb(θ, p) = − log

(
mb(θ, p)

m0,b(θ, p)

)
, (4)

where m0,b is the number of photons without object.
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2.2 The polynomial model

We look for a a simplified model of the inverse mapping (A1, ..., Am) = Φ−1(s1, ..., sB). We choose a polyno-
mial model. Each material sinogram Am is approximated by a polynomial ψm,D of degree D in the variables
(s1, ..., sB). Formally,

Am ≈ ψm,D(s1, ..., sB) =
∑
|k|≤d

ckms
k (5)

where k = (k1, ..., kB) is a multi-index, |k| = k1+...+kB and sk = sk11 ...s
kB
B . We define N(D,B) the total number

of coefficients of a polynomial of degree D in B variables, e.g., N(2,2)=6 and N(3,2)=10. Note also that the
coefficients ckm must be determined for each basis material m. If D, B and M are fixed, M×N(D,B) coefficients
have to be determined. For example, if B = 2, M = 2 and D = 3, we seek 2 ×N(3, 2) = 20 coefficients. Note
that the same polynomial is applied to all the pixels of the sinogram Am, i.e., that the source spectrum and the
detector response are uniform over the beam and the detector, respectively.

2.3 The consistency metric

In 2D parallel geometry, the sought Am are the Radon transform of the material map am

Am(θ, p) =

∫
L(θ,p)

am(~x) d~x =

∫
R
am(p~θ + q~θ⊥) dq (6)

where ~θ = (cos θ, sin θ) and ~θ⊥ = (− sin θ, cos θ) are perpendicular.

To account for the spectral nature of the decomposition problem, we combine the material sinograms Am
into mono-energetic sinograms Cn, in view of applying the consistency metric to them. We choose N energy
levels En in the energy range of the source and form the mono-energetic sinograms Cn

Cn(θ, p) =

M∑
m=1

fm(En)Am(θ, p). (7)

The coefficients fm(En) are known (see Equation 1).

A consistency condition of the Radon transform states that the integral of each projection (the order-0
moment) does not depend on the projection angle θ since each of these integrals equals the integral of the
attenuation coefficient over the object. We define the moment Jn(θ) of the Cn by

Jn(θ) =

∫
R
Cn(θ, p) dp =

N∑
n=1

fm(En)

∫
R
Am(θ, p) dp (8)

We use the variance of Jn to evaluate if Jn is constant over Θ. The consistency function hence reads:

`n(c) =
1

|Θ|
∑
θ∈Θ

(Jn(θ)− Jn(θ))2 (9)

where Jn(θ) denotes the mean of Jn over all θ. Note that the function `n depends on the polynomial coefficients
c =

(
ckm
)

since all Am do (see Equation 5). Finally, we define M consistency functions `′m(c) on the material
sinograms Am in a similar way. The final consistency metric accumulates the consistency of all computed
mono-energetic sinograms and all material-specific sinograms

`(c) =

N∑
n=1

`n(c) +

M∑
m=1

`′m(c) (10)

The consistency metric would evaluate to zero on perfectly consistent material sinograms.
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2.4 Minimization

Due to the hardening of the beam in each bin (see e.g. Ref. 8), the measured attenuations sb do not satisfy the
consistency condition. The loss ` is minimized with respect to the coefficients c to achieve mono-energetic and
material sinograms which are as consistent as possible.

Since we use only order-0 consistency conditions, a constant sinogram (i.e. Am(θ, p) = constant for all θ
and p) is perfectly consistent. To prevent the minimization to output such undesirable solution, we follow the
idea of Ref. 8 and constrain the minimization by some known values. First, if there is no attenuation in all bins
(sb = 0,∀b ∈ {1, ..., B}), we enforce 0 in all material and mono-energetic sinograms by setting c0m = 0 for all m.
Second, there still is a trivial solution to the minimization of the consistency loss function: the null sinogram. We
enforce, for each material m, a particular value in one voxel of each reconstructed material map am. To this end,
a small sample of each material is placed in the field-of-view and a reconstruction from raw data is computed.
The small samples are easily identifiable in the reconstruction. Let ~xm be one voxel in each material sample and
assume reconstructions are computed with a standard Filtered Backprojection (FBP) algorithm. Since FBP is
a linear operation, one has

am(~xm) = FBP

∑
|k|≤d

ckms
k

 (~xm) =
∑
|k|≤d

ckmFBP(sk)(~xm). (11)

The values FBP(sk)(~xm) are easily computed once, before the minimization. Each material map is constrained
by exactly M relations, which take the form∑

|k|≤d

ckmFBP(sk)(~xm′) =

{
0 if m 6= m′

1 if m = m′
(12)

3. NUMERICAL EXPERIMENTS

3.1 Simulation of data

Numerical experiments used a 2D phantom made of an outer water disc of diameter 32 mm and five bone inserts
(with diameters ranging from 2 to 5 mm), placed inside the water disc (see Figure 2). Two tiny inserts of bone
and water (1 mm in diameter each) were placed outside the phantom. One voxel in each insert was chosen for
the constraints. The material sinograms Am were analytically computed with RTK (Ref. 9). The simulated
sinograms had 700 pixels with 0.05 mm spacing and 720 projections over a 180◦ angular range. Two effective
spectra were used. The low-energy (LE) and high-energy (HE) spectra had a tube-voltage of 80 keV and 120 keV
respectively (Figure 1). Without object, the detector received a total number of photons of 1.3×106 and 2.9×106

photons for the LE and HE spectra respectively. The photon counts mb were computed by applying Equation 2,
then log-transformed according to Equation 4.

