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ABSTRACT

Quantum metrology utilizes nonclassical states (of light) to outperform the accuracy limits of its classical coun-
terpart. We demonstrate the relevance of photon number Fock states and polarization entanglement for the
experimental realization of interferometric quantum metrology applications.
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1. INTRODUCTION

One objective of metrology is to determine macroscopic (classical) observables such as position, momentum or
interferometric phase with high precision. Obviously, the accuracy of the measurement outcome is restricted
by the method used. Quantum metrology exploits specific quantum physical features such as entanglement1 or
non-classical states (of light)2 to achieve a performance beyond the capabilities of a classical measurement device.
Such “quantum advantage“ has within recent years also been discovered in the field of quantum communication
and quantum information-processing. There, quantum entanglement is utilized to achieve communication and
computational tasks that outperform their classical counterparts. Well known examples include quantum state
teleportation,3, 4 quantum dense coding,5, 6 quantum cryptography7–10 and quantum computing.11 Further
examples are entanglement-assisted classical communication12, 13 to enhance the communication capacity in a
noisy environment or methods to exploit the computational advantages provided by quantum entanglement for
communication complexity problems.14–16 Note that in all these quantum-enhanced schemes, entanglement
is combined with specific projective measurements to achieve an advantageous performance over their classical
analogues.

In the following, we will discuss the specific example of how to use path-entangled photon number states,
so called “NOON- states“, to achieve better than classical performance for interferometric measurements. In
particular, we have utilized 2- and 4-photon states from spontaneous parametric down conversion (SPDC) to
demonstrate pure 2- and 4-photon interferometry as a tool for quantum metrology.

2. PHOTON NUMBER STATES IN QUANTUM METROLOGY

Photon number “Fock“-states are nonclassical states of light2 with a well-defined photon number per optical
mode, that have direct applications in quantum metrology. For illustration, consider the situation in a Mach-
Zehnder interferometer (see Figure 1a). There, single-photon interference occurs due to the superposition of two
modes of propagation a and b for a single particle after entering the interferometer at the first beamsplitter.
The path length difference ∆x induces a phase shift ∆φ and gives rise to observable (single particle) interference
in each of the two output modes da and db with detection probabilities Pa ∝ 1 + cos∆φ and Pb ∝ 1 − cos∆φ,
respectively. Therefore, the normalized intensity at the output port can serve as a direct measure for the optical
path length difference (modulo the wavelength λ of the probe photons) or also for measuring the position of the
mirror M, if all other mechanical elements are considered fixed. In general, the sensitivity of this measurement is
always ultimately limited by the noise characteristics of the probe state within the interferometer. For example,
when using coherent states, i.e. a ”classical” laser beam, as input to the interferometer, the phase sensitivity
∆φ is eventually (shot noise) limited by the quantum phase fluctuations of the coherent probe state.17 Since
these fluctuations enter directly as measurement errors, ∆φ decreases only with 1/

√
< n > when increasing the
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average photon number < n > in the coherent state. In other words, when doubling the laser intensity, the mea-
surement accuracy only increases by

√
2. Obviously, this situation is equivalent to sampling < n > independent

results of a true single particle interference experiment as described before.18 This seems to be a non-optimal
use of resources. In fact, the situation changes for the quantum metrology case when using N-photon states.
By employing higher-order interference effects and consequently quantum entanglement, one can achieve a more
optimal scaling with ∆φ ∝ 1/N .

To see the origin of this advantage more clearly, we focus on the case of an N-particle Mach-Zehnder inter-
ferometer, in which the photons within the interferometer are in a superposition of being in either mode a or
b, which corresponds to a ”NOON”-state of the form 1√

2
(|N〉a|0〉b + eiNφ|0〉a|N〉b), where |N〉a(b) indicates the

N-particle Fock state in spatial mode a(b), N = 0 being an empty mode. In other words, the paths are entangled
in photon number. Due to the fact that phase variations act on N photons simultaneously, the N-photon detec-
tion probability in each of the interferometer outputs is now given by PN ∝ 1 + cosN∆φ, which corresponds to
a N-fold reduction in the wavelength of the interference oscillations ∗. As a consequence, not only the resolution
of the phase measurement is increased, but also the achievable accuracy ∆φ demonstrates a stronger scaling
behavior. When increasing the particle number N in the NOON-state, the phase sensitivity increases with 1/N ,
which is a “quantum gain“ of 1/

√
N compared to the classical case of coherent states. When doubling the photon

number, the accuracy of the measurement is also doubled.

