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Abstract. The ability to image and quantitate fluorescently labeled
markers in vivo has generally been limited by autofluorescence of the
tissue. Skin, in particular, has a strong autofluorescence signal, par-
ticularly when excited in the blue or green wavelengths. Fluorescence
labels with emission wavelengths in the near-infrared are more ame-
nable to deep-tissue imaging, because both scattering and autofluo-
rescence are reduced as wavelengths are increased, but even in these
spectral regions, autofluorescence can still limit sensitivity. Multispec-
tral imaging (MSI), however, can remove the signal degradation
caused by autofluorescence while adding enhanced multiplexing ca-
pabilities. While the availability of spectral “libraries” makes multi-
spectral analysis routine for well-characterized samples, new software
tools have been developed that greatly simplify the application of MSI

to novel specimens. © 2005 Society of Photo-Optical Instrumentation Engineers.
[DOI: 10.1117/1.2032458]

Keywords: spectral imaging; in-vivo imaging; fluorescence; small animals; quantum
dots; autofluorescence removal.

Paper 05064SSR received Mar. 7, 2005; revised manuscript received May 11, 2005;

accepted for publication May 23, 2005; published online Aug. 30, 2005.

1 Introduction

Noninvasive in-vivo imaging of small animals is a rapidly
growing field, with new technologies and techniques being
constantly developed. MR, PET, and CT imaging systems
specifically designed for small animals are commonly used in
research, and are a ubiquitous part of core research imaging
facilities. Due both to the generally high cost of these of sys-
tems, and to the molecular specificity and multiplexing prom-
ise of optical imaging, a great deal of effort has been put into
developing the latter.'™ Both bioluminescence and fluores-
cence imaging systems have been available on the market for
some time. However, while bioluminescence imaging has be-
come standard methodology in many research laboratories,
fluorescence imaging has not, despite having several potential
advantages over bioluminescence imaging, such as the ability
to multiplex fluorophores, the lack of a need for timed injec-
tions of substrate, and the potential to use labeled antibodies
and other probes. Although the potential utility of in-vivo
fluorescence imaging has been clearly shown,*™ except in the
cases of extremely bright fluorescent markers it has remained
a contrast-limited technique. Autofluorescence, also known as
background or tissue fluorescence, poses a significant problem
in many situations.” Small-animal imaging encounters autof-
luorescence primarily from components in skin (collagen,
which fluoresces green) and food (chlorophyll breakdown
products, which fluoresce in the red®). These can prevent de-
tection of low-intensity signals in the visible range.
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1.1 Previous Solutions

Various solutions have been proposed for the reduction or
elimination of autofluorescence.” These include using narrow
bandpass emission filters in an effort to isolate the desired
fluorescence signal, and the use of labels that can be excited at
wavelengths in the near-infrared (NIR) that are much less
likely to induce autofluorescence.'” However, in many cases,
these approaches may be infeasible, and none of them fully
eliminates the problem.

1.2 Multispectral Imaging

Spectral imaging delivers a high-resolution optical spectrum
at every pixel of an image. This capability provides useful
information beyond that which can be captured using color
cameras, or monochrome cameras combined with one or a
handful of conventional interference filters. There are a num-
ber of ways of acquiring spectral datasets.'’ The approach
illustrated here involves imaging a sample through a liquid
crystal tunable filter (LCTF) that can be set to allow only light
of a narrow bandpass (plus or minus 10 to 20 nm) to reach
the camera; the peak position of this bandpass can be rapidly
switched to any other position within milliseconds with about
1-nm precision.'>"? A series of images (typically 10 to 20) of
a particular field can thus be rapidly acquired at different
wavelengths to create a spectral data “cube,” in which the
three dimensions are x, y, and wavelength (or lambda). In this
cube, a spectrum is associated with every pixel. The resulting
data can be used to identify, separate, and remove the contri-
bution of autofluorescence in analyzed images, as well as to
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enable imaging of a multiplicity of signals; the entire process
can be completed in a matter of seconds.*

1.3 Spectral Unmixing

Since fluorescent light emissions combine linearly, mixtures
of signals can be mathematically disentangled (or unmixed),
as long as the spectrum of the desired signal(s) and that of the
autofluorescence or other components are known or can be
deduced from the data, yielding images that reflect the abun-
dance of each component isolated from the others. Since au-
tofluorescence can be considered simply as another spectral
signal, it can be unmixed away from exogenous labels. Spec-
tral unmixing algorithms need to be adapted from generic
least-squares fitting to reflect the particular nature of the task;
basically, negative weightings of component abundances
should be avoided, for example,15 and the abundances are
constrained to sum to 100%.

