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Abstract. In recent years, there has been tremendous progress in the development of deep-learning-based
approaches for optical metrology, which introduce various deep neural networks (DNNs) for many optical
metrology tasks, such as fringe analysis, phase unwrapping, and digital image correlation. However, since
different DNN models have their own strengths and limitations, it is difficult for a single DNN to make
reliable predictions under all possible scenarios. In this work, we introduce ensemble learning into optical
metrology, which combines the predictions of multiple DNNs to significantly enhance the accuracy and
reduce the generalization error for the task of fringe-pattern analysis. First, several state-of-the-art base
models of different architectures are selected. A K-fold average ensemble strategy is developed to train
each base model multiple times with different data and calculate the mean prediction within each base
model. Next, an adaptive ensemble strategy is presented to further combine the base models by building
an extra DNN to fuse the features extracted from these mean predictions in an adaptive and fully
automatic way. Experimental results demonstrate that ensemble learning could attain superior performance
over state-of-the-art solutions, including both classic and conventional single-DNN-based methods. Our work
suggests that by resorting to collective wisdom, ensemble learning offers a simple and effective solution
for overcoming generalization challenges and boosts the performance of data-driven optical metrology
methods.
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1 Introduction
Optical metrology plays a significant role in many fields
because of its merits of noninvasiveness, flexibility, and high
accuracy. In optical metrology, fringe-pattern analysis is indis-
pensable to many tasks, e.g., interferometry, fringe projection
profilometry, and digital holography. According to the number
of patterns used, fringe-pattern analysis can be generally classi-
fied into two categories: single-frame and multiframe methods.
The Fourier-transform fringe-pattern analysis is a representative
single-frame approach1 that converts a fringe pattern into the fre-
quency domain and extracts the phase information by filtering

the first order of the spectrum. This method is suitable for
measuring dynamic scenes because it only needs a single fringe
image. However, it tends to compromise on handling complex
surfaces, owing to the spectrum aliasing issue. In contrast,
the multiframe approaches, e.g., the N-step phase-shifting
(PS) algorithm,2 can achieve higher accuracy, since the phase
demodulation can be carried out pixel by pixel along the tem-
poral axis. Nevertheless, multiframe approaches usually suffer
when facing fast-moving objects because of the need to capture
multiple images. Hence, there is a contradiction between the
efficiency and the accuracy of the fringe-pattern analysis.

Recently, many advances have emerged in the field of
optical metrology that benefit from harnessing the power of deep
learning.3,4 Fringe-pattern analysis using deep learning has
shown promising performance in measuring complex contours
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using a single fringe image.5 As a data-driven approach, it can
exploit useful hidden clues that may be overlooked by traditional
physical models, thus showing potential for resolving the
contradiction between efficiency and accuracy in the phase
demodulation. However, it is not trouble-free for this kind of
approach. Usually, people adopt a single deep neural network
(DNN) and depend on it completely to handle all possible mea-
surements once it is trained. Actually, this is risky, as the DNN
may only learn limited attributes of input data because of its fixed
structure. Consequently, it tends to demonstrate high variance for
unseen scenarios. Further, the DNN may converge to a local loss
minimum during training, which further increases the risk of
making unreliable predictions.

To handle these issues, ensemble deep learning has been
developed,6,7 which refers to a set of strategies where, rather
than relying on a single model, several base models are com-
bined to perform tasks. As different architectures can capture
distinct information, better decisions can be made by combin-
ing different networks. Inspired by recent successful applica-
tions of ensemble deep learning, we demonstrate for the
first time, to the best of our knowledge, that an ensemble of
multiple deep-learning models can improve the accuracy and
the stability of fringe-pattern analysis substantially. First,
multiple state-of-the-art DNNs for fringe-pattern analysis are
employed as base models. To train the base models, we propose
a K-fold average ensemble method to divide training data into
several groups so that each one can be trained multiple times by
using different data. Then, the average of the predictions is cal-
culated as the output of each base model. To further fuse the
outputs of the base models, we develop an adaptive ensemble
that trains an extra DNN to extract and combine useful features
from these outputs adaptively and automatically during train-
ing. Experimental results show that the proposed approach
can improve the phase accuracy and the generalization capabil-
ity for unseen scenarios greatly compared with the traditional
method using a single model.

