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Abstract. Segmentation of optical coherence tomography (OCT) cross-sectional structural images is important for
assisting ophthalmologists in clinical decisionmaking in terms of both diagnosis and treatment.We present an autom-
atic approach for segmenting intramacular layers in Fourier domain optical coherence tomography (FD-OCT) images
using a searching strategy based on locally weighted gradient extrema, coupled with an error-removing technique
based on statistical error estimation. A two-step denoising preprocess in different directions is also employed to sup-
press random speckle noise while preserving the layer boundary as intact as possible. The algorithms are tested on the
FD-OCT volume images obtained from four normal subjects, which successfully identify the boundaries of seven
physiological layers, consistent with the results based on manual determination of macular OCT images. © 2012 Society

of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.4.046011]
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1 Introduction
Optical coherence tomography (OCT), which was first intro-
duced in the early 1990s,1 is a noninvasive, label-free, and
high-resolution imaging modality that can provide depth-
resolved tomograms of biological tissue morphology in vivo.
The recent extension of OCT into Fourier domain, i.e., Fourier
domain optical coherence tomography (FD-OCT),2,3 has accel-
erated its pace in biomedical imaging applications, particularly
in ophthalmology. OCT is now being widely used in ophthalmic
research and has proven clinically useful for diagnosing a vari-
ety of retinal diseases.4–7

Themorphologyanddeterminationof the thicknessesof retinal
nerve fiber and ganglionic cell layers (NFL and GCL) using OCT
hasbeen used to diagnoseglaucoma.8–11 Themorphological struc-
tures and the junctionboundaryof the inner/outer segment (IS/OS)
layers have been reported to facilitate the diagnosis of retinitis pig-
mentosa.12,13 The quantitative assessment of retinal pigment
epithelium (PRE) in OCT tomograms is also useful in diagnosing
some age-related retinal diseases such as macular drusen,14,15

polypoidal choroidal vasculopathy (PCV),16 and choroidal neo-
vascularization (CNV).17 Therefore, automated extraction of use-
ful information from numerous OCT retina tomograms is
clinically valuable. Segmentation, in which different intraretinal
layers are identified and separated from each other, is a critical
task for reliable quantitative evaluation of retina structures.

Fully automated segmentation of intraretinal layers in OCT is
challenging because many factors affect the sharpness of layer
boundaries and homogeneity of each layer. For example, the
non-Gaussian multiplicative neighborhood-correlated speckle
noise, superimposed on structural images, reduces the image

contrast near the layer boundaries. Because of the light
absorption in red blood cells, relatively large retinal blood ves-
sels often cast shadows below them that cause discontinuities in
the OCT structural images. The motion artifacts due to involun-
tary head and eye movement are also inevitable during patient
examination. Also, the diseased retinal structures are likely to
vary among different patients.

Several methods have been proposed in the literature for
intraretinal layer segmentation of OCT structural images.
Koozekanani et al.18 proposed an automated algorithm using
edge detection kernel and Markov model to segment retinal
boundaries, from which the thicknesses of retinal layers were
then obtained. Subsequently, other methods were reported
based on detection of the reflectivity changes in retinal substruc-
tures using intensity and gradient of the microstructures19,20 or
using a deformable spline algorithm.21 The goal of retinal seg-
mentation is to accurately detect the edges and boundaries
between retinal substructures. Edge detection is a classical pro-
blem in the field of image processing that is based on evaluation
of image intensity and its derivatives (gradient and Laplacian).
However, edge-detection-based segmentation19–24 suffers from
image flaws, such as speckle noise, intensity discontinuities,
and fusion or disruption of layer boundaries. Consequently,
more robust complicated techniques have been proposed to
improve the effectiveness of retinal segmentation. Fernández
et al.20 utilized a sophisticated denoising solution that applied
nonlinear complex diffusion filtering along with coherence-
enhancing diffusion filtering techniques, and then located
slope peaks on the enhanced images. However, their algorithm
was computationally expensive and pathology-dependent, and
required modifications in practice. Mishra et al.25 proposed a
two-step kernel-based optimization scheme that first located
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the approximate location of retinal layers using a gradient-based
adaptive vector-valued kernel function and then optimized the
segmentation using dynamic programming-based force
balance equation to identify noisy layer boundaries. But their
method was only tested on rodent models and not in human
retina. Mayer et al.26 proposed a segmentation algorithm
based on the minimization of an energy function consisting of
gradient and local smoothing terms. However, the iterative pro-
cess to minimize the energy depends on the accurate choice of
initial values that have to be determined by a heuristic rule.
Vermeer et al.27,28 presented a support vector machine pixel-
classification algorithm using the intensity and gradient informa-
tion of each pixel for layers’ identity and a level set method to
smooth the boundaries. However, their algorithm required train-
ing on manually segmented data, which can be subjective. The
same problem holds for the work of Kajić et al.,29 who employed
a statistical model based on texture and shape. Although Kajić’s
method was described to be highly robust to speckle noise, the
prior knowledge on segmentation was important and the results
were highly influenced by the pathology variations. All of the
aforementioned methods have varying levels of success and
are either computationally expensive or subjective.