Very similar spectra can be unmixed quantitatively from
each other. With reasonably non-noisy spectra, even signals
with peak emissions that differ no more than 2 to 3 nm can
be effectively unmixed (data not shown). Moreover, since
spectral analysis uses information from the entire measured
spectrum, even spectra that have identical peak maxima but
different “shoulders” can be separable. A recent publication
provides a useful recent discussion on the effect of spectral
sensor resolution, signal-to-noise, and spectral similarity be-
tween signals on unmixing success.'

1.4 Quantitation

Because of the complexities of fluorescence excitation and
emission measurements in deep scattering and absorbing tis-
sue, it should be recognized that the intensities projected to
the surface (which is what most current imaging systems mea-
sure) bear a complex relationship to actual target volume and
intensity characteristics. Nevertheless, the simplicity and
speed (which translates to achievable throughput) of surface
measurements, as opposed to full 3-D imaging approaches,
make 2-D projection imaging the technique of choice for most
purposes. Various strategies have been applied to extracting
meaningful data from surface intensities, including relating
the thresholded signal areas or fluorescence intensity”’18 to
measured tumor volume. In either case, it is clear that without
first removing the autofluorescence, it would be difficult to
achieve reliable quantitative metrics.

1.5 Component Spectra

Unmixing as described here reflects the application of math-
ematical approaches used for many years in nonimaged-based
spectroscopy of chemical mixtures, spawning a field called
chemometrics. In one sense, spectral imaging is just chemo-
metric analysis on a spatially arranged 2-D array of spectra.19
Key to the algorithms that are involved is the ability to mea-
sure directly or deduce an accurate spectrum for each compo-
nent in a mixture.”” While this can be easy for defined chemi-
cal mixtures (since often the spectra of these components can
be measured in isolation), chemical reactions can spawn novel
or transient species whose spectra cannot be measured in a
pure state. Various mathematical techniques have thus been
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developed for detecting such novel or uncharacterized entities
and extracting their spectra even in the constant presence of
other components.”'

The same problem exists for multispectral imaging in vivo,
for which accurate unmixing requires knowledge of the spec-
tra of the components present in the sample. Autofluorescence
is relatively easy to measure, since one can image a control
animal containing no exogenous fluorescent labels. There are
typically many sources of autofluorescence in animals and
tissue samples, so the collected spectra represent an ensemble
of constituents. Nevertheless, it is not necessary to decompose
such complex signals as long as they are fairly constant in
their proportions. However, when additional strong autofluo-
rescent signals, such as the intense chlorophyll-derived red
emissions emanating from the gut, are present only locally,
often more than one autofluorescence spectrum needs to be
included in the analysis.

Another, more difficult problem reflects the need to obtain
“pure” in-vivo spectra of exogenous fluorescent signals. In
most cases, the spectra are always admixed with autofluores-
cence signals, so that no pure examples exist in the captured
spectral image. Furthermore, the spectra as measured in the
living animal, for example, may differ considerably from pub-
lished spectra due to environmental effects (e.g., pH, ionic
milieu) and from the combined influence of light scattering
and absorbance due to such constituents as collagen, melanin,
hemoglobin, and red blood cells. The approach taken here is
to measure the emitted spectra emitted from the surface of the
experimental animal, and then, taking into account the pres-
ence of one or more admixed spectra (from autofluorescence
or other exogenous fluorophores), calculate the presumed
“real” spectrum of the species of interest. This calculated
spectrum is then used to provide the unmixing algorithms
with a correct estimate of all components, allowing for accu-
rate quantitation of each species.

