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Statement of Discovery

This study integrated multispectral autofluorescence imaging endoscopy and machine learn-
ing to demonstrate automated discrimination of benign from cancerous/pre-cancerous oral
lesions. This strategy could potentially lead to a novel clinically compatible computer-assisted
detection system for oral cancer screening.

ABSTRACT. Significance: Diagnosis of cancerous and pre-cancerous oral lesions at early
stages is critical for the improvement of patient care, to increase survival rates and
minimize the invasiveness of tumor resection surgery. Unfortunately, oral precan-
cerous and early-stage cancerous lesions are often difficult to distinguish from oral
benign lesions with the existing diagnostic tools used during standard clinical oral
examination. In consequence, early diagnosis of oral cancer can be achieved in only
about 30% of patients. Therefore, clinical diagnostic technologies for fast, minimally
invasive, and accurate oral cancer screening are urgently needed.

Aim: This study investigated the use of multispectral autofluorescence imaging
endoscopy for the automated and noninvasive discrimination of cancerous and pre-
cancerous from benign oral epithelial lesions.

Approach: In vivo multispectral autofluorescence endoscopic images of clinically
suspicious oral lesions were acquired from 67 patients undergoing tissue biopsy
examination. The imaged lesions were classified as precancerous (n ¼ 4), cancer-
ous (n ¼ 29), and benign (n ¼ 34) lesions based on histopathology diagnosis.
Multispectral autofluorescence intensity feature maps were generated for each oral
lesion and used to train and optimize support vector machine (SVM) models for auto-
mated discrimination of cancerous and precancerous from benign oral lesions.

Results: After a leave-one-patient-out cross-validation strategy, an optimized SVM
model developed with four multispectral autofluorescence features yielded levels of

*Address all correspondence to Javier A. Jo, javierjo@ou.edu

Biophotonics Discovery 025001-1 Jul–Sep 2024 • Vol. 1(2)

https://orcid.org/0000-0003-0077-8499
https://orcid.org/0000-0002-1240-6572
mailto:javierjo@ou.edu
mailto:javierjo@ou.edu


sensitivity and specificity of 85% and 71%, respectively and overall accuracy of 78%
in the discrimination of cancerous/precancerous versus benign oral lesions.

Conclusion: This study demonstrates the potentials of a computer-assisted detec-
tion system based on multispectral autofluorescence imaging endoscopy for the
early detection of cancerous and precancerous oral lesions.
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1 Introduction
Early detection of new and recurrent oral cancer holds great promise for improving the survival
rate and quality of life of patients. Unfortunately, precancerous and cancerous oral lesions are
often difficult to distinguish from benign oral lesions during standard clinical examination.1,2 As
a result, only about 30% of patients are diagnosed at early stages despite the fact that the oral
cavity is easily accessible for direct examination.3 Therefore, there is an urgent need for novel
clinical diagnostic technologies capable of improving the rate of early oral cancer detection.

Commercially available diagnostic adjuncts, including toluidine blue,4 brush cytology,5 ace-
towhitening with chemiluminescence (ViziLite),6 and autofluorescence imaging (VELscope,
Identafi, and OralID),7,8 have been widely evaluated during clinical examination of potentially
malignant and premalignant oral lesions. However, these diagnostic adjuncts have displayed low
specificity and are not generally recommended for the assessment of clinically suspicious oral
lesions.9,10

Optical imaging technologies have also been developed and evaluated for the early detection
of oral cancer. Kozakai et al. performed autofluorescence imaging in 50 patients using the
Illumiscan® (SHOFU, Kyoto, Japan) fluorescence visualization device and reported levels of
sensitivity and specificity of 85% and 93%, respectively in cancerous versus benign oral
lesions.11 Wang et al. performed autofluorescence spectroscopy in 97 patients and reported 81%
sensitivity and 96% specificity in the classification of pre-cancerous/cancerous versus benign/
normal oral tissues.12 Guze et al. performed in vivo Raman spectroscopy in 18 patients to dis-
tinguish pre-cancerous and cancerous from benign and normal oral tissues and reported levels of
sensitivity and specificity of 100% and 77%, respectively.13 Finally, Chen et al. differentiated pre-
cancerous versus benign oral lesions from 38 patients with 68% sensitivity and 95% specificity
using in vivo time-resolved fluorescence spectroscopy.14 Although these studies have demon-
strated the potentials of optical imaging technologies for the early detection of oral cancer, further
research is needed to successfully translate these diagnostic systems into the clinic.