The degree of the sought polynomials was fixed to D = 3 and the consistency metric Equation 10 was
minimized under the constraints defined above, with the Sequential Least Squares Programming algorithm.
The total number of estimated polynomial coefficients was 18. The initial guess was always set to zero for all
coefficients.

3.2 Evaluation methods

Our method was compared to the calibration from a set of dedicated measurements with the same LE and
HE spectra over a set of water and bone lengths. The set covered all combinations which were present in the
phantom. More precisely, 100 equi-spaced lengths of each material were measured. Water lengths ranged from 0
to 32.6 mm and bone lengths ranged from 0 to 10.97 mm. All these combinations were irradiated with the same
LE and HI spectra as the phantom. Then the polynomials ψ̃m,D were fitted to the calibration data and further
applied to the phantom data to produce a reference polynomial decomposition.

We compared the poly-energetic reconstructions from raw-data with mono-energetic images computed from
our DCC-based material maps and from the reference calibrated material maps.
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Figure 1. The low-energy (LE) and high-energy (HE) spectra.

4. RESULTS

4.1 Noise-less data

Results of the decomposition are shown in Figure 2. Water and bone are adequately separated. The profiles in
Figure 2 (bottom row) indicate residual cross-talk between the two material maps. In the center of the water
phantom, the low-constrast feature is visible.

Since the consistency is enforced on the mono-energetic images, Figure 3 compares poly-energetic images,
DCC-based and calibration-based mono-energetic images. Poly-energetic images clearly suffer from severe beam-
hardening, which is almost completely corrected on both mono-energetic images. The profiles presented in Fig-
ure 4 reveal that the DCC-based and calibrated 40 keV images can hardly be distinguished. A slight discrepancy
between the 80 keV images still subsists though, especially in the vicinity of the border of the phantom.

4.2 Robustness to noise

The photons count measurements mb were corrupted with Poisson noise according to Equation 3. The reference
photon flux is given by the spectra in Figure 1, i.e. 1.3× 106 and 2.9× 106 photons for the LE and HE spectra
respectively. The noise level was set by reducing the total number of emitted photons by a factor 1, 10 and 100.
The influence of noise on the material maps is presented in Figure 5. The quality of the images is significantly
degraded. The consistency function value at convergence increases with the level of noise. It is 0.2108 for reference
noise level (factor 1), 1.4738 at factor 10 and 12.815 at factor 100. We expect the choice of the reference voxel
to play a critical role in the presence of heavy noise.

5. DISCUSSION AND CONCLUSION

We have demonstrated a consistency-based material decomposition, which does not require any calibration
procedure. Only the raw data and a tiny a priori knowledge on the object are sufficient to produce material
specific sinograms. This tiny a priori can be implemented in practice by placing inserts in the field-of-view of
the scanner. The resulting sinograms are free from beam-hardening. The method achieves (on simulated data)
results that are close to those obtained with a standard calibration-based decomposition method.

The influence of the choice of the reference voxels in the reconstruction may play a critical role and should
be further investigated. By choosing a voxel in the reconstruction as a reference, we indirectly incorporate in
the constraint all the projections values from lines passing through the voxel (with filtered back-projection, all
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Figure 2. Top: Material map obtained with the DCC-based decomposition. Grayscale is : 1 ± 0.3. The red line indicates
the profile used in Figure 4. Botoom: Profiles along the red line for the DCC-based and the calibrated water (left) and
bone (right) maps. The consistency metric at convergence was `(c) = 0.0208. If evaluated on the calibrated sinograms,
the consistency function was 0.0018.

the lines are incorporated but the ramp filter drops rapidly, so mainly the lines through the voxel are). If those
lines “see” a wider range of length combinations, we expect that the decomposition is improved.

Finally, we used a parallel geometry for its simplicity. But order-0 DCC are also available for divergent beam
3D data. In Ref. 8, they use such DCC to correct beam-hardening in a circular acquisition. We expect that the
decomposition method presented in this work generalizes to multi-energy divergent projections.
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Figure 4. Profile poly-energetic reconstructions from raw data and from mono-energetic images computed from DCC-based
and calibrated material maps.

Figure 5. Mono-energetic images at 40 keV (top) and 80 keV (bottom), for Poisson noise with photon counts donwscaled by
a factor 1, 10 and 100 (from left to right). Grayscale for all images : 0± 250HU. The consistency function at convergence
was `(c) = 0.2108, 1.4738, 12.815 for factor 1, 10 and 100 respectively.
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