The generation of these accurate spectra (to create spectral
libraries or basis sets) can require some skill and a basic
knowledge of the spectral properties of the sample. The de-
velopment of automated methods will be necessary if multi-
spectral imaging is to become a mainstream technique. Such
methods are presented next. Once accurate spectra are deter-
mined, they can be saved and applied in routine fashion to
subsequent datasets, making the routine use of multispectral
imaging (MSI) appropriate even for large studies.

2 Methodology

All data were collected using a Maestro™ in-vivo imaging
system (CRI, Woburn, Massachusetts). For most applications,
mice (except for the plastic mouse phantoms) are anesthe-
tized, using either ketamine (200-mg/kg injection, single bo-
lus, IP, approximately 5 min before imaging) or halothane
gas, and placed inside the imaging system. A single injection
of ketamine provides sufficient anesthesia to keep a mouse
“imageable” for around 10 min. While substantial movement
of the mouse during acquisition of a spectral series would, of
course, degrade spatial and spectral resolution, normal breath-
ing excursion generally does not interfere with typical imag-
ing tasks. High-resolution close-ups of small features in tho-
racic or abdominal regions, however, can be adversely
affected by breathing movements. In theory, time gating could
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address this difficulty, but this is not implemented currently.

Nude mice are convenient to image because of their lack
of hair. It is possible to image other strains, but the hair should
first be removed by shaving or preferably with a depilatory
cream (Nair™, for example). Even with shaving, black-
skinned mice are not good models to use when attempting to
image relatively dimly labeled targets in the visible range due
to the scattering and absorbing properties of abundant melanin
deposits.

Multispectral image cubes are acquired with images typi-
cally spaced every 10 nm throughout the desired spectral
rang. The mouse illustrated in this report was imaged from
580 to 700 nm; depending on the liquid crystal tunable filter
model, ranges from 580 to 700 or from 500 to 950 nm are
achievable.

Red-green-blue (RGB) images were synthesized from the
spectral cube by mapping the spectral data into those color
channels. Either true-color (in which spectral regions are
mapped faithfully into their corresponding RGB channels) or
false-color displays can be generated; the latter are useful
when signals in the near-IR (by definition invisible to human
vision) are acquired. All the images identified as RGB images
in this work are derived from the spectral datasets and not
from conventional color sensors.

The typical method for data analysis of multispectral im-
aging of biological samples is linear unmixing.22 This tech-
nique allows the segmentation of a multispectral image
dataset into a series of monochrome images, each of which is
a map of the concentration and distribution of the spectral
shape that was used for its unmixing. An example of spectral
imaging and analysis can be found in the report by Gao et al.,
examining the distribution of quantum-dot-labeled antitumor
antibodies in mice.'*

2.1 Semiautomated Spectral Analysis Using Real
Component Analysis

A number of approaches have been employed to detect and
characterize spectral features in a sample. Principle compo-
nents analysis (PCA) and its variants are commonly used to
detect entities that contribute to the spectral variance in a
scene.'>? However, in their basic form, they are not designed
to deal with linear mixtures, but rather they interpret spec-
trally distinct pixels as separate components rather than as
mixtures of known components. Other approaches, such as
N-FINDR,24 seek the purest component, or “end-member,”
spectra that exist in a sample. However, if no pure examples
are present, they do poorly in extrapolating what the pure
spectrum should be.

We have developed an algorithm, termed “real component
analysis” (RCA), that combines several automated methods to
analyze a multispectral image scene and to decompose it into
its pure spectral components. Through a combination of un-
supervised and supervised classification routines, the RCA al-
gorithm is able to determine accurate spectra of end-members
in samples even when these spectra do not exist in pure form.

2.2 Samples

Quantum dot samples for the phantom mouse were obtained
from Quantum Dot Corporation (Hayward, California) and
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deposited in an aqueous solution onto the back of the
phantom.