In this paper, we demonstrate an automatic segmentation
of intraretinal layers in the macular region of healthy human
subjects. This method applies a two-step predenoising filtering
procedure within both B-frame images and en-face planes, after
alignment of A-lines. After the denoising procedure, a weighted
gradient segmentation is utilized to initially identify the bound-
aries, and then least-square regression with a given statistic
confidence level is employed to eliminate the gross erroneous
points and smooth the detected retinal layer boundaries.
Compared to the existing methods in the literature, our techni-
que is computationally efficient and does not depend on training
data sets and prior knowledge from sample datasets.

2 Experimental Setup
To determine the accuracy and repeatability of the proposed
algorithm, 30 three-dimensional (3-D) FD-OCT images from
the macular region of the right eyes of four healthy volunteers
were acquired. The OCT imaging on normal subjects was
approved by the Institutional Review Board at the University
of Washington. Figure 1 shows the schematic system setup

used in this study, which is similar to that described pre-
viously.30,31 Briefly, the system is capable of providing both
structural and blood flow perfusion images within retina. It
used a superluminescent diode with a central wavelength of
842 nm and a full width at half maximum (FWHM) bandwidth
of 46 nm, delivering an axial resolution of ∼7 μm in air. In the
sample arm of the interferometer, an objective lens with 50 mm
focal length was used to achieve ∼16 μm lateral resolution. In
the imaging, each B-scan was formed by acquiring 500 A-scans
with a spacing of ∼6 μm between adjacent A-scans, which cov-
ered a total lateral scan range of∼3 mm. To suppress the speckle
noise, five B-scans were acquired at the same position and aver-
aged to form one final B-frame. In the y-direction, 200 B-frames
over∼3.0 mm on the tissue were captured, meaning a spacing of
∼15 μm between adjacent B-frames.

3 Methodology
The schematic diagram of segmentation steps is shown in Fig. 2
where the abbreviations are: ILM—inner limiting membrane,
RPE—retinal pigment epithelium, ONL—outer nuclear layer,
IS/OS—inner/outer segment, NFL—nerve fiber layer, GCL—
ganglion cell layer, IPL—inner plexiform layer, INL—inner
nuclear layer, OPL—outer plexiform layer.

3.1 RPE Layer Boundary Detection

In cross-sectional structural images of retina, the vitreous body
and choroid occupy a large space that is not necessary for seg-
mentation. To reduce the processing time and limit the search
space for the layers’ boundaries, the retinal borderlines, i.e.,
the anterior and posterior borders, were first identified. The iden-
tification of retinal borderlines is straightforward due to the high
intensity contrast among vitreous, retina, and choroid. In order to
detect the retinal borderlines, first the B-frame images were
calibrated by removing a background intensity level and then
blurred heavily by 7-by-7 median filter followed by Gaussian