2 Methods
In fringe-pattern analysis, a fringe image is often written as

Iðx; yÞ ¼ Aðx; yÞ þ Bðx; yÞ cos φðx; yÞ; (1)

where ðx; yÞ is the pixel coordinate, A is the background signal,
B is the amplitude, and φ is the phase to be measured.
Conventionally, the phase is demodulated through an arctangent
function,

φðx; yÞ ¼ arctan
cBðx; yÞ sin φðx; yÞ
cBðx; yÞ cos φðx; yÞ ¼ arctan

Mðx; yÞ
Dðx; yÞ ; (2)

where the numerator M represents the phase sine ½sin φðx; yÞ�
and the denominator D represents the phase cosine
½cos φðx; yÞ�. c is a constant that is determined according to
the phase demodulation approach. According to Eq. (2), a
DNN can be constructed to learn to predict M and D. Then,
the phase φ can be computed through the arctangent function.5

Instead of relying on a single model, we train several base
models to analyze the same input fringe image and combine
their outputs as the final prediction. Figure 1 demonstrates
the diagram of the proposed framework. First, three state-of-
the-art models for fringe-pattern analysis are selected as base
models. The first two models are the U-Net8 and the multipath
DNN (MP DNN),5 which are convolutional neural networks that
are good at extracting local features. The third model is the
Swin–Unet,9 which is a vision transformer that shows the advan-
tage of capturing global information. The structures of base
models are detailed in the Supplementary Material. As these
models have different architectures, diverse attributes of the
input data can be learned. To train the base models, we develop
a K-fold average ensemble, whose schematic is shown in Fig. 2.
The whole training data set is divided into K parts equally
(i.e., from fold 1 to fold K). Any K − 1 parts of the data can

Fig. 1 Diagram of the fringe-pattern analysis using ensemble deep learning. The input fringe
image is processed by three base models. In each base model, a K -fold average ensemble is
proposed to generate K sets of data to train K homogeneous models. Each homogeneous model
outputs a pair of numerator M and denominator D . The mean is computed over K homogeneous
models and is treated as the output of the base model. To further combine the predictions of the
base models, an adaptive ensemble is developed that trains a DNN to fuse their predictions
adaptively and gives the final prediction.
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be merged and then used for training; the remaining one is used
for validation. In this way, we can generate K sets of training
data. As each of them is different, additional information can be
provided. To train these base models, we use the following mean
squared error loss function:

LossðθiÞ ¼ 1

H ×W

XH

h¼1

XW

w¼1

ðyih;w − ŷih;wÞ2; (3)

where θi represents the parameters of the ith base model; these are
learned during the training process. H andW represent the height
and width of the image in pixels, respectively. Omitting the pixel
index, yi is the output of the base model that consists of a pair of
estimated numerator and denominator. ŷi is the ground-truth label
that can be obtained by the PS algorithm. With theK-fold average
ensemble, K homogeneous models can be trained for each base
model. As each homogeneous model can give a prediction,
K pairs of predictions can be obtained. In this work, the structures
of these homogeneous models are the same. We use the He nor-
mal initialization to initialize the parameters of these networks.10

As both the training data and the initial values of the parameters
are different, the performance of each network will be different,
which enhances the diversity in model prediction. To combine
these predictions, their average is computed as

yi ¼ 1

K

XK

k¼1

yik; (4)

where yik is the prediction of the kth homogeneous model regard-
ing to the ith base model and yi is the output of the ith base model
using the K-fold average ensemble.