The in-vivo tumor model" was obtained by injecting a
nude mouse in the flankwith a C4-2 prostate cell line; tumors
were allowed to grow for approximately 3 weeks. A 640
-nm quantum dot-labeled antibody targeting prostate-specific
membrane antigen (PSMA) was injected i.v. 2 hours before
imaging was performed. Spectrally resolved images were
taken from 580 to 700 nm at 10-nm intervals using a proto-
typre of the CRI Maestro in-vivo imaging system and the
resulting spectral data were unmixed using software provided
with the system.™

The five-quantum dot sample was provided by Quantum
Dot Corporation. Various spectral species of quantum dots
were conjugated with antibodies against cellular components:
525 nm, mitochondria; 565 nm, microtubules; 605 nm, Ki-
67, 655 nm, another nuclear antigen; and 705 nm, actin. This
sample was imaged with a 100X oil-immersion objective us-
ing a FITC long-pass filter cube, taking images from
510 to 720 nm in 10-nm intervals.

3 Results and Discussion

3.1 Phantom Mouse Model Labeled with Two
Quantum Dot Fluorophores

Determining the correct basis, or library, spectra with which
to unmix, or separate, the dataset is a critical step. However,
this can be difficult since many fluorophores change their
spectral properties depending on their environment and on the
effects that tissue scattering and absorbance can have, particu-
larly for fluorophores located in deep tissue. It is thus prefer-
able to determine the pure spectrum of each fluorophore from
an actual sample. The challenge lies in the fact that such sig-
nals are usually mixed with an unknown amount of autofluo-
rescence. To deal with this problem, a compute pure spectrum
(CPS) methodology was developed that allows the determina-
tion of the spectral properties of fluorophores of interest, even
when pure examples are not present anywhere in a specimen.
The algorithm relies on the user identifying which spectra are
“background,” i.e., in this case, autofluorescence, and which
represent mixed spectra comprising background plus an addi-
tional spectral species. It then estimates the spectral shape of
the putative pure component based on spectral differences be-
tween the background and the mixed spectra.

Figure 1 shows a phantom sample that exemplifies the
problems of obtaining pure spectra of a fluorophore of inter-
est. The left panel shows an RGB image of the fluorescence of
the sample (a fuzzy cat toy with squeaking capabilities unre-
lated to the present discussion). The toy itself has consider-
able autofluorescence similar in shape and intensity to that of
many live mice. The dotted circles show the regions that have
been spotted with quantum dots. The left dotted circle was
painted with a 570-nm-emitting quantum dot sample, the
right circle with a 620-nm-emitting quantum dot, and the
middle circle with a mixture of the two. The red and green
spectra in the right panel show spectra obtained from the
autofluorescence-only region of the sample and from a region
with both 570-nm quantum dot and autofluorescence. The

*Both mouse and quantum-dot labeled antibody were provided by Xiaohu
Gao and Shuming Nie, Emory University, Atlanta, GA.
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Fig. 1 Phantom with quantum dots and autofluorescence. Left panel: RGB image of the fluorescence emission of the sample. Two species of
quantum dots (570 nm, left circle; and 620 nm, right circle) were spotted onto a plastic mouse phantom. Center circle: mixture of both quantum
dots. Red and green arrows indicate regions from which sample spectra were obtained. Right panel: Spectral data. Red and green spectra
correspond to values obtained from the indicated regions. The blue spectrum is the calculated spectrum of the pure quantum dot derived from red

and green spectral data using CPS (see text).

A. 570 £ 15 nm monochrome image

C. Unmixed 620-nm signal

B. Unmixed 570-nm signal

D. Unmixed composite image

Fig. 2 Results obtained from phantom sample in Fig. 1. (a) Image obtained at the peak of one of the quantum dots (bandpass=570+/-10 nm). (b)
Unmixed image of the 570-nm quantum dot. (c) Unmixed image of the 620-nm quantum dot. (d) Combined pseudocolor image of (b) (green), (c),

and autofluorescence channel (in white, not shown separately).
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A. RGE image

D. Unmixed food signal

E. Unmixed autofluor. signal

F. Unmixed composite image

Fig. 3 Spectral analysis of quantum-dot-labeled antibody targeting C4-2 prostate cancer xenografts in a nude mouse. The mouse was injected
approximately 3 weeks prior to spectral imaging with a C4-2 prostate cancer cell line. 2 hours prior to imaging, an anti-PSMA antibody coupled
to 640-nm quantum dots was injected i.v. A. RGB fluorescence image. B. Monochrome fluorescence image at 640 nm (the peak emission of the
quantum dots). C, D, E. Spectrally unmixed quantum-dot signal, food signal, and skin autofluorescence signal, respectively. F. Composite pseudo-

color image of C (red), D (green), and E (white).