Fig. 1 Schematic of the OCT imaging system. Fig. 2 Schematic of the segmentation steps.
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filter of size 15 pixels and standard deviation of 2. This filtering
operation is considered to have less impact on large gradient-
based retinal borderlines detection. In general, the RPE complex
boundary exhibits the largest change in refractive index in every
A-lines,22 therefore by identifying the maximum values in each
A-lines, the RPE boundary layer can be estimated. However, due
to the interference of noise, shadows below the large vessels,
relatively high scattering intensity in NFL, and other uncertain-
ties, the determined points are not always representing the
RPE boundary. Fabritius et al.22 presented a method to identify
the erroneous pixels by applying an automatic binarization
algorithm following a top-hat filtering operation. However,
their method is not always effective, especially when the retinal
images are significantly inclined and no prior knowledge of
morphological filtering shape parameter is known.

3.1.1 Iterative statistical regression method

In order to correct the estimated RPE boundary, we performed a
statistical regression method to eliminate the grossly erroneous
identifications. After finding the points with maximum intensi-
ties in every A-lines and estimating the RPE boundary, a poly-
nomial along the transverse coordinate was fitted to the points.
In healthy human retina, the RPE layer generally has a small
curvature, thus a second or a little higher order(cubic) polyno-
mial is sufficient to estimate that layer. The fitted quadratic
polynomial is used in this paper to estimate the RPE boundary
layer. Then, a confidence interval with 92% confidence level
was defined around the RPE estimate. The confidence interval
was defined on the estimation error between the actual points
and the fitted curve. The upper and lower boundaries of the
interval were the points in the normalized error histogram
(probability distribution function), in which the area under
the histogram between these intervals was equal to the confi-
dence level. In other words, if EðxÞ is the estimation points,
the confidence interval ½LðxÞ;UðxÞ� can be defined such that

P½LðxÞ < EðxÞ < UðxÞ� ¼ confidence level; (1)

where the P½·� represents probability. The confidence level was
derived experimentally such that most of erroneous values
would fall outside the interval. Then, the points outside the inter-
val were removed and another polynomial was fitted to the
points with maximum intensities in the confidence interval.
This process was repeated until there would be no change in

the polynomial. The remained points with maximum intensity
values indicated the RPE boundary.

Figure 3 shows a typical procedure for estimating the RPE
where the points with maximal intensities in every A-lines are
identified. The arrows point to the erroneous locations of the
RPE. The solid smooth line is the second-order polynomial
fit to the identified points and the two dashed lines indicate
the upper and lower boundaries of the confidence interval
(i.e., confident limits). Then, the identified points with maxi-
mum intensities between the dashed lines were accepted and
those outside were removed and corrected. The process was
repeated until no significant change was observed on the con-
fidence interval [Fig. 3(b) through 3(d)]. The corrected points in
Fig. 3(d) indicate the RPE. Note that the least-squares polyno-
mial regression method with statistical estimation analysis
would also be applicable for detecting some other layered
boundaries discussed in this paper.

3.2 Vitreous/ILM and RPE/Choroid Boundary Detection

Once the RPE layer was determined, the vitreous/ILM and RPE/
choroid boundaries can be easily identified. The vitreous/ILM
boundary was defined as the points with the greatest rise in con-
trast in the region above the RPE layer, and the RPE/choroid
boundary was defined as the points with greatest contrast
drop in the region beneath the RPE layer. A sixth-order
polynomial was fitted to smooth the boundary lines after the
erroneous data being removed by statistical regression method.
Figure 4 demonstrates the typical detection of the retinal
borderlines near the fovea.

At this stage, all A-scans in the cross-sectional images were
aligned to make the RPE/choroid boundary to form a straight
line. By aligning all RPE/choroid boundaries, the retinal natural
motion along the depth caused by microsaccade could be effec-
tively removed so that filtering in the en-face plane (perpendi-
cular to the A-line direction) could be performed. The regions
corresponding to vitreous and choroid were also trimmed off
and removed from the images.