In a previous study conducted by our group,15 we demonstrated clinical widefield multi-
spectral autofluorescence endoscopic imaging of novel biochemical and metabolic biomarkers
of oral dysplasia and cancer, and their potential for early detection. These autofluorescence bio-
markers are mainly associated to the endogenous fluorophores reduced-form nicotinamide
adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) in oral epithelial cells;
and collagen in the underlying lamina propria. In this study, we hypothesized that these oral
cancer biomarkers can be used as features to develop predictive machine learning models for
the automated and non-invasive discrimination between cancerous/pre-cancerous and benign
oral epithelial lesions.

2 Methods

2.1 Imaging System and Data Acquisition Protocol
The multispectral autofluorescence endoscope system used in this study was developed by
Cheng et al.16 and is currently undergoing upgrades17–19 to improve the clinical imaging of estab-
lished and potentially novel autofluorescence biomarkers of oral pre-malignancy and malig-
nancy. The system consisted in a 355 nm pulsed laser (Advanced Optical Technology, 1 ns
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pulse width, ∼1 μJ∕pulse at the tissue), which collected the tissue autofluorescence emission at
the 390� 20 nm, 452� 22.5 nm, and >500 nm spectral bands, selected to preferentially mea-
sure collagen, NADH, and FAD autofluorescence, respectively. The system delivered a total
energy of 2.8 mJ into the patient’s oral mucosa, being an order of magnitude lower than
the maximum permissible exposure (MPE ¼ 29.8 mJ) provided by the American National
Standards Institute.20 The autofluorescence endoscopic images were acquired with a 10 mm cir-
cular field-of-view, ∼100 μm lateral resolution, and <3 s acquisition time per multispectral
image. Clinical examination of the patient’s oral cavity was performed by an experienced head
and neck surgeon (M.M., M.A.K., and H.A.E), followed by the acquisition of endoscopic multi-
spectral autofluorescence images from both the suspicious oral lesion and a clinically healthy-
appearing area in the corresponding contralateral anatomical side. The image acquisition pro-
tocol was approved by the Institutional Review Boards at Hamad Medical Corporation (Doha,
Qatar). An incisional tissue biopsy was then taken from the center of the lesion, which was
blinded to the autofluorescence endoscopy imaging acquisition and processing. Each imaged
oral lesion was annotated based on its tissue biopsy histopathological diagnosis (gold standard).
The imaged healthy appearing tissue area from the contralateral side of the lesion was not biop-
sied. The distribution of the 67 multispectral autofluorescence endoscopic images of benign,
precancerous, and cancerous oral lesions acquired in this study is summarized in Table 1.

2.2 Multispectral Autofluorescence Image Pre-Processing
The following steps were applied to preprocess the autofluorescence endoscopic images: (1) the
signal offset and background were subtracted at every pixel of the image, (2) pixels presenting
signal saturation were masked by applying a threshold on the maximum signal amplitude, (3) a
5 × 5 spatial averaging filter was used to improve the signal-to-noise ratio (SNR) at every pixel,
(4) pixels with an SNR value below 15 decibels were masked, and (5) additional pixels were
manually masked from images containing teeth regions characterized by a strong autofluores-
cence emission.

2.3 Computation of Absolute Spectral Features
The multispectral autofluorescence endoscopic image dataset is composed of intensity temporal
decay signals yλðx; y; tÞ, acquired at each emission band (λ) and spatial location ðx; yÞ. After all
the multispectral autofluorescence images were pre-processed, autofluorescence intensity fea-
tures were computed at every pixel. The multispectral absolute autofluorescence intensity

Table 1 Distribution of the 67 imaged oral lesions based in anatomical location and histopatho-
logical diagnosis.