To further combine the predictions of the base models, we
develop an adaptive ensemble that adopts a MultiResUNet to
fuse the features of different models adaptively.11 The diagram
of the adaptive ensemble is shown in Fig. 3. The feature extrac-
tion is enhanced by MultiRes blocks that use a series of 3 × 3
convolutions, as shown in Fig. 3(b). This structure is equivalent
to the 5 × 5 and 7 × 7 convolutions and has the advantage that it

can not only learn features of various base predictions at differ-
ent image scales but also saves memory and speeds up network
training. In addition, instead of combining the features of en-
coders and decoders immediately, residual paths are con-
structed, where features of the encoder are processed by several
convolutional layers, which can reduce the content gap between
encoder and decoder features. To train the MultiResUNet, we
also use the loss function shown in Eq. (3). During training,
the MultiResUNet can learn proper weights for features ex-
tracted from each base prediction without manual intervention,
thus making the fusion in an adaptive and automatic way.

3 Results
We validated the presented method under the scenario of fringe
projection profilometry. The system consists of a camera (V611,
Vision Research Phantom) and a projector (DLP 4100, Texas
Instruments). The measured scene was illuminated by the pro-
jector with a sinusoidal fringe pattern, and the fringe image was
captured by the camera from a different viewing point. To
collect the training data, many fringe images of various objects
were captured. To generate the ground-truth labels, the 12-step
PS algorithm was applied. The captured fringe patterns are 8-bit
gray-scale images. In the data preprocessing stage, the input
fringe pattern was divided by 255 for normalization before
being fed into the DNNs. Further details about the optical setup
and the calculation of the ground-truth data are provided in the
Supplementary Material. For the adaptive ensemble, the training
data were generated using the trained base models. All base
models and the MultiResUNet were implemented by the
Keras and computed on a graphic card (GTX Titan, NVIDIA).

To test the performance of our approach, we measured three
different scenarios that were not seen by these networks during
training. They are a set of statues, an industrial part made of
aluminium alloy, and a desk fan made of plastic. The experi-
mental results regarding each stage of our approach are shown
in Fig. 4. Here, for better performance, a seven-fold average en-
semble was used to train each base model. So, we divided the
training data into seven parts and trained seven homogeneous
models for each base model. Given an input fringe pattern,
the homogeneous models gave predictions independently, and

Fig. 2 Diagram of the K -fold average ensemble approach. The whole data set is equally
separated into K parts. We combine any K − 1 parts of the data for training and leave the remain-
ing part for validation. Then, K sets of data can be generated to train a base model, which yields
K homogeneous models. Each one gives a prediction independently, and their average is
calculated as the output of the K -fold average ensemble.
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(a)

(b) (c)

Fig. 3 Diagram of the proposed adaptive ensemble. (a) It trains a MultiResUNet to combine the
predictions of base models. (b) Structure of the MultiRes block, where a series of 3 × 3 convo-
lutions is used to approximate the behaviors of 5 × 5 convolution and 7 × 7 convolution.
(c) Structure of the residual path, where features of the encoder pass through a few convolutional
layers before being fed into the decoder.

Fig. 4 Experimental results of several unseen scenarios that include a set of statues, an industrial
part, and a desk fan. The input is a fringe pattern. It is then fed into the U-Net, MP DNN, and
Swin-Unet, which are trained by the sevenfold average ensemble, respectively. By calculating
the average, each base model outputs a pair of numerators and denominators. Then, the outputs
of base models are processed by the adaptive ensemble, which combines the contribution of each
base model and calculates the wrapped phase.
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Eq. (4) was used to compute the average. As there were three
base models, three pairs of numerators and denominators were
obtained for each input image. These predictions were further
combined by being fed into the adaptive ensemble that output
the final prediction and calculated the wrapped phase.