3.3 Intramacular Layers Segmentation

3.3.1 Denoising intramacular layers

The intramacular layers are closely spaced and the intensity con-
trast in between these layers is relatively low, which makes the

Fig. 3 Iterative RPE boundary detection. (a) Error points (shown by arrows). Then, a low-order polynomial is fit (solid smooth line) and a confidence
interval with 92% of confidence level (two dashed lines) is defined. The estimated points inside the interval are accepted. (b to d) The process is
repeated until the interval has no significant variation.
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segmentation and denoising challenging. Because of the textural
properties of these layers, anisotropic diffusion filters have
been used to denoise the images before segmentation20,25,26

while preserving the edges of layer boundaries. However,
these filters are computationally expensive.

We performed a denoising procedure before segmenting
intramacular layers. First, a 9-by-9 Gaussian filter with standard
deviation of 2 was performed along the en-face plane (x-y
plane). Note that the window size should be moderately selected
in which no significant curvature could be found with the retinal
layers, and the standard deviation was experimentally deter-
mined according to the degree for blurring. Then, a 3-by-7
Gaussian filter with standard deviation of 1.6 was implemented
for each B-frame (y-z plane). Herein we used such filtering
parameters as to doing lighter blurring in the depth direction
than the slow (en-face) direction. In addition to its computa-
tional efficiency, this bidirectional filtering procedure is efficient
to suppress the noise and preserve boundary edges. The perfor-
mance of the proposed filtering technique in suppressing
noise is illustrated in Fig. 5 and compared with the conventional
anisotropic diffusion32

∂I
∂t

¼ div½cðx; y; tÞ∇I� ¼ cðx; y; tÞΔI þ ∇c · ∇I; (2)

where Δ, ∇, divð : : : Þ denote the Laplacian, gradient, and diver-
gence operators, respectively. cðx; y; tÞmeans the diffusion func-
tion that controls the rate of diffusion. The diffusion function
cðx; y; tÞ depends on the magnitude of the gradient of the
image gray and it should be a monotonically decreasing function

cð∇IÞ ¼ 1

1þ ðk∇Ik∕KÞ2 ; (3)

where the constant K controls the sensitivity to edges and is
usually chosen experimentally by manually or histogram-based
noise estimator. The anisotropic diffusion was implemented in
20 iterations with a sensitivity constant K ¼ 30. Figure 5(a)
shows a raw B-frame of the retina. Figure 5(b) and 5(c)
show the denoised results using the anisotropic diffusion and the
proposed method on that B-frame, respectively. Also, Fig. 5(d)
and 5(e) show the intensity profiles of two selected A-lines from
the B-frame. It can be seen that the performance of the proposed
method is comparable to that of the anisotropic diffusion in
suppressing the noise for segmentation of retinal layers.

3.3.2 Segmentation of ONL and IS/OS/RPE

After denoising, the ONL layer was identified first as the depth
location with minimal backscattering intensity in retina for each
A-line so that the macular could be divided into two different
regions, as the second-top line illustrated in Fig. 6. Thereafter,
IS/OS and OS/RPE boundaries were detected by the maximal
contrast rise and drop, respectively, with the search area
being limited between the ONL layer and RPE layer. Since
ONL, ELM, and IS layers are located very close to each
other and their absolute and relative backscattering intensities

are low, their boundaries cannot be identified with our current
system. Figure 6 shows the segmentation of ONL and IS/OS/
RPE layers.

3.3.3 Segmentation of the layers between NFL and ONL

Detecting boundaries between NFL and ONL layers is very
challenging because of the blood vessels and their shadows
and the variations of their thickness at different locations. In
the foveal region, the layers would merge together and become
increasingly indistinguishable. Therefore, simple edge detector
algorithms, such as Prewitt, Laplacian of Gaussian, Canny
method,23 often fail to effectively detect the boundaries, and

Fig. 4 The vitreous/ILM and RPE/choroid segmentation results. All
A-scans are aligned to make the RPE/choroid boundary a straight line.

