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Abstract. In pulsed ultrasound modulated optical tomography (USMOT), an ultrasound (US) pulse performs as a
scanning probe within the sample as it propagates, modulating the scattered light spatially distributed along its
propagation axis. Detecting and processing the modulated signal can provide a 1-dimensional image along the
US axis. A simple model is developed wherein the detected signal is modelled as a convolution of the US
pulse and the properties (ultrasonic/optical) of the medium along the US axis. Based upon this model, a maximum
likelihood (ML) method for image reconstruction is established. For the first time to our knowledge, the ML tech-
nique for an USMOT signal is investigated both theoretically and experimentally. TheMLmethod inverts the data to
retrieve the spatially varying properties of the sample along the US axis, and a signal proportional to the optical
properties can be acquired. Simulated results show that the ML method can serve as a useful reconstruction tool for
a pulsed USMOT signal even when the signal-to-noise ratio (SNR) is close to unity. Experimental data using 5 cm
thick tissue phantoms (scattering coefficient μs ¼ 6.5 cm−1, anisotropy factor g ¼ 0.93) demonstrate that the axial
resolution is 160 μm and the lateral resolution is 600 μm using a 10 MHz transducer. © 2012 Society of Photo-Optical

Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.2.026014]
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1 Introduction
The spatial resolution of optical transillumination imaging sys-
tems is severely degraded by light scattering. Several approaches
such as confocal microscopy and optical coherence tomography
(OCT) have been applied to reduce the degradation in imaging
resolution and quality caused by light scattering. However,
in skin, for example, (typical μs ¼ 100 cm−1, g ¼ 0.9, absorption
coefficient μa ¼ 0.1–10 cm−1 for λ ∼ 400 − 700 nm)1 light
scattering limits the imaging depth to ∼500 μm for confocal
microscopy and ∼2 mm for OCT. In contrast, acoustic waves
are more weakly scattered by tissue, and ultrasonic techniques
have been widely used in medicine. However, ultrasonic tech-
niques do not provide the optical spectroscopic information,
e.g., sensitivity to blood oxygen saturation, provided by optical
techniques. Therefore, beyond the penetration depth of confocal
microscopy andOCT it is advantageous to combine the functional
information provided by optical techniques with the resolution
of ultrasound (US). This can be done using photo-acoustic
tomography where light is used to generate ultrasonic waves
in the tissue. This paper focuses on ultrasound modulated optical
tomography (USMOT) where US is used to modulate light
within the tissue.

Over the past two decades, the acousto-optic effect in scat-
tering media has received significant attention particularly as a
new biomedical imaging modality. This is because it has the

potential to overcome the degradation in resolution associated
with light scattering. The US changes the optical properties
(refractive index, scattering coefficient, motion of scatterers).2

These effects cause a phase modulation of the optical field
often referred to as US “tagging”; and this light can be used
to provide information from a local region within the turbid
medium.

One of the first studies in USMOTwas conducted by Marks
et al.3 They succeeded in detecting the variation of optical inten-
sity in an insonified region. The well studied modulation
mechanisms of light traversing through an insonified region
are caused by the movement of scatterers and changes in med-
ium refractive index1,4 under an applied acoustic field. An US
transducer driven by continuous wave (CW) was used in many
of the early imaging systems.5 Several detection methods have
been proposed to increase the signal-to-noise ratio (SNR) such
as using a single photo-sensor,6,7 parallel detection using a cam-
era,8–10 or photorefractive crystal,11–13 confocal Fabry-Perot,14,15

or spectral hole burning.16,17

Although CW systems are better understood and offer nar-
row bandwidths, they suffer from two main disadvantages. First,
low acoustic spatial average intensity is required due to the
safety standards in biomedical applications, which limits the
modulation depth. Second, there is low axial resolution along
the ultrasonic propagation axis as the detected signal is averaged
along the focal zone of the US pressure field. In order to im-
prove the axial resolution, a frequency-swept technique was
introduced18,19 where light is tagged with different frequenciesAddress all correspondence to: Stephen P. Morgan, University of Nottingham,
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at different axial positions; however, the modulation depth
remains limited as it employs CW US. With pulsed USMOT
techniques,20,21 the US transducer is driven by a train of high
peak voltage pulses. As the modulated optical field is linearly
proportional to the acoustic amplitude,2,22–25 it can provide a
stronger modulation effect while the average energy still satis-
fies safety thresholds. In addition, a pulsed technique also
improves the resolution along the US axis because the pulse
can be time resolved providing optical information at specific
positions due to the low speed of sound relative to light. In
CW, frequency swept and pulsed techniques and assuming
spherically focused US, the size of the focal zone is also dictated
by the focus waist of the US pressure which is proportional to
the transducer focal length, and inversely proportional to trans-
ducer element diameter and US frequency. Therefore, appropri-
ate modification of these parameters may result in a tighter waist
and can provide better lateral resolution for an imaging system.
In addition, increasing the acoustic pressure to produce harmo-
nics that have a tighter beam waist may also increase the
imaging resolution.26

Some modelling of US modulated light propagation in turbid
media has been carried out. Sakadzic and Wang22–24 proposed a
theoretical framework for the mechanisms of producing US
modulated light in tissue. The majority of research has involved
Monte Carlo simulation of scattered light propagation through a
CW US field.2,23,27,28 Three mechanisms were identified2 for US
modulation of the optical field: (i) US induced variation of the
optical properties (absorption and scattering) due to compres-
sion and rarefaction of the medium; (ii) variation of the optical
phase due to US induced displacement of scatterers; and
(iii) modulation of the optical phase due to US modulation
of the index of refraction. (i) is a weak effect which can only
be observed with low SNR when incoherent light is used.
The contribution of (ii) and (iii) to the modulation depth of
the detected signal is comparable when the acoustic wave num-
ber ka ≤ 0.559μs, where μs is the optical scattering coefficient.
As ka increases above this value (iii) dominates and the mod-
ulation depth increases significantly.2 Honeysett et al.29 used
a Monte Carlo model to investigate USMOT signals when
bubbles are introduced in the scattering medium as contrast
agents. Yuan et al.30 proposed a diffusion model of fluorescence
USMOT.