Lesion anatomical
location

Histopathology diagnosis

Total numberBenign MoD HiD SCC

Buccal mucosa 11 1 1 9 22

Tongue 9 — — 12 21

Lip 10 — — 2 12

Gingiva — — 2 3 5

Floor of mouth 2 — — 1 3

Mandible — — — 1 1

Maxilla — — — 1 1

Palate 1 — — — 1

Retromolar 1 — — — 1

Total number 34 1 3 29 67

MoD: moderate dysplasia; HiD: high-grade dysplasia; SCC: squamous cell carcinoma.
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Iλðx; yÞ was computed by numerically integrating the fluorescence intensity temporal decay sig-
nal using Eq. (1) and was then normalized using Eq. (2)

EQ-TARGET;temp:intralink-;e001;114;712Iλðx; yÞ ¼
Z

yλðx; y; tÞdt; (1)

EQ-TARGET;temp:intralink-;e002;114;665Iλ;nðx; yÞ ¼
Iλðx; yÞP
λ Iλðx; yÞ

: (2)

From the multispectral absolute autofluorescence intensities, six spectral ratios were
computed to quantify the relative intensity values between emission spectral channels:
I390ðx;yÞ∕I452ðx;yÞ, I390ðx;yÞ∕I500ðx;yÞ, I452ðx;yÞ∕I500ðx;yÞ, ½I452ðx;yÞþ I500ðx;yÞ�∕I390ðx;yÞ,
½I390ðx;yÞþI500ðx;yÞ�∕I452ðx;yÞ, and ½I390ðx; yÞ þ I452ðx; yÞ�∕I500ðx; yÞ.

The normalized autofluorescence intensities computed at the 390� 20 nm (I390;n),
452� 22.5 nm (I452;n), and >500 nm (I500;n) emission bands, primarily quantify the autofluor-
escence originated from the endogenous fluorophores collagen in the oral submucosa, and
NADH and FAD within oral epithelial cells, respectively. The spectral ratio I452∕I500 is asso-
ciated to the optical redox-ratio21 and quantifies the autofluorescence of NADH at the
452� 22.5 nm band relative to that of FAD at the >500 nm band. These features represent
established morphologic and metabolic biomarkers of oral cancer.15,22 The remaining five spec-
tral intensity ratios measure the relative autofluorescence emissions between collagen, NADH,
and FAD and can potentially represent novel oral epithelial cancer biomarkers.15

2.4 Computation of Relative Spectral Features
Relative values Δf ðx; yÞ for each spectral feature were computed as follows. First, absolute spec-
tral feature maps (Sec. 2.3) were generated for both the lesion and paired healthy tissue images.
Second, the difference between each pixel in the lesion feature map f ðx; yÞ and the median value
of the corresponding healthy feature map μf ;Healthy was computed for each spectral feature as
shown in Eq. (3). The relative spectral features thus represent the result of normalizing the lesion
image feature distribution with respect to the median of the healthy image feature distribution

EQ-TARGET;temp:intralink-;e003;114;391Δf ðx; yÞ ¼ f ðx; yÞ − μf ;Healthy: (3)

In summary, a total of 18 autofluorescence spectral intensity features were computed per
pixel, as summarized in Table 2.

Table 2 Summary of autofluorescence spectral intensity features com-
puted per pixel.

Feature
Total

number

Normalized autofluorescence
intensity

I390;nðx; yÞ 9
I452;nðx; yÞ
I500;nðx; yÞ

Autofluorescence
intensity ratio

I390ðx; yÞ∕I452ðx; yÞ
I390ðx; yÞ∕I500ðx; yÞ
I452ðx; yÞ∕I500ðx; yÞ
½I452ðx; yÞ þ I500ðx; yÞ�∕I390ðx; yÞ
½I390ðx; yÞ þ I500ðx; yÞ�∕I452ðx; yÞ
½I390ðx; yÞ þ I452ðx; yÞ�∕I500ðx; yÞ

Relative features Δf ðx; yÞ 9

Total number 18
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2.5 Machine Learning Model Optimization and Classification Performance
Estimation