blue spectrum is the calculated “pure” spectrum of the quan-
tum dot, and resembles the expected Gaussian shape of such
reagents. Conceptually, the algorithm used to obtain this spec-
trum is a subtraction; however, the actual algorithm as imple-
mented is quite different from this.

Figure 2 shows unmixing results obtained from the phan-
tom using the computed 570-nm quantum dot spectrum, a
similarly computed spectrum of the 620-nm quantum dot, and
the autofluorescence spectrum. In the RGB image of the fluo-
rescence (Fig. 1), the three quantum dot spots can barely be
seen. When imaged at the peak wavelength of the 570-nm
quantum dot [Fig. 2(a)], the pure spot (at left) is barely dis-
cernable, while the mixed spot (that also contains a 570-nm
quantum dot) is nearly invisible (center). Figures 2(b) and
2(c) show the spectrally unmixed images of the 570- and
620-nm quantum dots, respectively, showing the improve-
ment in contrast obtained by using multispectral information.
Figure 2(d) consists of the composite image obtained by col-
oring the unmixed quantum dot images [Figs. 2(d) and 2(e)]
red and green, respectively, and rendering the autofluores-
cence in white. The middle mixed quantum dot spot now
shows up as yellow-orange (red plus green), reflecting the fact
that it is composed of both quantum dots.

3.2 Mouse Inoculated i.v. with a 620-nm—Labeled
Antibody Targeting C4-2 Prostate Cancer
Xenografts

Even though the peak emission of the quantum dots is in the
red, the presence of skin autofluorescence (and food autofluo-
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Fig. 4 Spectra from quantum-dot labeled mouse. Shown are the spec-
tra of the skin (white) as well as a spectrum of mixed skin and quan-
tum dot signals (yellow) manually selected from pixels where the tu-
mors are located. Using CPS, the “pure” spectrum (in red) of the
640-nm quantum dot was derived, as was food autofluorescence sig-
nal (in green).
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rescence) impairs achievable contrast, even when using
narrow-band filters centered on the quantum dot peak trans-
mission region. However, a spectral imaging approach can
greatly improve the contrast of such specimens.

Figure 3-5 show the results from a xenografts-bearing
nude mouse injected i.v. with labeled antibody approximately
2 hours prior to imaging. Panel A of Fig.3 shows the RGB
image of the fluorescence of the sample. The quantum-dot
signal is vaguely visible as a reddish coloration over the flank.
Not visible in this image is far-red fluorescence arising from
chlorophyll-containing food, a common interferent in small-
animal imaging. Similar but weaker fluorescence is present
ubiquitously (in the skin, for example) and is due to the chlo-
rophyll breakdown products, pheophorbide a and/or pheophy-
tin a.8 Feeding the animal a nonfluorescent, alfalfa-free chow
for several days prior to imaging can eliminate the majority of
the interfering food fluorescence.”

At the peak emission wavelength of the quantum dot
(Panel B, Fig. 3), the labeled tumors can be appreciated, but
autofluorescence in this spectral range still dominates. Panels
C, D, and E show the unmixed images obtained from this
sample using some of the spectra shown in Fig. 4. The un-
mixed quantum-dot signal (panel C), in particular, shows a
dramatic improvement in signal to noise. Panel D reveals the
signals from food and chlorophyll breakdown products, and
panel E indicates the contributions to overall signals arising
from skin (largely collagen) autofluorescence. The composite
image (panel F of Fig. 3) formed from pseudocoloring the
images in panels C, D, and E shows the locations of both the
food autofluorescence and the quantum dot (tumor) signals
superimposed on the skin autofluorescence for orientation.