Fig. 5 Filtered images and intensity profiles at two different A-scans in a
typical B-frame. (a) raw B-frame, (b) filtered by the anisotropic method,
(c) filtered by the presented method, (d) and (e) intensity profiles at two
locations shown by yellow lines.

Fig. 6 Illustration of segmentation results for the ONL layer and IS/OS,
OS/RPE boundaries.
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thus are not practical. Figure 7(a) shows the raw results with
many local errors from the gradient extrema detection algorithm,
where the boundaries of NFL/GCL, IPL/INL, INL/OPL are
detected as the depth positions of two significant intensity
drops and the greatest intensity rise, respectively. Erroneous
identification of boundary occurs due to the influence of vessels
and noise, and the absence of clear layer structure near the fovea
region. The top and bottom borderlines of macula, and the ONL
layer line are smoothed by polynomial fitting. It should be noted
that in the images from our OCT system, the boundary between
GCL and IPL is almost imperceptible even to manual inspec-
tion, so it will not be detected in our algorithm.

In healthy human retina, the physical surfaces of the retinal
layers are relatively smooth and locally continuous. A good
method should make use of some neighborhood 3-D informa-
tion to guide the segmentation. Based on this consideration, we
propose an algorithm that evaluates the weighted gradient
extrema along each A-line within limited search region with
3-D perspective to remove the abnormal local spikes. It is a
neighborhood-based optimization strategy employed to avoid
potential erroneous determination.

zði; jÞ ¼ argmin
z1;z2 · · · zK

fwijðzk;i;jÞ · ∇eIðzk;i;jÞg; (4)

where each local extreme of intensity gradient ∇eIðzÞ along the
ði; jÞth depth scan line is imposed by an unimodal weight func-
tion wðzÞ, and zk;i;jjk¼1;2 · · ·K represents the K locations in depth
with maximal or minimal intensity gradients. The subscript ij in
wijðzÞ means that the weight function centroids are variable
against lateral scanning positions ði; jÞ. We used a normalized
Gaussian function with standard deviation of 5 pixels coupled
with a sign function as the weight function, which generated a
minus weight coefficient for maximal gradient and a plus one for

minimal gradient. The standard deviation of Gaussian weight
function is determined from expert analysis with the considera-
tion of axial resolution. The boundaries were searched one by
one within the limited region between the top NFL and ONL
layer. When performing search on each boundary, the algorithm
sorted the weighted gradient extremes in each A-line and con-
sidered the position in depth with minimal weighted value to be
the boundary position in this A-line. Considering the smooth-
ness and no abrupt spike of retinal layer boundary, the centroid
of the unimodal weight function imposed on the later A-line
comes from the mean depth position of the corresponding
boundary in the previous sub-region of the 5-by-5 pixels neigh-
borhood. However, due to the lack of previous scanning infor-
mation, the first three lines and frames have to depend on
weightless gradient extremes. So they should be located a little
far away from the fovea to avoid the absence of clear layer struc-
tures. Nevertheless there still existed a few cross-layer errors in
the fovea subregion after performing the searching method. This
can be simply corrected because there are no physical tissue
layers that can cross each other in retina, so these errors only
mean the merge of two layers. Figure 7(b) shows the segmenta-
tion outcome after correction according to this search strategy
on boundaries. The search was limited to the region between the
previously segmented vitreous/NFL line and ONL line.

4 Results and Discussion

4.1 Segmentation Results

The acquired macular structure movie was first decomposed to
BMP frames by the program. The described method in Sec. 3
was implemented using MATLAB (The MathWorks, Inc.)
M-file code. The program runs on a personal computer
(64 bit OS, Intel Core i7 CPU at 2.7 GHz, and 8 GB RAM)
and took about 2.5 min to complete the whole 3-D image
volume (448 × 500 × 200) pixels detection of seven layer
boundaries and two layer location lines. If carefully optimized
using a more efficient language, for example C++ programming
language, it can perform with dramatically reduced proces-
sing time.

