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Abstract. Optical coherence tomography �OCT� is a recent imaging
method that allows high-resolution, cross-sectional imaging through
tissues and materials. Over the past 18 years, OCT has been success-
fully used in disease diagnosis, biomedical research, material evalua-
tion, and many other domains. As OCT is a recent imaging method,
until now surgeons have limited experience using it. In addition,
the number of images obtained from the imaging device is too
large, so we need an automated method to analyze them. We propose
a novel method for automated classification of OCT images based on
local features and earth mover’s distance �EMD�. We evaluated our
algorithm using an OCT image set which contains two kinds of
skin images, normal skin and nevus flammeus. Experimental results
demonstrate the effectiveness of our method, which achieved
classification accuracy of 0.97 for an EMD+KNN scheme and 0.99
for an EMD+SVM �support vector machine� scheme, much higher
than the previous method. Our approach is especially suitable
for nonhomogeneous images and could be applied to a wide range
of OCT images. © 2009 Society of Photo-Optical Instrumentation Engineers.
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Introduction
.1 Optical Coherence Tomography
ptical coherence tomography �OCT�1 is a recent imaging
ethod that allows high-resolution, cross-sectional images

hrough tissues and materials, similar to ultrasound. OCT ac-
uires images by measuring backscattered light. Compared to
raditional imaging approaches such as computed tomography
CT� and magnetic resonace imaging �MRI�, OCT has higher
esolution, so it can reveal the microstructure of tissues and
aterials. Images from OCT systems typically have a reso-

ution of 1 to 15 �m. Over the past 18 years, OCT has been
uccessfully used in disease diagnosis, biomedical research,
aterial evaluation, and many other domains.

.2 Automated Analysis of OCT Images
n practical applications, the number of OCT images obtained
rom the imaging device is usually very large. In addition,
ntil now surgeons have limited experience in analyzing these
mages, so we need methods to automatically process them.
everal efforts have been made in this area. Fernandez et al.2

ave employed nonlinear complex diffusion and coherence-
nhancing diffusion to automatically detect retinal layer struc-
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tures. Baroni et al.3 have tested texture classification of retinal
layers in optical coherence tomography images. In Ref. 4,
Koozekanani et al. have devised an approach for retinal thick-
ness measurements from OCT images using a Markov bound-
ary model. Zysk and Boppart5 have tested the automated di-
agnosis of breast tumor tissue in OCT images. In Ref. 6,
Bazant-Hegemark and Stone proposed a near-real-time
method for OCT image classification using principal compo-
nent analysis �PCA� and linear discriminant analysis �LDA�.
They calculate row statistical values, such as mean, standard
deviation, etc., for preprocessed images, these values are used
as feature vectors. For classification, PCA and LDA are used.

For most cases, image classification is the most important
task. In all known existing methods, this is done by texture
analysis, such as cooccurrence matrix, Fourier transform, etc.
Different kinds of machine learning methods, such as linear
discriminant analysis and artificial neural network, are used to
classify these images. As OCT images are usually structure-
poor, texture analysis is the best choice. However, all these
methods extract features from images only globally. For non-
homogeneous images, global features cannot describe them
effectively. In these images, local regions possess different
kinds of patterns. So, we can no longer process them
together—we need to analyze these local regions separately.

1083-3668/2009/14�5�/054037/6/$25.00 © 2009 SPIE
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Over the past 10 years, many methods based on analysis
f local regions in images have been developed7–10 in the
omputer vision domain. In these methods, images are repre-
ented by local regions �subimages�. Compared to traditional
pproaches, these methods are robust to background clutter
nd partial occurrence. When OCT images are
onhomogeneous—that is, they have different kinds of local
egions, the local region–based approach is a better choice.

In this paper, we propose an effective and accurate method
or OCT image classification based on local region features
nd earth mover’s distance �EMD�. Our approach is robust,
nd it can handle partial abnormal problem. We divide each
mage into several subimages �local regions� and then extract
eatures from these subimages and combine them to form
ignatures.11–13 Thus, our method is local region–based, as
ompared to the traditional global approach, which computes
eatures from the entire image, it is robust and can effectively
andle the partial abnormal problem. For classification, we
mplemented both the k nearest neighbor �KNN� classifier and
he support vector machine �SVM� classifier with the EMD
ernel. We used an OCT image set to evaluate our method,
hich contains normal skin OCT images and nevus flammeus

mages. In experiments, we compared our methods with a
aseline approach �PCA+SVM�, and achieved much higher
erformance. We believe that our approach can be applied to
ther types of OCT images, and it is especially suitable for
onhomogeneous images.