3.3 CPS and RCA

Basis spectra for unmixing, like those shown in Fig. 4, can
either be measured directly or calculated from the spectral
dataset. Obtaining representative spectra of the GFP and of
the food as they appear in this sample is not possible, since
they are everywhere mixed with skin autofluorescence; the
pure spectra have to be calculated. This can be done by manu-
ally choosing regions of the sample that contain a mixture of
the fluorophore of interest and the autofluorescence, and using
that to calculate a “pure” fluorophore spectrum as previously
described. Figure 4 shows the spectra of the skin (white) as
well as a spectrum of mixed skin and quantum dot signals
(yellow) selected from pixels where the tumors are located.
Using the Compute Pure Spectrum (CPS) functionality, the
“pure” spectrum (in red) of the 640-nm quantum dot was
derived. Similarly, the food autofluorescence signal (in green)
can be extracted, and matches well with published spectra.8
However, in situations where the fluorophore of interest is
dim (as here with the food signal particularly), or when sev-
eral fluorophores are present in overlapping regions, choosing
where to select regions to acquire the spectral inputs can be
difficult.

To address this problem, an automated spectral searching
algorithm was developed that combines an unsupervised (i.e.,
operating without user intervention or choice) clustering with
a supervised step. The initial unsupervised operation presents
the user with a series of images that indicate the spatial dis-
tribution (location) of different spectral signals. At this point,
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the user selects images corresponding to biologically signifi-
cant signals (a subjective decision), identifies which image
best represents “background,” and which remaining images
represent biological signals of interest. The algorithm then
proceeds to calculate pure spectra (as outlined earlier). Using
these calculated spectra, the spectral cube is unmixed to indi-
cate the location and abundance of the labels as well as that of
the autofluorescence. Generally, cross talk between autofluo-
rescence and the desired signal(s) is eliminated, and the re-
sulting unmixed data are quantitatively accurate.

Figure 5 shows a screen-shot of the Real Component
Analysis (RCA) plug-in software in operation, applied to the
prostate-tumor/quantum-dot sample. At left is an RGB image
of the sample. The user can draw a region of interest (ROI) on
the sample to speed up the algorithm and to eliminate extra-
neous signals (like plastic restraining devices, for example),
and/or choose a region of the sample where a pure autofluo-
rescence signal is known to exist. This “starting guess” can
help the algorithm’s performance but is not required. RCA
then presents the user with a series of images (at right) that
show where in the sample it identified various fluorescence
spectral features to be found. The user then (optionally) se-
lects which feature represents autofluorescence (labeled
“background” and marked white) and which features repre-
sent the signals of interest (labeled “signal” and marked with
red and green). The algorithm then computes a pure spectrum
from each of the regions selected as signals and performs the
unmixing. In the present case, the fourth image highlights
low-intensity signals that are of no apparent biological signifi-
cance, and this panel is ignored.

3.4 Cells Labeled with Five Different
Quantum Dots

In addition to being able to remove autofluorescence to in-
crease contrast and signal to noise, spectral imaging offers the
possibility of a high degree of multiplexing of fluorophores in
a single sample. A test sample created by the Quantum Dot
Corporation containing five quantum dots, each labeling a dif-
ferent structure or molecule in the cells (mitochondria, micro-
tubules, proliferation marker Ki-67, nucleus, and actin), was
imaged using a long-pass fluorescein cube (460-nm excitation
and a 510-nm long-pass emission filter). Figure 6 shows a
portion of the RGB image of the fluorescence of this sample
and five spectra extracted approximately from where the dif-
ferent markers would be expected. Each of these five ex-
tracted spectra clearly represents a different spectral profile,
but they are all mixed signals, derived from emissions from at
least two or more quantum dot labels. Separating the spatially
overlapping components of the sample either by eye or using
an RGB camera is not feasible: spectral imaging is required
for visualizing and quantitating each signal independently of
the others.