The classification performance for the discrimination of cancerous/pre-cancerous [squamous cell
carcinoma (SCC), moderate and high-grade dysplasia; n ¼ 33] from benign (n ¼ 34) oral
lesions was estimated as follows. The multispectral autofluorescence endoscopic image dataset
of 67 oral lesion images was introduced into a classification model optimization process using a
leave-one-patient-out-cross-validation (LOPOCV) strategy illustrated in Fig. 1. First, one lesion
image from a patient was removed from the dataset and used as the validation sample, which was
blinded to the model training. The remaining 66 images from all other patients were used as the
training set. Second, the training set was introduced into a linear support vector machine (SVM)
model with L1-regularization (L1-SVM; C ¼ 1),23 which assigned weights to each of the spec-
tral features. The absolute value of each weight was taken, and the weights were normalized. The
features were then ranked from largest to smallest weight. Third, to prevent overfitting due to the
small sample size of the training set (n ¼ 66), the L1-SVM model was retrained using only the
features with largest weights and applied to the validation sample. Finally, the whole process was
repeated until each of the 67 oral lesion images was used as the validation sample. This LOPOCV
strategy was evaluated using the top three, four, and five features to retrain the L1-SVM model.

To classify the independent validation sample, the process illustrated in Fig. 2 was per-
formed at every LOPOCV iteration: (1) a trained L1-SVM model was applied at the pixel-level
resulting in a posterior probability map, in which every pixel value represents the likelihood of
cancer/precancer, (2) an image-level score was generated by computing the average of the

Fig. 1 Schematic of the leave-one-patient-out-cross-validation process used to estimate the clas-
sification performance. This process was performed using the top three, four, and five features to
retrain the L1-SVM model.

Fig. 2 Summary of the image-level classification process performed in this study. (1) The L1-SVM
posterior probability map was obtained from the pixel-level classification, (2) an image-level score
consisting in the average of the posterior probability map was computed, (3) this score was com-
pared against an optimized threshold from the training set, and (4) the image was classified as
cancerous/pre-cancerous if the image-level score was greater than or equal to the threshold or as
benign otherwise.
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posterior probability map, (3) receiver operating characteristic (ROC) analysis was performed on
the image-level scores from the training set, and an image-level score threshold was optimized by
selecting the point on the ROC curve with maximum sensitivity within the 1-specificity range of
0% to 30%, and (4) finally, the validation sample was classified as cancer/precancer if its pre-
dicted image-level score was greater than or equal to the optimized threshold, or as benign
otherwise.

After the LOPOCV process was completed, a confusion matrix was generated, and the
image-level classification performance was quantified in terms of the levels of sensitivity and
specificity using Eqs. (4) and (5), respectively:

EQ-TARGET;temp:intralink-;e004;114;628Sensitivity ¼ TP

TPþ FN
; (4)

EQ-TARGET;temp:intralink-;e005;114;582Specificity ¼ TN

TNþ FP
; (5)

where TP, FN, TN, and FP represent the number of true positives, false negatives, true negatives,
and false positives, respectively.

2.6 Classification Model Simulating the VELscope Imaging System
The VELscope system is an autofluorescence-based commercially available clinical diagnostic
adjunct that has been widely used for the early detection of oral cancer.8 It delivers blue light
excitation (400 to 460 nm) to the oral mucosa, and pale green autofluorescence is associated to
normal oral tissue, while dark autofluorescence to abnormal oral tissue. In this study, a linear L1-
SVM model (C ¼ 1) using a single spectral feature consisting in the combined normalized auto-
fluorescence intensities at the 452� 22.5 nm and >500 nm emission bands (I452;n þ I500;n),
simulating the VELscope autofluorescence emission, was also trained and cross-validated using
LOPOCV (Fig. 1). The LOPOCV classification performance (sensitivity and specificity) of the
optimal L1-SVM model identified using multispectral autofluorescence features was compared
against the performance of the single-feature L1-SVM model mimicking the VELscope.

3 Results
The classification results following the LOPOCV strategy for each spectral feature pool, and for
the top three, four, and five spectral features selected to retrain the L1-SVM model are summa-
rized in Table 3. The L1-SVM model developed with the top four features from the absolute
spectral feature pool displayed the highest levels of sensitivity (85%) and specificity (71%)
among all cases.