There have been fewer papers based on image reconstruction
of USMOT data. Li and Wang applied the reconstruction
method of X-ray computed tomography to an USMOT system
where the US beam is scanned linearly and angularly across the
sample.31,32 Allmaras and Bangerth investigated a reconstruc-
tion based on a Green’s function approach.33 Recently, Xu
et al.34 investigated time reversal techniques in which the optical
properties of the sample at the US focus is reconstructed based
on holographic data. Bratchenia et al.35 applied a finite-element
method to reconstruct information of optical absorbing objects
in USMOT. Therefore, there is a need to develop new algorithms
to reconstruct USMOT data.

One candidate is to apply a maximum likelihood (ML) algo-
rithm.36–41 Given a measured data set and a statistical model for
the data, a ML algorithm will provide an estimate to the model
parameters. The main advantage of the ML method is that it
recognizes that the recorded data are the realization of a random
process.36–39 The ML method also does not require a priori
information to be imposed on the solution. This has been suc-
cessfully applied in many research areas, e.g., dynamic light

scattering,39 positron emission tomography,40 and X-ray com-
puted tomography.41

In this paper, we introduce a simple model of the pulsed
USMOT signal based on the convolution of the US pulse with
the optical field. Although there are limitations to this model,
which are discussed later, it provides results that compare
well with experimental data. Based on this model, a ML data
inversion algorithm for image reconstruction is developed. To
our knowledge this is the first time an USMOT image recon-
struction technique by the ML method has been investigated.
The reconstruction is investigated both theoretically and experi-
mentally using a 10 MHz (central frequency) pulsed USMOT
system. The experiments involve non-scattering water samples
and scattering water and gel samples.

Section 2 introduces the theoretical description of the pulsed
USMOT signal model, together with a description of the ML
algorithm for image reconstruction. Section 3 describes the ex-
perimental configuration. The validity of the pulsed USMOT
model is shown in Sec. 4 where detected signals in many
scenarios are compared to the corresponding simulated results.
Section 4 also presents results from the application of the ML
method to both simulated and experimental data. Discussions
and conclusions follow in Secs. 5 and 6, respectively.

2 Theory
The next two sections describe the simple model that forms the
basis for the ML algorithm followed by a description of the ML
method itself.

2.1 Model of Pulsed USMOT Signal

Figure 1 illustrates a model of a pulsed USMOT signal detected
at a photo-detector. As an US pulse traverses the sample at a
particular time, it introduces a pressure change (compression
or rarefaction) at a particular volumetric element of the medium,
which contains the US pressure field at a given point in time
(defined as a ‘layer’ in this context). This modulates the motion
of local scatterers and changes the local sample’s optical proper-
ties (scattering coefficient, absorption coefficient, and refractive
index). Consequently, light at that layer is phase modulated by
the US pulse and produces a phase modulated optical signal.
When the US pulse reaches the next layer of the sample, it
produces another optical pulse, which is similar to the temporal
profile from the previous layer, but with a phase delay due to the
time taken for the US pulse to propagate between the two
consecutive layers. The speed of sound va in water and in
agar gel phantoms42 has been demonstrated to be approximately
1500 m∕s at room temperature. The speed of light v in such

Fig. 1 Model of a pulsed USMOT signal.

Huynh et al.: Application of a maximum likelihood algorithm to ultrasound : : :

Journal of Biomedical Optics 026014-2 February 2012 • Vol. 17(2)



media is expressed as v ¼ c∕n, where c ≈ 3 × 108 m∕s is the
light velocity in vacuum, and n ≈ 1.33 is the refractive index
of water or tissue. Because the speed of light is much higher
than the speed of sound, the time taken for the modulated
light to reach the detector is neglected. Hence, the phase differ-
ence only depends on the transit time of the US pulse, which
produces a slowly changing envelope on the modulated signal.
Some preliminary results of imaging small objects embedded in
scattering media based on envelope detection method have been
shown in Morgan et al.43 Therefore, a pulsed USMOT signal at
the detector may be expressed as a function of time, or as a sum-
mation of many phase shifted optical pulses.

In the absence of absorption, a simple US pulse at the far
field in an acoustically-uniform medium has the pressure
UðtÞ at a given layer which can be expressed as,

UðtÞ ¼ sðtÞ: sinðωa t þ ϕaÞ; (1)

where sðtÞ is the pulse envelope that depends on the band-
width of a transducer, ωa is the US central frequency, and ϕa
is the US initial phase. The typical temporal pressure profile
of a pulse generated by a 10 MHz US transducer (7.6 cm
focal length, Olympus Panametrics-NDT V322) is shown
in Fig. 2(b). This was obtained by measuring the amplitude
of the acoustic pulse using the configuration shown in
Fig. 2(a).