The paper is organized as follows. In Sec. 2, we will de-
cribe our approach in detail, including preprocessing, the
CA+SVM approach �baseline method�, and our EMD
KNN and EMD+SVM schemes. Section 3 will give experi-
ental results and discussion. Conclusions are given in Sec.

.

Methods
n order to demonstrate the effectiveness of our method, we
ompared it with the approach proposed in Ref. 6. Instead of
sing LDA, we chose a support vector machine �SVM�, as it

ig. 1 Preprocessing results: �a� original image, �b� background noise
emoved image, and �c� surface normalized image.
ournal of Biomedical Optics 054037-
is the best classifier in almost all cases. For both methods, the
preprocessing procedure is identical, and is similar to methods
proposed in Ref. 6

In Sec. 2.1, we will describe the preprocessing method.
Section 2.2 will describe the baseline method—that is, the
PCA+SVM approach. Our new method will be introduced in
Sec. 2.3.

2.1 Preprocessing
For preprocessing, we employed a method similar to Ref. 6,
which contains the following three main steps:

1. Background noise removal.
2. Surface recognition and smoothing.
3. Surface normalization.
The first step is to remove background noise in images. We

calculate the mean � and standard deviation � of the top 20
rows for each image, and then �+7�� is used as intensity
threshold. In experiments, we tested different threshold val-
ues, from �+2�� to �+9��, and found that �+7�� is
the best choice. All pixels whose intensity is less than this
threshold are considered as background.

After background removal, we conducted surface recogni-
tion and normalization identical to Ref. 6. We also performed
surface smoothing in order to remove noisy points in the sur-
faces. Figure 1 shows the preprocessing results. Figure 1�a� is
the original image, and Fig. 1�b� is the preprocessed image.

Fig. 2 Framework of our approach.
September/October 2009 � Vol. 14�5�2
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e can see that background noise was removed and all
-scans were aligned according to surface. In order to dem-
nstrate the results of surface normalization better, we shift
he surface point for each column to line 10, and thus the
bright bar” is not located at the top of the images.

.2 Baseline Method: PCA and Support Vector
Machine

n the baseline method, we calculate the mean value and stan-
ard deviation of each row for preprocessed images. These
alues are combined to form a feature vector. PCA was per-
ormed on these feature vectors. Among all classifiers, SVM
ften produces state-of-the-art results in high-dimensional
roblems,14–16 so we chose it for our classification task instead
f LDA. SVM finds a hyperplane that separates two-class data
ith a maximal margin. When the data set is not linearly

eparable, SVM uses two strategies, soft margin classification
nd kernel mapping. There are four kinds of kernel functions
sually used: linear kernel, polynomial kernel, radius basis
unction �RBF�, and sigmoid kernel. In experiments, we chose
he RBF kernel:

K�xi,xj� = exp�− ��xi − xj�2�, � � 0. �1�

n our implementation, we used the source code from Ref. 15
hich is a perfect implementation of the various SVM algo-

ithms.

.3 Our Methods: EMD+KNN and EMD+SVM
Schemes

he earth mover’s distance11–13 is a distance between two dis-
ributions �signatures� that reflects the minimal amount of
ork that must be performed to transform one distribution

nto the other by moving “distribution mass” around. It is a
pecial case of the transportation problem from linear optimi-
ation, for which efficient algorithms are available. Signatures
re defined as follows:

�
x1

x2

¯ ·

xm

��
w1

w2

¯ ·

wm

� , �2�

here xi are n-dimensional vectors, and scalars wi are weights
or each vector. When used to compare distributions that have
he same overall mass, the EMD is a true metric and has
asy-to-compute lower bounds. If two signatures P and Q are

Fig. 3 OCT images of �a� normal skin and �b� nevus flammeus.
ournal of Biomedical Optics 054037-
P = ��x1,p1�,�x2,p2�, . . . ,�xm,pm�� ,

Q = ��y1,q1�,�y2,q2�, . . . ,�yn,qn�� , �3�

where xi and yj are n-dimensional vectors, and pi and qj are
weights, then the EMD between P and Q is defined as:

EMD�P,Q� =

�
i=1

m

�
j=1

n

f ijd�xi,yj�

�
i=1

m

�
j=1

n

f ij

, �4�

where scalars f ij are flow values, and d�xi ,yj� is the ground
distance—that is, the distance between vectors xi and yj. Usu-
ally, this is a Euclidean distance; in our approach, we also
chose Euclidean distance as ground distance. Scalars f ij are
found to minimize the following function:

C = �
i=1

m

�
j=1

n

f ijd�xi,yj� . �5�

In Ref. 13 Rubner et al. used EMD for image and texture
retrieval; they represent the image as signatures. Signatures
are calculated from the color distribution of images or the
output of a Gabor filter applied to texture images. Then, EMD
is computed for each image pair. This distance can be used for
image and texture retrieval.