Other interferometric quantum metrology methods that do not rely on NOON states can also achieve this
enhanced scaling behavior. Prominent examples are number-state based correlated input port interferometry
(with separable or entangled inputs)21–24 or squeezed coherent state interferometry.25, 26

A simple understanding of this scaling behavior can be obtained from the “Dirac-relation“ ∆N ∝ 1/∆φ
between the photon-number uncertainty ∆N and the phase uncertainty ∆φ in a light field27 †. Applied to the
state propagating through the interferometer: a quantum state (of light) with maximal relative number uncer-
tainty ∆N between the modes will obviously minimize its inherent fluctuations ∆φ in phase difference and is
thus optimally suited for interferometric metrology measurements of the above type. This is obviously fulfilled
by NOON-states. Specifically, the NOON-state’s relative photon number uncertainty is ∆N = N , which yields
the wanted scaling behavior ∆φ ∝ 1/N . In contrast, a coherent state entering the interferometer with a mean
photon number < n > will retain its photon statistics, which asymptotically results in relative number fluctu-
ations ∆N ∝ √

n and thus ∆φ ∝ 1/
√

n. For other input states, an explicit calculation of the relative number
uncertainty (∆N)2 =< N2 > − < N >2 (with N = Na −Nb) of the state propagating within the interferometer
can be performed to investigate the scaling behavior and thus to test for a quantum advantage of the probe state
used. For example, in the case of correlated input port interferometry, the initial input state entering the two
input ports A and B of the first Mach-Zehnder beamsplitter is |N/2, N/2〉A,B. It is a straightforward calculation
to show the asymptotic scaling ∆N ∝ N necessary to achieve the wanted quantum metrology phase sensitivity.
Although this sensitivity is typically referred to as the Heisenberg-limit due to its relation to quantum noise fluc-
tuations, it can be seen from above that, for the photon case, it is helpful to also bear in mind the Dirac-relation.

To make optimal use of photon number states for quantum metrology, state engineering is necessary to
achieve states that propagate within the interferometer with minimum relative phase uncertainty ∆φ (and
therefore maximum relative number uncertainty ∆N). The most obvious example being the NOON-state with
large photon number N. The special case of N = 2 has already been realized in several experiments.28–30 It was
commonly believed that the realization for states with N > 2 requires the use of non-linear gates31 or additional
”ancilla” detectors with single-photon resolution.32 Unfortunately, each of these schemes is not feasible with
current technologies. Only recently, this limit has been overcome by two different approaches based on linear

∗It has therefore been suggested19 to attribute an effective de Broglie wavelength λ/N to the quantum state, in analogy
to interference with large molecules consisting of N atoms.20

†For the case of a photon number state, ∆N = 0 and the phase is thus maximally undefined.
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Figure 1. Schematic drawing of a single-photon Mach-Zehnder interferometer (a) and a two- and four-particle interfer-
ometer (b). The phases are changed by varying the path-length via the position ∆x of the mirror M. In the Mach-Zehnder
case, single-photon interference occurs due to superposition of two possible modes of propagation a1 and b1 for a single
particle entering the interferometer at the first beamsplitter (BS). Two-photon interference can be achieved by using the
emission of time-correlated photon pairs from a source (EPR) into spatially separated pairs of modes a1-a2 or b1-b2. A
pair wise recombination of beams a and b results in maximally path-entangled two-photon states, which lead to perfect
two-photon interference fringes when varying the length of the paths ∆x.

optics.33–35 In the following, we will present one of the schemes33 and demonstrate how to utilize higher photon
number states for quantum metrology for the specific example of N = 4.

3. EXPERIMENTAL 4-PHOTON NOON STATES WITH LINEAR OPTICS

Our approach is based on separating photon pairs into different pairs of modes and using nonlocal polarization
correlations rather than distinguishing photon numbers or employing nonlinear beamsplitters. We allow 4 photons
to propagate along two spatially separated pairs of modes, where in the ideal case each mode is occupied by
two photons. This is in analogy to the original proposal for two-particle interferometry by Horne, Shimony and
Zeilinger,36 where one pair of particles is spatially separated into two pairs of modes to generate intrinsic two-
particle entanglement in the form of two-photon NOON-states. In their case, two-particle interference can be
observed by pair-wise recombining the beams interferometrically (see Figure 1b) and measuring the two photons
simultaneously. The observed interference37 is due to the fact that after the beamsplitter one cannot distinguish
which path (here: pair of modes) was taken by the two-photon object. Similarly in our case, when four photons
are distributed over two pairs of modes one would expect 4-photon interference if the photons overlap at the
beamsplitters in such a way that no information of their path can be obtained. The required measurement is
then a 4-fold coincidence detection in the four output modes a3, a4, b3 and b4. In contrast to other proposals,
we do not need additional beamsplitters and/or detectors with single-photon resolution.38

To achieve this goal, we exploit type-II SPDC.39 An ultra-violet pulse passes through a beta-barium-borate
(BBO) crystal, probabilistically producing pairs of energy-degenerate polarization-entangled photons into the
spatial modes a1 and a2 (see Figure 2), described by the Hamiltonian HΦ+ ∝ (a†

1Ha†
2H + a†

1V a†
2V ). The

pulse is then reflected back through the crystal with the same interaction but producing a state described by
HΨ+ ∝ (a†

1Ha†
2V + a†

1V a†
2H). This means that the setup is aligned to produce the maximally entangled state