When a vibration source (e.g., US) is applied the small par-
ticles suspended within a solution44,45 move deterministically.
For small scatterers suspended in biological and engineered
soft tissues, the relatively simple case where US is applied
on a viscous flow with no-slip conditions can be considered.22,44

Based on this assumption, the movement of optical scatterers
may be expected to follow closely the movement of the sur-
rounding fluid, but with smaller amplitudes and without any
phase delay. These motions cause changes in the medium’s opti-
cal properties which then modulate light scattered within this
region. The effect is more noticeable within the US focus
where the US pressure is much stronger, and hence, the temporal
profile of the US pressure is imposed on the temporal modulated
optical signal. We define OðtÞ as the optical profile from a given
layer that contributes to the detected AC optical intensity. In this
case OðtÞ is linearly proportional to the US pressure UðtÞ,

OðtÞ ¼ M:UðtÞ; (2)

whereM is a constant (M ¼ 1 in this paper) representing the
efficiency with which the US amplitude is mapped onto OðtÞ
based on the complex interactions between US and optical
scatterers. The linear relationship between US pressure and
AC optical intensity occurs when there is homodyne detec-
tion due to interference of US modulated and un-modulated
fields.10,46

Now consider the US column to be composed of many such
layers, each of width Δz ¼ vaΔt, a pulsed USMOT signal (AC
signal) at the photo-detector is a summation of many delayed
pulses,

IacðtÞ ¼
Xm
j¼1

pðzÞ:Oðt − jΔtÞ; (3)

where z ¼ vajΔt, Δt is a time delay of the acoustic field,
related to the number of steps m along the US column.
The profile PðzÞ represents shape of the distribution along
the acoustic axis as a result of the combined acoustical
and optical characteristics along the US column. We propose
a simple expression relating the optical and acoustic proper-
ties to the profile PðzÞ which can be expressed as,

PðzÞ ¼ PusðzÞ:PoptðzÞ:PabsðzÞ; (4)

where PusðzÞ is the axial pressure profile of the US, PoptðzÞ
the scattered light intensity profile (in the absence of an
absorber), and PabsðzÞ is the optical absorption profile (indi-
cating position and optical absorption of objects) along the
US column. In this simple model, we assume that the opti-
cal and absorption profiles can be treated separately47

although inevitably there will be some dependence. In
the absence of absorption Pabs ¼ 1 the profile represents
the US modulated profile of a homogenous scattering
medium.

The total signal IðtÞ at the detector can be written as,

IðtÞ ¼ Idc þ IacðtÞ; (5)

where Idc is the unmodulated optical signal.
The pulsed USMOT signal is modelled by convolving a

modulated optical pulse OðtÞ with a profile PðzÞ. Based on
the assumption that OðtÞ initiated at a thin layer has a similar
shape in the time domain to that of the US pressure, the US
pulse shown in Fig. 2 is used to represent OðtÞ. In these simula-
tions, the constant M in Eq. (2) is set to unity.

Profile PðzÞ can be modelled as a product of PusðzÞ, PoptðzÞ,
and PabsðzÞ [Eq. (4)]. Because a focused transducer is usually
employed, a simplified axial US pressure profile at the far
field can be modelled as a Gaussian distribution whose peak
is at the US transducer focal zone, together with an attenuation
factor depending on the acoustic properties of the medium.
According to Challis et al.,44 the attenuation of a US pulse tra-
velling along the ultrasonic axis in the medium in the absence
of diffraction losses, reflection losses, and focal gain can be
expressed as,

AðzÞ ¼ Aoe−β:z; (6)

where Ao is the un-attenuated magnitude of the propagating
wave at an arbitrary location, AðzÞ is the reduced magnitude
after the wave has travelled a distance z from the initial

Fig. 2 (a) Pulse-echo setup: a pulser-receiver (Olympus Panametrics-
NDT 5800) in pulse-echo mode to receive the reflected acoustic signal
from a reflector placed at the transducer focus; (b) A normalized
10 MHz US pulse.
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location, and β is the attenuation coefficient of the wave
travelling in the z-direction.

If the US transducer is placed at z ¼ 0 in the lab coordinates,
we assume that PusðzÞ can be expressed in a simple form as,

PusðzÞ ¼ Aoe−β:ze−ðz−f Þ
2∕2 L2

1 ; (7)

where f is the US transducer focal length, and L1 depends on
the properties of the acoustic lens. The term L1 represents the
length of the focal zone of the US column which is inversely
proportional to the acoustic lens diameter. For example, a
2.5 cm-diam 10 MHz transducer with focal length of
7.6 cm has a focal zone (−6 dB) of 10 mm48 hence in
this case L1 ¼ 10 mm.

Assuming that a light beam illuminates the US focal region
in an optical homogenous scattering medium, a simple estimate
of the optical intensity spatial profile across the US region is a
Gaussian distribution,

PoptðzÞ ¼ B:e−ðz−f Þ2∕2L22; (8)

where B is the magnitude of the light intensity, and L2 is the
standard deviation of the profile. For example, in the experi-
ments using an expanded beam in clear water described in
Sec. 3.2 the beam is expanded to 20 mm so L2 ¼ 20 mm in
the simulation. The optical absorption profile PabsðzÞ can
vary from zero to one corresponding to totally-absorbing
and non-absorbing objects, respectively. In the presence of
an absorbing object, PabsðzÞ can be written as,

PabsðzÞ ¼ 1 −
XQ
i

Gi:rect

�
z − zi
Di

�
; (9)

where Q is the number of absorbing objects, Gi refers to the
light attenuation along the US axis (focal zone), Gi is the size
of the object at position zi, and rect½ðz − ziÞ∕Di� is a rectan-
gular function at position zi with the width of Di.

There are several assumptions made in this model. For
instance, although the detected experimental signal is homodyne
detected, diffraction and interference effects (such as speckle)
are neglected when estimating the optical intensity profile
PoptðzÞ. In turbid media, light intensity fluctuates (speckles)
due to motion (Brownian and deterministic, e.g., US) of scat-
terers. However, in the experimental system used in this
paper, there is some averaging of speckles across the detector
plane together with significant temporal averaging, and it is
assumed that fluctuations in the optical intensity profile
PoptðzÞ are averaged out. Therefore, it is assumed that only
the average intensity contributes to the optical intensity profile
PoptðzÞ along the US focal zone. This is also the case for fluor-
escence USMOT30 where fluorescent light is incoherent and
does not produce an observable speckle pattern. Equation (4)
also requires that the optical and acoustic profiles in the tissue
are known and that the absorbing and optical profiles are inde-
pendent. In this case, we simply approximate them as Gaussian
profiles [Eqs. (7) and (8)] and add absorption according to
Eq. (9). This approach has been applied by others,40 however,
these can be more accurately provided either through measure-
ment on test phantoms or through acoustic and optical simula-
tions. Despite these approximations, encouraging results in
Sec. 4.1 demonstrate the potential for using this model as a
basis for a ML reconstruction algorithm.