In our approach, we do not use color distribution or a
Gabor filter; instead, we choose local region features to form
signatures. We divide each OCT image into some local re-
gions �subimages�, and features are extracted from these sub-
images and combined to form signatures. We calculate the
mean of each row in a subimage, and these values are com-
bined to form the feature vector of the subimage. Then, all of
the subimage’s feature vectors are combined to form a matrix,
which is the matrix of the signature. Additionally, each feature
vector has a weight, and all of these weights form the weight
vector of the signature. For classification, we tested both
KNN and SVM algorithms. The main framework for our
methods contains the following five steps:

1. Preprocess, which is identical to baseline method.

Fig. 4 Classification results of baseline method.
September/October 2009 � Vol. 14�5�3
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2. Extract the effective region of image, and divide it into
ubimages.

3. Compute the features of the subimages and combine
hem to form signatures.

4. Compute the EMD between image pairs.
5. Classify using KNN or SVM classifiers.

or the SVM classifier, we used the EMD kernel,17,18 defined
s:

K�Si,Sj� = exp	−
1

A
D�Si,Sj�
 , �6�

here Si and Sj are two signatures, D�Si ,Sj� is the earth mov-
r’s distance between Si and Sj, and A is a scaling parameter
hat could be determined by cross-validation. When using the
MD kernel, the decision function for SVM becomes:

f�S� = sgn	�
i=1

n

yi�iK�S,Si� + b
 . �7�

The framework of our method is shown in Fig. 2. In our
pproach, we represent images with signatures. The effective
egion of OCT images contains only the top 80 rows in
urface-normalized images. For each preprocessed image, we
ivide its top 80 rows into 10 subimages �80�40� and extract
he features of these subimages �the mean of each row�; all
hese feature vectors are combined to form the signature. The
eights are set to be 1 for each vector, as all local regions are

qually important. Once we have calculated EMD between

Table 1 Classification accuracy of our EMD+K

Round\K 1 3 5

1 0.98 0.96 0.90

2 0.96 0.90 0.88

3 0.96 0.90 0.86

4 0.96 0.88 0.82

5 0.96 0.86 0.80

Average 0.97 0.90 0.85

Fig. 5 Signatures of two images: �a� normal image, and �b�
ournal of Biomedical Optics 054037-
each training image and testing sample, we use KNN and
SVM algorithms to classify the testing images. For the
EMD+SVM scheme, we must calculate the EMD kernel be-
fore learning and testing.

3 Experimental Results and Discussion
3.1 Experimental Data
We used an image set to evaluate our approach. This data set
contains normal skin OCT images and nevus flammeus im-
ages; the total number of images is 100, of which 50 are
normal and the remaining 50 are abnormal. These images are
taken from 14 patients; the size of all images is 400�400,
and the gray level is 256. The practical axial resolution of our
OCT imaging system is about 10 �m, and the transverse res-
olution is about 8 �m. The actual SNR is about 80 dB, and
the penetration depth into skin is more than 2 mm.

Figure 3 shows two images in our image set, Fig. 3�a� is
normal skin, and Fig. 3�b� is nevus flammeus. In normal im-
ages, the layer structure is obvious, the epidermal layer is
smooth and continuous, and the dermis is uniform. But in
nevus flammeus images, the layer structure is destroyed and
the epidermal layer is discontinuous. In addition, the dermis is
not uniform. So, OCT can effectively discriminate normal
skin and nevus flammeus. As we can see from Fig. 3, nevus
flammeus images usually have local abnormal regions—they
do not demonstrate global uniform pattern.

thod.

9 11 13 15

0.84 0.84 0.84 0.84

0.84 0.84 0.82 0.74

0.68 0.68 0.78 0.78

0.78 0.76 0.74 0.74

0.78 0.78 0.76 0.74

0.78 0.78 0.79 0.77

al image. Each curve represents a row vector in signatures.
NN me

7

0.84

0.84

0.72

0.78

0.82

0.80
abnorm
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.2 Experimental Results of Baseline Method
ur baseline method is quite similar to the approach in Ref.
—the main difference is that we choose SVM instead of
DA. In experiments, we tested four different numbers of
rincipal components �pc�: 20, 50, 80, and 100. The classifi-
ation accuracy is demonstrated in Fig. 4. We can see that the
umber of principal components is not crucial for classifica-
ion performance; this phenomenon was also reported in Ref.
. When the pc number is 20, the accuracy is 0.86; as the pc
umber increased to 100, the accuracy increased only to 0.89.
he value of penalty parameter C for SVM is 8 in all experi-
ents. All results are got from 5-fold cross-validation.