Using the CPS algorithm described before, the five spectra
in Fig. 7 were obtained. The emission maxima of these five
spectra match extremely well with the published maxima for
the quantum dots in this sample. These spectra were then used
to unmix the dataset to give the images shown in Fig. 8.
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Fig. 5 Screenshot of RCA plug-in showing results from the quantum-labeled mouse. At left is an RGB image of the fluorescence of the sample. At
right are the RCA-computed regions presented for user selection.
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Fig. 6 Raw spectra extracted from a five-quantum dot dataset. The image in the center shows a portion of an RGB fluorescence image of
five-quantum-dot-labeled cells (100 X). Each spectrum shows the raw spectral emissions of the sample at the indicated regions.
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Fig. 7 Calculated quantum dot spectra derived from the five-quantum
dot sample. This graph presents the five spectra calculated using CPS,
each curve corresponding to one of the five quantum-dot species that
were present.
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4 Conclusions

Fluorescence imaging complements other available forms of
small animal imaging due to its relatively low cost, avoidance
of ionizing radiation, flexible options for probes and labels,
multiplexing capability, and relatively high throughput. It has
not yet lived up to its promise largely because of difficulties
encountered trying to detect faint fluorescent signals in the
face of higher levels of spectrally similar autofluorescence.
This work describes the multispectral imaging approach for
separating autofluorescence from signal channels. The same
strategy also enables the use of multiple labels, and thus ad-
vances the application of fluorescence to in-vivo imaging.
The solution comprises both appropriate hardware (in this
case, an electronically tunable optical filter) and software.
Pure—i.e., not mixed—and accurate spectra should be used as
inputs into the unmixing procedures. Deriving these from the
actual sample is useful, but some finesse has been needed to
do this properly. We report progress along this front with the
development of semiautomated tools that explore spectral
content of images and present the user with easy means of

nm (actin, blue)

Fig. 8 Unmixing results from five-quantum dot sample. Shows the complete RGB image of the fluorescence of the sample, with the subregion
shown in Fig. 6 outlined by the dotted rectangle. Each of the monochrome images corresponds to the unmixed image obtained using the spectra
from Fig. 7. From top left to bottom right, they correspond to the 525-, 565-, 605-, 655-, and 705-nm quantum dots.
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generating appropriate spectra for inclusion into spectral li-

braries suitable for use in routine analysis. 13.
Acknowledgments
The authors would like to thank Xiaohu Gao and Shuming 14.
Nie of Emory University, for allowing us to use datasets col-
lected from their samples. 15
References 16.
1. E. E. Graves, R. Weissleder, and V. Ntziachristos, “Fluorescence mo-
lecular imaging of small animal tumor models,” Curr. Mol. Med. 4,
419-430 (2004). 17.
2. G. Choy, P. Choyke, and S. K. Libutti, “Current advances in molecu-
lar imaging: noninvasive in vivo bioluminescent and fluorescent op-
tical imaging in cancer research,” Mol. Imaging 2, 303-312 (2003).
3. A. McCaffrey, M. A. Kay, and C. H. Contag, “Advancing molecular 18.
therapies through in vivo bioluminescent imaging,” Mol. Imaging 2,
75-86 (2003).
4. R. M. Hoffman, “Imaging tumor angiogenesis with fluorescent pro-
teins,” APMIS 112, 441-449 (2004). 19.
5. M. Yang, E. Baranov, P. Jiang, F. X. Sun, X. M. Li, L. Li, S. Hase-
gawa, M. Bouvet, M. Al-Tuwaijri, T. Chishima, H. Shimada, A. R.
Moossa, S. Penman, and R. M. Hoffman, “Whole-body optical im- 20.
aging of green fluorescent protein-expressing tumors and me-
tastases,” Proc. Natl. Acad. Sci. U.S.A. 97, 12061211 (2000).
6. U. Mahmood, C. H. Tung, Y. Tang, and R. Weissleder, “Feasibility of
in vivo multichannel optical imaging of gene expression: experimen- 21
tal study in mice,” Radiology 224, 446-451 (2002).
7. S. Andersson-Engels, C. Klinteberg, K. Svanberg, and S. Svanberg,
“In vivo fluorescence imaging for tissue diagnostics,” Phys. Med. 22.
Biol. 42, 815-824 (1997).
8. G. Weagle, P. E. Paterson, J. Kennedy, and R. Pottier, “The nature of
the chromophore responsible for naturally occurring fluorescence in
mouse skin,” J. Photochem. Photobiol., B 2, 313-320 (1988). 23
9. T. Troy, D. Jekic-McMullen, L. Sambucetti, and B. Rice, “Quantita-
tive comparison of the sensitivity of detection of fluorescent and bi-
oluminescent reporters in animal models,” Mol. Imaging 3, 9-23
(2004). 24.
10. R. Weissleder and V. Ntziachristos, “Shedding light onto live molecu-
lar targets,” Nat. Med. 9, 123-128 (2003).
11. G. Bearman and R. Levenson, in Biomedical Photonics Handbook, T. 25.
Vo-Dinh, Ed., pp. 8_1-8_26, CRC Press, Boca Raton, FL (2003).
12. J. R. Mansfield, M. G. Sowa, and H. H. Mantsch, “Development of
LCTF-based visible and near-IR spectroscopic imaging systems for
Journal of Biomedical Optics 041207-9