The model suggests that a de-convolution technique can be
employed to obtain the profile PðzÞ from the signal, and then the
optical absorption profile PabsðzÞ along the US focus can be
reconstructed. The next section introduces the ML data inver-
sion algorithm and discusses the possibility of applying the
ML technique to the model of pulsed USMOT signals for
image reconstruction.

2.2 Maximum Likelihood Data Inversion Algorithm
for Pulsed USMOT Signals

Maximum likelihood estimation is a popular statistical method
used for fitting a model to data and providing estimates for the
model’s parameters. For a fixed data set and an underlying
probability model, a ML method selects the values of the
model parameters that can make the data “more likely” than
any other values.36–38 The main advantage of the ML method
is its ability to take into account the random nature of noise.39

We apply the ML method to the model of pulsed USMOT
signal described in Sec. 2.1 and derive the iterative algorithm in
this section. First of all, IðtÞ in Eq. (3) is written in matrix form
as,

2
664
I1
I2
..
.

Iu

3
775 ¼ K þ

2
664
H11 H12 · · · H1m

H21 H22 · · · H2m

..

. ..
. ..

. ..
.

Hu1 Hu2 · · · Hum

3
775:
2
664
P1

P2

..

.

Pm

3
775þ

2
664
N1

N2

..

.

Nu

3
775.

(10)

Alternatively, IðtÞ can be expressed as below,

Ii ¼ K þ
Xm
n

Hijpj þ Ni; (11)

where K is a constant (DC baseline), Ii is the ith (where i
varies from 1 to u) data value at time ti, Pj is the value of
the profile corresponding to the time delay of the acoustic
pulse jΔt, Ni represents the noise in the intensity data Ii,
and Hij is an (i × j) matrix, defined by,

Hij ¼ Oðti − jΔtÞ. (12)

Figure 3 is a visual aid of Eq. (10) (excluding factors K and
N). The dashed line represents the detected signal IðtÞ, the
solid line represents phase-shifted pulses Oðt − jΔtÞ, and the
dash-dot line symbolizes the profile PðzÞ.

Fig. 3 Visual aid of Eq. (10): dashed line ¼ detected signal IðtÞ;
solid line ¼ phase-shifted pulses Oðt − jΔtÞ; dash-dot line ¼ profile
PðzÞ.
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The probability that the data have the form Ii with a profile
Pj is given by a product over each data value of the Poisson
distribution.38

pðIjPÞ ¼
Y
i

e−ðKþH:PÞi ðK þ H:PÞIii
ðIiÞ!

. (13)

According to Bertero and Boccacci,38 the basic rule in a ML
method is to maximize the probability with respect to the values
of data P. In this maximization procedure it is more convenient
to calculate the logarithm of the probability that is usually called
the logarithmic likelihood function lðPÞ;39 this step is appropri-
ate because maximizing an arbitrary function also maximizes its
logarithm and P is always a non-negative quantity. For Eq. (10),
the logarithmic likelihood function has the form

lðPÞ ¼
X
i

fIi ln ½K þ H:P�i − ½K þ H:P�i − lnðIi!Þg. (14)

The differentiation of lðPÞ may be written as

∂lðPÞ
∂Pj

¼
X
i

∂
∂Pj

�
Ii ln

�
K þ

X
j 0
Hij 0Pj 0

�

−
�
K þ

X
j 0
Hij 0Pj 0

�
− lnðIt!Þ

�
; (15)

which yields

∂ðPÞ
∂Pj

P ¼
�X

i

�
IjHij

K þ ðHPÞi
− Hij

��
P. (16)

At the stationary point of lðPÞ, Eq. (16) is equal to zero, the
solution gives �

HT :

�
I

K þ HP

��
P ¼ αP; (17)

where α ¼ P
Hij
i

, HT is the transpose matrix of H. Now we
define an operator FðPÞ such that

FðPÞ ¼
h
HT :

�
I

KþHP

�i
P

α
. (18)

Combining Eqs. (17) and (18),

P ¼ FðPÞ. (19)

According to Sun and Walker,39 the solution required is a
fixed point of the operator F, and where such fixed point
conditions exist, an iteration of the form,

Pðkþ1Þ ¼ FðPðkÞÞ. (20)

should converge to the fixed point of the operator. An itera-
tion algorithm can be rewritten as follows,

P̂ðkþ1Þ ¼
h
HT :

�
I

KþH:P̂ðkÞ

�i
:P̂ðkÞ

α
; (21)

where P̂ is the estimate of P. P̂ is the profile corresponding to
a maximum of lðPÞ which corresponds to the most likely
light distribution along the acoustic axis.

Also according to Sun and Walker,39 a suitable starting point
is to set the first estimate of the profile P̂ð1Þ to be a constant so as
not to introduce any prior knowledge into the algorithm.
Furthermore, when I ≅ K þ H:P̂ðkÞ, i.e., if the estimated profile
generates a result close to the real data, the bracketed term in
Eq. (18) reduces to α, and the algorithm will cease to make
any further significant changes to the estimated profile.

3 Experiment Configuration
Initially, the model is validated using clear water as the medium.
The experimental set up in this case uses an expanded light
beam and an aperture in front of the detector to experimentally
control the range of delayed US modulated pulses in Eq. (3) In
the case of a scattering medium, the beam expander is removed
to increase signal level and improve spatial resolution.