After completion of the LOPOCV process, the frequency of the spectral features selected by
the L1-SVMmodel was recorded for each feature pool evaluated. Figure 3 presents the frequency
of the features selected by the best performing L1-SVM model (using the top four absolute spec-
tral features, Table 3). The most relevant absolute spectral features identified included I452;n

Table 3 Classification performance results after leave-one-patient-out-cross-validation for each
spectral feature pool and selected feature set size.

Spectral feature
pool

Sensitivity Specificity

Top three
features

Top four
features

Top five
features

Top three
features

Top four
features

Top five
features

Absolute (nf = 9) 79% 85% 82% 71% 71% 68%

Relative (nf = 9) 82% 82% 82% 68% 68% 68%

Absolute and
relative
(nf = 18)

76% 82% 82% 68% 68% 71%

nf: number of features.
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(selected in 100% of the folds), ½I390 þ I500�∕I452 (selected in 98% of the folds), I390;n (selected in
97% of the folds), and I452∕I500 (selected in 88% of the folds).

Figure 4 presents the posterior probability maps of the 67 oral lesions resulting from the
LOPOCVusing the best performing L1-SVM model. In these maps, each pixel was color-coded
based on the predicted probability, with red tones indicating higher likelihood of cancer/
precancer.

The confusion matrices resulting from LOPOCV comparing the predicted oral lesion labels
of the optimal model (L1-SVM with top four features) against the single-feature (I452;n þ I500;n)
model simulating the VELscope are presented in Table 4. The L1-SVMwith the top four features
was able to correctly predict 24/29 cancerous (SCC), 4/4 pre-cancerous (3 HiD and 1 MoD), and
24/34 benign oral lesions, resulting in levels of sensitivity and specificity of 85% and 71%,
respectively and overall accuracy of 78%, while the single-feature L1-SVM model achieved
lower sensitivity (61%), same specificity (71%), and lower accuracy (66%).

Fig. 3 Frequency of absolute spectral features selected by the L1-SVM model retrained with the
top 4 features.

Fig. 4 Posterior probability maps (red intensity scale) superposed on the total autofluorescence
intensity images (gray intensity scale) of 67 oral lesions obtained from the best performing L1-SVM
model (with top four features). Lesion identification labels are shown to the left of each map and
color-coded in red if classified as cancer/precancer based on the image-level classification and in
black otherwise.

Duran Sierra et al.: Computer-assisted discrimination of cancerous. . .

Biophotonics Discovery 025001-7 Jul–Sep 2024 • Vol. 1(2)



4 Discussion
Multispectral autofluorescence endoscopic images of benign, pre-cancerous, and cancerous oral
lesions from 67 patients undergoing tissue biopsy examination were acquired in vivo. For every
imaged oral lesion, absolute and relative autofluorescence spectral feature maps were generated
and used to optimize machine learning classification models for the automated discrimination of
cancerous/precancerous versus benign oral lesions. Results from this study provide strong pre-
liminary data supporting the potentials of multispectral autofluorescence imaging endoscopy for
the early detection of oral cancer.

Among the three autofluorescence spectral feature pools used to develop the L1-SVM
model, the absolute spectral features resulted critical in the discrimination of cancerous/precan-
cerous from benign lesions since they provided the highest levels of sensitivity (85%) and speci-
ficity (71%).

One of the most relevant biomarkers identified in our analysis was the normalized autofluor-
escence intensity at the 390� 20 nm emission band (I390;n), mainly associated to collagen auto-
fluorescence. This biomarker has been shown to decrease in malignant and premalignant oral
lesions15,22,24 due to a breakdown of collagen crosslinks and increased epithelial thickness.25,26

Another important biomarker identified was the normalized autofluorescence intensity mea-
sured at the 452� 22.5 nm emission band (I452;n), mainly associated to NADH autofluores-
cence. The relevance of this feature in the discrimination of cancerous/precancerous from
benign oral lesions might rely on the metabolic pathways used by neoplastic cells, since energy
production in these cells is characterized by increased used of glycolysis and citric-acid (Krebs)
cycle.27 These metabolic pathways reduce NAD+ into fluorescent NADH, resulting in increased
concentration of mitochondrial NADH and higher tissue autofluorescence emission within the
452� 22.5 nm band (I452;n).