macroscopic samples,” Proc. SPIE 3920, 99-107 (2000).

D. L. Farkas, C. Du, G. W. Fisher, C. Lau, W. Niu, E. S. Wachman,
and R. M. Levenson, “Non-invasive image acquisition and advanced
processing in optical bioimaging,” Comput. Med. Imaging Graph. 22,
89-102 (1998).

X. Gao, Y. Cui, R. M. Levenson, L. W. Chung, and S. Nie, “In vivo
cancer targeting and imaging with semiconductor quantum dots,”
Nat. Biotechnol. 22, 969-976 (2004).

. C. L. Lawson and R. J. Hanson, Solving Least Squares Problems,

Prentice-Hall, Englewood Cliffs, NJ (1974).

T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging
and its applications in live cell microscopy,” FEBS Lett. 546, 87-92
(2003).

F. E. Diehn, N. G. Costouros, M. S. Miller, A. L. Feldman, H. R.
Alexander, K. C. Li, and S. K. Libutti, “Noninvasive fluorescent
imaging reliably estimates biomass in vivo,” BioTechniques 33,
1250-1255, (2002).

G. Choy, S. O’Connor, F. E. Diehn, N. Costouros, H. R. Alexander,
P. Choyke, and S. K. Libutti, “Comparison of noninvasive fluorescent
and bioluminescent small animal optical imaging,” BioTechniques 35,
1022-1030, (2003).

R. K. Lauridsen, H. Everland, L. F. Nielsen, S. B. Engelsen, and L.
Norgaard, “Exploratory multivariate spectroscopic study on human
skin,” Skin Res. Technol. 9, 137-146 (2003).

M. C. Ferraro, P. M. Castellano, and T. S. Kaufman, “Chemometrics-
assisted simultaneous determination of atenolol and chlorthalidone in
synthetic binary mixtures and pharmaceutical dosage forms,” Anal.
Bioanal. Chem. 377, 1159-1164 (2003).

D. M. Haaland, R. G. Easterling, and D. A. Vopicka, “Multivariate
least-squares methods applied to the quantitative spectral analysis of
multicomponent samples,” Appl. Spectrosc. 39, 73-84 (1985).

M. E. Dickinson, G. Bearman, S. Tilie, R. Lansford, and S. E. Fraser,
“Multi-spectral imaging and linear unmixing add a whole new di-
mension to laser scanning fluorescence microscopy,” BioTechniques
31, 1272-1278, (2001).

. D. C. de Veld, M. Skurichina, M. J. Witjes, R. P. Duin, D. J. Steren-

borg, W. M. Star, and J. L. Roodenburg, “Autofluorescence charac-
teristics of healthy oral mucosa at different anatomical sites,” Lasers
Surg. Med. 32, 367-376 (2003).

M. E. Winter, “N-FINDR: an algorithm for fast autonomous spectral
end-member determination in hyperspectral data,” Proc. SPIE 3753,
266-275 (1999).

H. Holmes, J. C. Kennedy, R. Pottier, R. Rossi, and G. Weagle, “A
recipe for the preparation of a rodent food that eliminates
chlorophyll-based tissue fluorescence,” J. Photochem. Photobiol., B
29, 199 (1995).

July/August 2005 « Vol. 10(4)