3.1 Experimental Configuration (Water)

The experimental setup is shown in Fig. 4. An expanded HeNe
(632.8 nm, 20 mW) laser illuminates the sample, and a photo-
multiplier tube (PMT, Hamamatsu H5783-20) is employed as a
detector. An adjustable slit is placed 10 mm in front of the PMT
in order to experimentally control the range of optical pulses
included in the summation described in Eq. (3). The distance
between the PMT and the tank is 200 mm. A pulser-receiver
(Olympus Panametrics-NDT 5800) was employed to drive a

Fig. 4 Experiment setup to investigate pulsed USMOT signals in clear water. The 500 μm wide rod (object 1) is placed close to, but not within, the US
focal region to avoid a mismatch in acoustic density (rod and water) which may cause a change in US profile. This does not significantly affect the
convolution model in clear water.
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focused US transducer (Olympus Panametrics-NDT V322). The
US transducer has a 7.6 cm focal length, a 10 MHz central fre-
quency, 2.54 cm nominal element size, and the −6 dB focal
zone is (0.459 × 10.4 mm2) (lateral size × axial size).48 The
acoustic pulse is 200 ns long with a maximum pressure of
2 MPa. A 12 × 15 × 5 cm (H ×W × D) water tank sits on a com-
puter controlled XYZ motorized stage (Standa 8 MT175-50).
The signal from the PMT is fed into an amplifier, before going
to an oscilloscope (Tektronix TDS2024B, 8-bit digitizer) and
subsequent storage on a PC.

The 500 μm wide rod (object 1) is used in the experiment to
investigate the disturbance that an optically absorbing object
has on the modulated signal. The rod is made of black polya-
mide which is assumed to be totally optically absorbing. As
there is a density mismatch between the rod and water
(polyamide ∼ 1.15 g∕cm3, water ∼ 1 g∕cm3), the US focus is
placed at the edge of the rod.

3.2 Experimental Configuration (Scattering Medium)

The validity of the model is then investigated in a scattering
medium. The experimental setup was slightly modified at the
detector as shown in Fig. 5. As noted previously14,15 higher opti-
cal intensity in the region of the US focus will increase the peak
amplitude of the detected pulse and so the beam expander is
removed in this case. A 50 mm focal length plano-convex
lens (placed 200 mm away from the tank) is employed to collect
more light to the PMT. The number of speckles detected at the
detector is approximately 10. Although this is a relatively large
number of speckles to be averaged over the detector plane, it is
insufficient to cancel the US modulated optical signals in the
cases shown here as the scattering is relatively weak (ka ≫ μs)
in both scattering experiments, which means that modulation
of the refractive index is the dominant mechanism and the mod-
ulation depth of the detected signals is relatively large.2 For the
experimental results shown in Sec. 4.2, the scattering medium

was agarose gel with scatterers (1.6 μm-diam polystyrene micro-
spheres). For the experimental results shown in Sec. 4.4
(2-D image), the scattering medium was water with scatterers
(1.6 μm-diam polystyrene microspheres).

4 Results
The model is initially validated using the set up described in
Sec. 3.1. In Sec. 4.1 and 4.2, noise-free simulated data [obtained
from Eq. (10)] are presented and compared with experimental
data. Section 4.3 employs simulated data with different levels of
noise to test the performance of the ML reconstruction. Experi-
mental results obtained using the ML algorithm are shown in the
final section.

4.1 Pulsed USMOT Signal (Water)

The initial experiment is to investigate the model of the pulsed
USMOT signal described in Sec. 2. The simple case of a non-
scattering medium, in this case water, is used to aid understand-
ing. For the transducer properties described in Sec. 3.1, PusðzÞ is
fairly uniform within the region of interest (ROI) of the experi-
ments. In addition, the expanded laser beam source (∼20 mm
standard deviation) also has a wide Gaussian intensity profile
compared to the maximum ROI used (2 mm). Hence, parameters
L1 and L2 in Eqs. (7) and (8) are set to be larger than the ROI to
ensure that this is the case. For example, in the data shown in
Fig. 6 (column 1, L1 ¼ 20 mm and L2 ¼ 10 mm), the adjustable
slit is used to restrict the region from which the modulated
light is detected i.e., the limits of the summation shown in
Eq. (3). The attenuation coefficient β in Eq. (6) is set to
25 × 10−15 neper m−1 Hz−2 at 25 °C in distilled water.

Fig. 5 (a) Experiment setup to investigate pulsed USMOT signals in (b) a
scattering gel block with an embedded 500 μm black plastic rod (object
1, Fig. 4), the position of the rod is indicated by the dashed rectangle, it
sits 8 mm from the top and at the mid plane of the gel, it cannot be seen
in the photograph due to multiple scattering of the illumination. The gel
block dimensions are 25 × 16 × 32 mm (XYZ).

Fig. 6 Simulated (column 2) and experimental (column 3) results of
pulsed USMOT signals for different profiles (column 1): rows 1 to 4 cor-
respond to detector slit sizes of 200 μm, 1 mm, 2 mm (without an object)
and 2 mm (with object 1). All the signals are normalized by their max-
imum absolute values. Column 1 shows PðzÞ used in the model to
obtain the simulated data. z is defined in Fig. 5(a).

Huynh et al.: Application of a maximum likelihood algorithm to ultrasound : : :

Journal of Biomedical Optics 026014-6 February 2012 • Vol. 17(2)



Figure 6 presents the simulated [based on Eq. (10)] and
experimental results of the pulsed USMOT signals at the detec-
tor when the slit size is adjusted. The first column shows the
acousto-optic profile along the acoustic axis, PðzÞ, used within
the simulation. The second column shows the noise-free tem-
poral optical signals predicted by the simulation, and the
third column shows the experimental temporal optical signals.
Each experimental pulse is averaged the maximum 128 times on
the oscilloscope and further averaging (×100) is carried out on
the PC. Rows 1 to 3 show slit sizes of 200 μm, 1 mm, 2 mm
(without an object). All signals are normalized by their maxi-
mum absolute values. There is good agreement between the
shape of the simulated and experimental signals.