.3 Experimental Results of EMD+KNN Method
n our EMD+KNN method, we represent images as signa-
ures, which are formed by feature vectors of local regions in
ach image. Two signatures are shown in Fig. 5: Fig. 5�a� is
ormal skin, and Fig. 5�b� is nevus flammeus. We can see that
ignatures can effectively discriminate these two kinds of im-

Fig. 6 Average classification accuracy of EMD+KNN method.

Table 2 Classification accuracy of SVM with E
penalty parameter for SVM.

A\C 1 2 4

15 0.85 0.85 0.8

20 0.86 0.88 0.8

25 0.90 0.91 0.9

30 0.93 0.94 0.9

35 0.96 0.96 0.9

40 0.97 0.97 0.9

45 0.97 0.97 0.9

50 0.97 0.97 0.9

55 0.99 0.99 0.9

60 0.99 0.99 0.9
ournal of Biomedical Optics 054037-
ages, as they are formed by local region features.
In experiments, we tested a lot of values for parameter K

of the KNN algorithm. The classification results are listed in
Table 1. In Table 1, the values of parameter K include 1, 3, 5,
7, 9, 11, 13, and 15. We conducted 2-fold cross-validation five
times; in each round, we randomly select 50 images as train-
ing samples and the rest as testing samples. The bottom row
lists the average classification accuracy for each K value. We
can see that as K increases, the performance decreases. When
K is 1, the accuracy is 0.97, which is much higher than the
baseline method.

The average accuracy is illustrated in Fig. 6, from which
we can see the relation between parameter K and classifica-
tion accuracy. K=1 is the best choice, and as K increases, the
overall accuracy will decrease. When K=1, the KNN algo-
rithm is in fact the nearest neighbor �NN� classifier.

3.4 Experimental Results of EMD+SVM Method
Table 2 demonstrates the classification accuracy of the
EMD+SVM scheme. In experiments, we tested different val-
ues for scaling parameter A of the EMD kernel and different
values for penalty parameter C for SVM. Each row in Table 2
represents different A values, and each column represents dif-
ferent C values. We can see that EMD+SVM outperforms
both the baseline and EMD+KNN methods; when the scaling
is properly chosen, the accuracy could reach 0.99, which is a
promising result. Classification accuracy with different A val-
ues is listed in Fig. 7. We can see that as A increases from 15
to 60, the accuracy increases simultaneously. But when A has
reached 55, the improvement is negligible.

Compared to the baseline method, our approach achieved
much higher performance. Essentially, the former is a global
method, while the latter is a local approach. For most nevus
flammeus OCT images, the pattern is not uniform; they usu-
ally contain local abnormal regions, and thus global features
cannot describe this property. Unlike the global method, the

ernel. A: scaling parameter for EMD kernel; C:

8 16 32

0.85 0.85 0.85

0.88 0.88 0.88

0.91 0.91 0.91

0.94 0.94 0.94

0.96 0.96 0.96

0.97 0.97 0.97

0.97 0.97 0.97

0.97 0.97 0.97

0.99 0.99 0.99

0.99 0.99 0.99
MD k
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8

1

4

6

7

7

7

9

9

September/October 2009 � Vol. 14�5�5



E
f
g
r
m
a
m
o
h

4
W
t
i
h
o
c
E
v
c
i
l
t

A
T
G
F
a

Sun and Lei: Method for optical coherence tomography image classification using local features…

J

MD approach represents images as signatures, which are
ormed by combinations of the features of several local re-
ions, and it can completely and accurately describe different
egions of images. Furthermore, EMD allows for partial
atching and is robust to clutters, so our approach could

chieve higher classification accuracy than the baseline
ethod. We believe our method can also be used to classify

ther types of OCT images that do not demonstrate uniform,
omogeneous patterns.

Conclusion
e have proposed a new method for OCT image classifica-

ion. Our approach is based on calculating the signatures of
mages and EMD between image pairs, which can effectively
andle nonhomogeneous images. Experimental results dem-
nstrated the effectiveness of our method, which achieved
lassification accuracy of 0.97 and 0.99 for EMD+KNN and
MD+SVM schemes, respectively, for appropriate parameter
alues. Compared to the baseline method, which achieved ac-
uracy of 0.89, our method possesses obvious advantages, and
t is especially suitable for nonhomogeneous images. We be-
ieve that our method can also be applied to classification
asks of other types of OCT images.
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Fig. 7 Average classification accuracy of EMD+SVM method.
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