The optical redox-ratio (I452∕I500) represented another relevant biomarker in the discrimi-
nation of cancerous/precancerous versus benign lesions. This feature has been shown to decrease
in cancerous and precancerous oral lesions,15,22,24 likely reflecting increased cellular metabolic
activity associated to higher activation of the oxidative phosphorylation pathway in malignant
cells.28

The last relevant feature identified in this study was the ratio ½I390 þ I500�∕I452, which quan-
tifies the combined autofluorescence of collagen at the 390� 20 nm band and FAD at the
>500 nm band, with respect to NADH autofluorescence at the 452� 22.5 nm band. To the best
of our knowledge, no previous studies have reported a trend in this feature in cancerous/precan-
cerous oral lesions; thus, representing a potentially new autofluorescence biomarker of oral epi-
thelial cancer.

Finally, the optimal classification model identified in this study was able to correctly classify
a larger number of cancerous/precancerous oral lesions, resulting in higher sensitivity (85%),
compared to the model simulating the VELscope system with 61% sensitivity. This finding high-
lights the advantage of our multispectral endoscopy system over a single emission wavelength

Table 4 Confusion matrices from the LOPOCV comparing the best performing L1-SVM model
against the single-feature L1-SVM model.

Predicted labels

L1-SVM top four features L1-SVM single feature

Benign Cancer/pre-cancer Benign Cancer/pre-cancer

True Labels Benign (n = 34) 24 10 24 10

MoD (n = 1) 0 1 1 0

HiD (n = 3) 0 3 2 1

SCC (n = 29) 5 24 10 19

MoD: moderate dysplasia; HiD: high-grade dysplasia, and SCC: squamous cell carcinoma.
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system, since absolute spectral features derived from the autofluorescence acquired at three dif-
ferent emission bands were critical in the discrimination of cancerous/precancerous versus
benign lesions. However, further validation is needed by performing a more realistic comparison
against the actual VELscope imaging system. Nevertheless, these findings demonstrate the
potentials of multispectral autofluorescence imaging endoscopy for early oral cancer screening
in a clinical setting.

4.1 Study Limitations
This study used the average of the L1-SVM-derived posterior probability maps to summarize
them into image-level scores that were compared against optimized thresholds to obtain the final
image-level classification (cancerous/precancerous versus benign). However, other approaches,
such as the distribution median and mode, and percentage of pixels above a fixed-probability
threshold, could be used to summarize the posterior probability maps into image-level score
representations. Future studies further validating these promising results will consider other alter-
natives that can potentially provide better single-score representations of the classifier posterior
probability maps.

The limited specificity (71%) achieved in this study by the best performing L1-SVM model
needs to be improved to enable successful clinical translatability of our multispectral autofluor-
escence endoscopic imaging system. To achieve this, our future research efforts will focus on
(1) collecting data at multiple medical centers to generate a larger and more diverse oral lesion
database that could improve the performance of our L1-SVM classifiers; and (2) the investigation
of time-resolved autofluorescence features, such as the multispectral average autofluorescence
lifetime and bi-exponential decay model parameters,29 which could provide complementary
information to potentially improve the L1-SVM discrimination of cancerous/precancerous versus
benign oral lesions.

Altogether, the established and potentially new autofluorescence biomarkers of oral cancer
used as features in an L1-SVM classification model for the discrimination of cancerous/pre-can-
cerous versus benign oral lesions support the potentials of multispectral autofluorescence im-
aging endoscopy as a non-invasive clinical diagnostic tool for early detection of oral cancer.

5 Conclusion
Multispectral autofluorescence biochemical and metabolic biomarkers of oral cancer were
imaged and used as features to develop machine learning models optimized for the discrimina-
tion of cancerous and precancerous from benign oral lesions. The outcomes of this study support
the potentials of multispectral autofluorescence imaging endoscopy for early detection of oral
cancer in a clinical setting. Future research efforts will focus on improving the predictive model
development pipeline, ultimately leading to a cost-effective, fast, and reliable clinical diagnostic
imaging tool that will facilitate early detection of oral cancer.
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