As the slit size increases, the pulsed USMOT signal becomes
more distorted because it is composed of a larger range of phase-
shifted pulses. In addition, the contrast of the detected signal is
lower when more phase-shifted pulses are detected, and the
modulated signals tend to spread out as the slit size increases.
Physically, the temporal ultrasonic pressure within the medium
maps onto the optical pulse. When the profile set by the slit size
is smaller than an acoustic wavelength, there is less destructive
interference at the photosensor as most of the optical pulses that
reach the detector have a similar phase (Fig. 6, row 1). On the
contrary, when the slit size increases, the optical pulses that pro-
pagate to the photodetector have a wider range of phase delays
and cancel out to produce a DC light level (Fig. 6, rows 2 and 3).
There is always a modulated component at the beginning and
end of the pulse because first arriving and last arriving modula-
tion does not have a pulse with which to destructively interfere.
Figure 6 (row 4) predicts the signal when a 500 μm wide optical
absorber (object 1, Fig. 5) is placed in the middle of the ROI.
The absorber in this case has disturbed the destructive interfer-
ence effect which makes a significant change to the shape of the
detected optical pulse compared to the case without the object
(Fig. 6, row 3).

4.2 Pulsed USMOT Signal (Scattering Medium)

Figure 7 compares simulation and experiment in the absence
(row 1) and presence (row 2) of a 500 μm wide absorbing

rod (object 1, Fig. 5). The scattering medium in this case is a
32 × 25 × 16 mm (H ×W × D) block of agarose gel mixed
with microspheres (scattering coefficient μs ¼ 10 cm−1). The
first column shows the optical profile PðzÞ along the acoustic
axis z used to generate the simulated temporal profile shown
in the second column. In generating the data in the first column
of Fig. 7, L1 ¼ 2 cm and L2 ¼ 1.5 mm (L2 is shorter in this
case compared to Fig. 6 as the beam expander has been
removed). The simulated signals are generated from an esti-
mated Gaussian optical profile which is clearly approximate
as the true optical profile PðzÞ along the acoustic axis is
unknown. However, the results again show a good agreement
between the shape of the simulated and experimental detected
pulse. This suggests that the proposed model is appropriate for
forming the basis of the maximum likelihood algorithm.

4.3 Application of ML to Simulated Pulsed
USMOT Signals

The performance of the ML reconstruction method is investi-
gated in this section using simulated data with different noise
levels. The SNR in this case is defined as the ratio of the signal
energy and the noise energy,

SNR ¼
P

iI
2
iP

iN
2
i
; (22)

where Ii and Ni are the amplitudes of the noise-free signal
and the imposed noise, respectively. We also introduce an
error coefficient to evaluate the reconstruction quality. The
error coefficient is defined as,

Error ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

iðP̂i − PiÞ2
K

;

s
(23)

where and P̂i and Pi are reconstructed and original profiles,
respectively, K is the number of points in the profile.

Two profiles indicating the presence of a single object and
two closely spaced objects are used. Figure 8 illustrates the
ML image reconstruction of a 500 μm optical absorber placed
in the middle of the ROI. In the simulation, the object is assumed
to have the same acoustic properties to that of the surrounding
medium and the optical attenuation factor G ¼ 0.7. The number
of ML iterations is 104; the simulation is repeated 10 times with
different randomized noise to produce the error bars in Fig. 8(a).
Figure 8(a) shows the error coefficient [Eq. (23)] as a function of
SNR. As anticipated, as SNR increases, the error is reduced.
Figures 8(b), 8(d), and 8(f) show the simulated pulse with
noise added (SNR values of 6.3, 0.8 and 0.1, respectively).
Figures 8(c), 8(e), and 8(g) show the original and reconstructed
profiles.

Figure 9 shows similar results for two closely spaced
250 μm-diam absorbing rods (acoustic properties are matched
to the surrounding medium) with different attenuation factors
(G ¼ 0.7 and 0.5). Similarly, ML reconstructs successfully
the profile when the SNR is greater than 1. When the SNR
is less than 1, ML fits to the noise rather than the signal and
the reconstructed profile becomes very noisy.

Fig. 7 Simulated (column 2) and experimental (column 3) results of
pulsed USMOT signals for different profiles (column 1): Without an
optical absorber (row 1) and with the 500 μm optical absorber (object
1, row 2). The vertical axes show the signals normalized by their max-
imum absolute values. Column 1 shows PðzÞ used in the model to
obtain the simulated data.
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4.4 Application of ML to Experimental Pulsed
USMOT Signals

4.4.1 1-D image results

In this section, the ML data inversion method is applied to the
two previous experimental results shown in Fig. 8. Reconstruc-
tion is based on the iterative algorithm shown in Eq. (21). The
transfer matrix H is constructed by using Eq. (12) with
Δt ¼ 25 ns, corresponding to a 37.5 μm layer in the medium.
This is a sufficient resolution as the 10 MHz acoustic wave-
length is 150 μm, corresponding to a 150 μm layer in the med-
ium. A shorterΔt will significantly increase the processing time,
but does not improve the result.

Figure 10 shows the results after 104 iterations of Eq. (21) for
a single 500 μm-diam absorbing rod. Figures 10(a) and 10(c)
show the detected temporal signals in the absence and presence
of the rod, respectively. Figures 10(b) and 10(d) show the recon-
structed profiles from the ML algorithm and demonstrate the
absence and presence of an absorbing object, respectively.