Φ+ = 1/
√

2(|HH〉a1a2 + |V V 〉a1a2) for each of the pairs generated into the pairs of modes a1-a2 and the state
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Figure 2. Experimental setup for a one-, two- and four-photon interferometer (from33). A UV-pulse passes through
a beta-barium borate (BBO) crystal twice, each time generating a frequency-degenerate, polarization-entangled photon
pair with probability p, and two pairs with probability p2. 3nm bandwidth filters (F) in front of each detector assure the
overlap of the photon-wavepackets at the polarizing beamsplitters (PBS). The UV-pump is reflected by mirror M1, which
is mounted on a computer-controlled translation stage. By scanning the position ∆x of M1 with a step size of 1 µm and
performing fine adjustment of the position of M2, we achieved the temporal overlap of modes a1 and b1, and of modes
a2 and b2. An additional piezo translation stage is used to move the mirror M1 and to perform a fine scan around the
region of the best overlap. Detecting 4-photon coincidences behind a 45◦ polarizer (Pol) while varying M1 leads to the
observed interference fringes.

Ψ+ = 1/
√

2(|HV 〉a1a2 + |V H〉a1a2) into the pairs of modes a1-a2. Here H and V indicate horizontal and vertical
polarization of the photon.

We first consider the case where only one pair of entangled photons is emitted on a double pass of the UV pulse
through the crystal. There are two probability amplitudes which will contribute to the emerging two-photon
state, i.e. either the pair is emitted into the pair of modes a1-a2 or into the pair of modes b1-b2, resulting in the
two-photon NOON-state |Ψ〉 ∝ (|2〉a1a2|0〉b1b2 + ei2∆φ|0〉a1a2|2〉b1b2). This scheme can be generalized to the case
of four photons and even arbitrary photon numbers, if we take into account higher orders of the emission pro-
cess. Consider the case where two pairs of photons are emitted on a double pass of the pump beam through the
crystal. There are three possibilities which will equally contribute to the overall 4-photon state: (1) a 4-photon
state can be emitted into the mode pair a1-a2 via the process HΦ+ , (2) a 4-photon state can be emitted into the
mode pair b1-b2 via the process HΨ+ , and (3) two pairs are emitted into the pair of modes a1-a2 and b1-b2.
The overall 4-photon state is therefore given by |Ψ〉 ∝ (|4〉a1a2|0〉b1b2 + ei4∆φ|0〉a1a2|4〉b1b2 + ei2∆φ|2〉a1a2|2〉b1b2).
Finally, in order to suppress the unwanted contributions |2〉a1a2|2〉b1b2, we exploit the nonlocal polarization cor-
relations of the prepared state. Explicitly, we use two polarizing beamsplitters to perform a bilateral parity
check on the polarization40: for the Φ+-Bell state both photons are always transmitted or reflected, while for
the Ψ+-Bell state one photon is always transmitted and one is reflected, such that no interfering amplitudes
for two-fold detection events can build up. Only a double-pair emission on each side, where a four-photon is
emitted either forwards or backwards, contributes to the 4-photon state after the PBS and gives rise to pure
four-photon interference. Consequently, the overall state contributing to our detection signal can be written as
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Figure 3. Experimental demonstration of one-(a), two-(b) and four- photon (c) NOON-state interferometry (see text
and also33).

|Ψ〉parity ∝ (|4〉a1a2|0〉b1b2 + ei4∆φ|0〉a1a2|4〉b1b2), which is the wanted 4-photon NOON state.

Figure 3 compares the observed 4-photon interference effect (Figure 3c) with the single-photon interference
(Figure 3a) as were obtained with the same setup. Note that the parity check also suppresses all 2-photon
interference contributions. For comparison, two-photon interference data obtained with (Figure 3b right) and
without (Figure 3b left) parity check is also shown. Fits to the data reveal a subsequent reduction of the os-
cillation wavelength from 823 ± 46 nm for the single-photon case over 395 ± 16 nm for the 2-photon case and
194 ± 9 nm for the 4-photon case. This corresponds to a deviation of 4% from the expected halving of the
wavelength for single-particle to 2-particle interference and of 2% for 2-particle to 4-particle interference. The
deviation is within the limits given by the thermal long-term stability of our interferometric setup.

Our four-photon state has the additional interesting property that it is nonlocal as it is a superposition of four
photons either in mode a1 and a2 or b1 and b2. In principle, this can be extended to higher-order interference
effects because, obviously, when more than two double-pairs are emitted from the crystal the suppression of all
lower-order interferences can be achieved by a proper projection analogous to the N=4 case.

4. CONCLUSION

To conclude, we have demonstrated how SPDC and polarization entanglement can be utilized to create nonlocal
photon number ”NOON” states, which are important for quantum metrology applications. From a more general
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point of view, one may ask whether quantum metrology would also yield a thermodynamic advantage in the
context of measurements. As was demonstrated for the example of a Mach-Zehnder interferometer, quantum
metrology allows to use less resources (i.e. photons within the probe state) to obtain the same amount of
information of a physical system (i.e. mirror position with a certain accuracy). This might provide novel insights
also for measurements on quantum states and quantum heat engines. Possibly, quantum metrology methods are
required for such devices to achieve optimal performance.
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