For quantitative analysis, the ground-truth phase was ob-
tained by the 12-step PS method. For comparison, the fringe
image was also analyzed by a single U-Net; its absolute phase
error is shown in Fig. 5(a). For the first scenario, we can see that
the phase of smooth areas is retrieved accurately, while that of
complex regions is measured with large errors. The mean abso-
lute error (MAE) of the whole scene is 0.085 rad. The phase
error of our approach is shown in Fig. 5(b). As can be seen,
the phase error of the first scene has been reduced effectively.
For detailed investigation, two regions of interest (ROIs),
i.e., two complex regions around hairs, were selected. We can
see that our method performs much better than the U-Net for
handling the complex areas of depth variations and edges.
Quantitatively, the MAE was greatly reduced to 0.061 rad when
our method was used. For the second scenario, the MAE of the
U-Net is 0.076 rad, and obvious errors can be observed around
the edges and the small raised letters on the surface of the object,

as can be seen in Figs. 5(b) and 5(c). When our approach was
applied, these phase errors were apparently reduced, and the
MAE of the scene has been reduced to 0.054 rad. Last, for
the third scenario, our method also outperformed the U-Net,
as the MAE decreased significantly from 0.080 to 0.059 rad,
demonstrating the accuracy improvement by 26%.

To further validate the proposed method, we investigated the
effect of the ensemble size of the K-fold average ensemble.
Different K were tested for these base models; the results
are shown in Fig. 5(d). We find that a similar trend can be
observed for these base models. The MAE decreases with
the increase of K, and it tends to be stable when K is larger than
seven. Therefore, the sevenfold average ensemble was used in
our work. Moreover, we also compared the accuracy of each
base model under the cases of the single model and the
seven-fold average ensemble. Table 1 shows their MAEs for
the tested scenarios. From the performance of a single DNN,
we find different models demonstrate different performances.
For example, the U-Net shows the smallest MAE for the third
scenario, while the MAE for the second scenario is the largest
among the three models. When the seven-fold average ensemble
was utilized, the ensembles outperformed the single model as

(a)

(b)

(c)

(d)

Fig. 5 Comparison of the proposed method with the U-Net. (a) and (b) The absolute phase error
maps of the U-Net and our method, respectively. (c) Selected ROIs of the phase error for the two
methods. (d) The performance of different K -fold average ensembles.
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the MAEs were reduced. After further combining the outputs of
the base models by the adaptive ensemble, we obtained the
smallest MAE of 0.061, 0.054, and 0.059 rad for these scenes,
respectively. From this experiment, we can see that different
DNNs have different advantages, and it is hard for a single
DNN to demonstrate excellent performance for all scenarios.
It is worth noting that the model accuracy and generalization
capability can be improved significantly by the proposed
approach, which combines the strengths of diverse models.
More experimental results are provided in the Supplementary
Material.

4 Conclusions
In this work, we have proposed a novel fringe-pattern analysis
method using ensemble deep learning, which can exploit the
contributions of multiple state-of-the-art DNNs. The K-fold
average ensemble approach is developed to manipulate the
training data set into different groups. Each base model is
trained several times with different groups of data. Within each
base model, the output is computed by taking the average over
the predictions of all homogeneous models. To further fuse the
predictions of the base models, we have proposed an adaptive
ensemble that can train a DNN to combine these predictions
adaptively and automatically. Experimental results have shown
that our work can leverage the strength of multiple base models
to boost performance, which is superior to the method that only
uses a single DNN. Furthermore, deepp-learning techniques
have been widely applied in various optical metrology applica-
tions, such as phase unwrapping, 3D reconstruction, and image
denoising. However, a single model with a fixed architecture
may only extract limited information from input data. We
believe that the idea of utilizing the collective wisdom demon-
strated here can also be extended to these applications because
more DNNs of different structures can extract diverse informa-
tion from input data, which is advantageous for making reliable
predictions. We believe this work has great potential in inspiring
powerful and practical optical metrology techniques in the
future.
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