4.4.2 2-D image results

The scattering medium used in this case is distilled water with a
suspension of scatterers (1.6 μm-diam polystyrene micro-
spheres, μs ¼ 6.5 cm−1, g ¼ 0.93). Although the scattering
coefficient in this case is relatively low (ka ≫ μs) there is no
significant ballistic light component. Calculating the attenuation
of unscattered light as expð-μsdÞ where d is the depth within the
medium the proportion of unscattered light is 8.8e−8 at the
object plane and 7.7e−15 at the exit plane. This does not pro-
duce an observable change in detected signal as the acoustic
pulse crosses the optical axis. The optical absorbing object is
a 400 μm wide polyamide strip (object 2) which is painted
black (assumed to be totally absorbing) at certain positions
(1.5 mm absorber, 1.5 mm transparent) and is placed in the mid-
dle of a 12 × 15 × 5 cm (H ×W × D) tank. The thickness of the
strip is ∼150 μm. Figure 11 shows the object lying on a ruler (a),
and a photograph of the object in a scattering medium contained
in a tank (b). In the experiment, the laser and US transducer are

Fig. 8 ML reconstruction for a profile with the 500 μm object: (a) Error-
SNR plot, Error factor is in arbitrary unit. Simulated optical pulses for
different SNRs (b) 6.3, (d) 0.8, (f) 0.1. Reconstructed (dotted) and original
(solid) profiles for SNRs (c) 6.3, (e) 0.8, (g) 0.1. The vertical axes show
the detected signals normalized by their maximum absolute values.

Fig. 9 ML reconstruction for a profile with two 250 μm wide objects
with different optical attenuation factors: (a) Error-SNR plot, the error
factor is in arbitrary unit. Simulated optical pulses for different SNRs
(b) 8.7, (d) 1.1, (f) 0.1. Reconstructed (dotted) and original (solid) profiles
for SNRs (c) 8.7, (e) 1.1, (g) 0.1. Signals are normalized by their max-
imum absolute values.
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stationary. As the US pulse scans along the US axis, it produces
a 1-D trace. The stage then scans (0.2 mm scanning step) the
water tank laterally to produce a 2-D image of the object.
Figure 12 presents the image of the object shown in Fig. 11
using the USMOT system with the ML reconstruction method.
The result in Fig. 12 shows only a part (∼4 transparent and ∼3
absorber) of the object, which requires 40 scans. The total ex-
periment time including image reconstruction (performed as soon
as a single data is acquired) is 80 min. This is because SNR is low;
hence a long temporal average (100 × 128 times) is required to
obtain a signal that can be used in reconstruction.

The image provided in Fig. 12(a) from the USMOT system
shows a good agreement with the real object. The absorber size
is 500 μm × 1.4 mm which is similar to the transparent region.
When the US column is scanned laterally, only the optical prop-
erty changes, the acoustic property remains the same. Higher
intensity appears when the transparent region is in place,
and an intensity drop confirms the presence of an optical
absorber. Figures 12(b) and 12(c) present the lateral and
axial optical intensity profile. In this experiment, the object
and scattering medium have different acoustic properties
(Polyamide density ¼ 1.15 g∕cm3, water density ¼ 1 g∕cm3).
However, as the object is scanned laterally, the acoustic profile
remains relatively unchanged at each measurement. Therefore,
the change in the signal is due to the difference in optical prop-
erties (absorption and scattering). The absorbing coefficient is

larger at the black region, while the scattering coefficient is
reduced at the transparent region on the strip. As a result, the
low intensity region in Fig. 12(a) corresponds to the black absor-
ber, and the high intensity region is the transparent area on
the strip.

We estimate the resolution of the system by using edge
spread function (distance it takes for the intensity to change
from 10% to 90% of the maximum) to be 600 μm lateral
and 160 μm axial. The pure acoustic system using a 10 MHz
US transducer has a 459 μm beam waist and 150 μm
wavelength.

5 Discussion
The main aim of this work has been to investigate the use of a
ML algorithm for reconstructing USMOT data. To carry out a
ML inversion it is necessary to obtain a model for the received
data. In this case, the ML reconstruction algorithm is based on a
relatively simple model of US and light in tissue. Although the
model is simple, experimental results (Figs. 6 and 7) have
demonstrated that the trends of USMOT experiments in terms
of optical pulse profiles can be predicted in the presence and
absence of absorbing objects. The model can also predict the
experimental observations of Masaki et al.49 where in the
absence of an object the optical pulses that propagate to a detec-
tor cancel out. In the presence of an object the pulses are per-
turbed and an optical pulse is detected (simulated results not
shown in this paper).

The model neglects the effects that diffraction and laser
speckle have on the Gaussian intensity optical profile PoptðzÞ
along the ROI, however, this is reasonable in the case when
there is sufficient spatial or temporal averaging of the speckle
pattern or if an US modulated fluorescence signal is detected.
The model also assumes a Gaussian profile for the acoustic
and optical profiles in the medium, and that the optical profile
and absorption profiles can be treated independently [Eq. (4)]
which is again approximate. The estimate of the optical profile
could be improved by using a more accurate model of light pro-
pagation in tissue such as a Monte Carlo or diffusion approx-
imation. Similarly, the axial acoustic pressure can be mapped
by using one of many available online simulation tools,50 but
a more practical way is to characterize the transducer by scan-
ning a hydrophone along the US travelling axis. Various

Fig. 10 ML method for pulsed USMOT image reconstruction in a scat-
tering gel: (a) temporal signal in the absence of an object; (b) recon-
structed profile due to the signal from (a); (c) temporal signal in the
presence of object 1; (d) reconstructed profile due to the signal from (c).

Fig. 11 (a) Optical absorbing object (object 2), and (b) in scattering
medium contained in a tank.

Fig. 12 ML method for the USMOT signal from object 2: (a) 2-D image,
(b) cross section 1 (z-axis), (c) cross section 2 (x-axis).
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acousto-optic models, both analytical and numerical, have been
proposed,2,22–25,27–30,51 and could in future work be adopted as
the basis for a ML algorithm. This would more accurately model
the acousto-optic interactions and provide a better represen-
tation of the detected modulated optical signals. For ex-
ample, a change in the scattering coefficient within a ROI
alters both the intensity optical profile and the modulation
depth.22–24,51 Although this could, to a certain extent, be incor-
porated into the current model by replacing M with a variable
MðzÞ that depends on scattering, it is more accurately dealt with
using a more sophisticated model. The model also assumes that
the thickness of the absorbing object is infinitesimal and that
absorption can be approximated by an attenuation factor G
[Eq. (9)]. This could also be refined by a more sophisticated
model that takes into account the 3-D nature of absorbing
objects with a path-length dependent absorption coefficient
μa. These improvements to the model used as a basis for ML
are likely to provide more accurate reconstruction, particularly
for geometries that are more complex than those consid-
ered here.

Despite these limitations, the model predicts the trends of
USMOT experiments and therefore provided a useful basis
for initial testing of the performance of the ML algorithm.
With noise added to the simulated profiles ML was able to accu-
rately reconstruct the profiles of a single absorber and two absor-
bers for SNR > 1 (Figs. 8 and 9). The ML method has also been
shown to be capable of reconstructing experimental profiles
PðzÞ for the case of no object, a single object, and multiple
objects. At present the ML algorithm based on Eq. (21) allows
us to obtain the profile PðzÞ which comprises the optical, acous-
tic, and absorption profiles [Eq. (4)]. More accurate models and
deconvolution using a known acoustic profile will further
improve the absorption profiles obtained. In an acoustically
homogeneous and optically inhomogeneous medium, the pro-
blem of obtaining the absorption profile is easier as all the
changes occurring in the signal are due to the optical properties.
In a medium that is both acoustically and optically inhomoge-
neous, the method is still capable of obtaining the optical prop-
erties of the sample as long as the acoustic properties are
known. In this case, purely acoustic imaging can be employed
to map the tissue density which can be used as prior knowledge
in reconstructing optical properties of a sample via USMOT
measurements.

The ML approach could be extended to 3-D reconstruction
by making measurements at multiple source and detector posi-
tions. A simple extension would be to scan the US across the
scattering medium and apply the reconstruction approach
described in this paper (Fig. 13) based on multiple line-scans.
However, in a more complex case where several optical absorbing
or scattering objects are located within a sample, the reconstruc-
tion will clearly become more challenging as is the case for most
diffuse optical techniques. For example, in a simple configuration
where two optically absorbing objects lie on the optical axis
(y axis), both objects influence the modulated signal obtained
at both positions (Fig. 13).

One approach to extend the line scan approach described in
this paper might be to use information obtained from one line
scan to predict the optical distribution PoptðzÞ at another. For
example (Fig. 13), initially if the transducer is placed at scan
position (1) and measurements were made at a detector posi-
tioned close to the light source, the effect of object 1 will dom-
inate the detected signal. This information could then be used to

estimate the optical profile at the position of the second object.
However, the most likely route to full 3-D reconstruction would
be to develop a more sophisticated 3-D model and apply the ML
algorithm to measurements made at multiple source-detector
positions. This will depend on how well conditioned the pro-
blem is and will require further investigation beyond the
scope of this paper.

The main advantage of the ML method is its ability to take
into account the random nature of noise. In other words, it
recognizes that the recorded data are the realization of a random
process.36–39 Besides, the ML method does not require a priori
information to be imposed on the solution. The ML method can
be time consuming to achieve the required accuracy. The num-
ber of iterations required to obtain a fixed accuracy may differ
for different experimental conditions. It is difficult to specify an
optimized value for the number of iterations for a general case.
However, the ML algorithm always converges to the “most-
likely” results after a number of iterations (usually around
104 to 5 × 104 times, approximately 2 min with a 3.4 GHz Pen-
tium4 processor, 1 GB Ram). It then reaches the optimum point
before the algorithm starts to fit the noise. An evaluation criter-
ion can be applied to set the stopping point of the method. One
of the suggested criteria is the goodness-of-fit χ (Ref. 39) which
is defined as,

χ ¼ 1

N

XN
i

ðIi − Î iÞ2
σ2i

; (24)

where Ii and Î i are the data and estimated result, respectively;
σ2i is the expected uncertainty of the data, which is mainly
dependant on the noise model and experiment parameters.
This was not included in this work but can be carried out
as part of future research.

Processing speed is important depending on the application
area. If real time measurements of tissue are required then a fast
processing algorithm is necessary and this will become an even
greater problem if the method is extended to 3-D reconstruction.
Our main application area is in regenerative medicine and the
growth of tissue within scaffolds. In this case, processing
speed is less of an issue as the growth of tissue within a scaffold
is slow. The reconstruction speed obtained in this work is
achieved with a standard m-file MATLAB program which is
not optimized for speed. Improvements in coding and hardware
could alleviate this issue.

6 Conclusion
A simple model of a pulsed USMOT signal has been presented
which provides a good approximation to experimental pulsed

Fig. 13 Experiment configuration with 2 objects on optical axis.
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USMOT signals. The model has been used as the basis for a ML
reconstruction algorithm. Reconstruction of simulated data in
the presence of noise has demonstrated that the algorithm per-
forms well provided the signal to noise ratio is greater than
unity. The inversion has also been applied to experimental
data and it has been shown to be capable of reconstructing multi-
ple objects in a 2-D imaging experiment. The resolution of the
system with a 10 MHz US transducer is estimated to be 160 μm
axially and 600 μm laterally.
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