The segmented results of seven layer boundaries (VITR-
EOUS/NFL, NFL/GCL, IPL/INL, INL/OPL, IS/OS, OS/RPE,
RPE/CHOROID) and two layer location lines (ONL, RPE)
are illustrated in Fig. 8 for one of the typical 3-D datasets.
Sixth-order polynomial fittings are applied to smooth the bound-
aries. It can be observed that the effect of blood vessels and
their corresponding shadows below them is minimized [see
Fig. 8(a)]. The fifth and eighth lines, approximately showing
the positions of ONL and RPE, are used as the separating

Fig. 7 NFL, GCLþ IPL, INL segmentation results based on gradient
extrema: (a) without correction, the arrows show the erroneous identi-
fication of boundary due to the absence of clear layer structure near the
fovea region and the influence of noise; (b) with the weighted-gradient
based search strategy.

Fig. 8 Typical results (in each plot, from top to bottom: vitreous/ILM, NFL/GCL, IPL/INL, INL/OPL, ONL, IS/OS, OS/RPE, RPE, RPE/choroid). (a) to (d) are
the 10th, 85th, 160th, and 185th cross-sectional images, respectively, within the example 3-D cube.
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lines in segmentation algorithm to limit the search areas.
The GCL/IPL boundary is almost indetectable in the images
from our OCT system due to the limited sensitivity, so we
only get the GCLþ IPL complex layer. This complex layer
is just located between the boundaries of NFL/GCL and
IPL/INL. Figure 9 shows the 3-D view of the segmentation.

To confirm the accuracy of our method, we applied the algo-
rithm to the datasets from four volunteers in our lab. In addition,
an independent physician separately reviewed the 3-D images,
and manually segmented 32 B-frames randomly extracted
from the datasets. The absolute mean and standard deviation
of the differences between manual and automatic estimates
were calculated and shown in Table 1. The frames with poor
image contrasts or obvious motion artifacts were first discarded
before segmentation. Typically about 1% of frames were
eliminated in our experiments.

4.2 Discussion

We applied our algorithm to more than 30 3-D data volumes
captured from four volunteers and obtained a promising success.
The influence of the common blood vessels and their corre-
sponding shadows on the final results is minimized. However,
we found that if the blood vessels are relatively large, which are
located exactly at the first several A-lines, this situation would
usually result in a failure of the segmentation algorithm. This is
due to the fact that our proposed algorithm requires some knowl-
edge of the successful segmentation of previous neighborhood
lines. However, for the first few A-lines there is no prior knowl-
edge, but instead, the algorithm is solely dependent upon their
own layer structural information. Also, the large eye motion
may break the local 3-D continuousness and smoothness of

layers in tomograms, which would affect the robustness of
segmentation algorithm. Thus, careful measures should be
exercised in order to reduce large motion artifacts.

It should be mentioned that the method of statistical error
estimation based on polynomial fitting imposes a global regu-
larity assumption on the geometry of the retinal layers. So, it is
usually limited to the cases where the OCT images cover a small
field of view (∼3 mm in this study). Also, when the polynomial
fitting is used to smooth the boundaries, the temporal raphe in
the NFL would be smeared out, and some cross-layer errors
occur in the fovea as well.

Although some spatial treatment has been applied in
denoising and boundary segmentation in the present work,
more 3-D information from neighboring A-lines and B-scans
could further be utilized for guiding segmentation or correcting
errors. Processing of layered structure image-set in a completely
3-D perspective will be a promising way for accurate and robust
segmentation.

5 Conclusions
We have presented an automated segmentation method that is
based on the combined use of the locally weighted gradient
extrema search strategy with the statistic estimation polynomial
regression technique. The locally weighted gradient extrema
search strategy was designed to obtain the smooth and contin-
uous boundaries with less abrupt jumpiness in the neighbor-
hoods, and the probability-based polynomial regression
method was used to selectively eliminate the potential gross
errors in the detection of boundaries. In the segmentation, a
two-step denoising treatment in both B-frame images and
en-face planes was employed to remove random speckle noises
while preserving the boundary details. The method has been
applied to a reasonable number of macular scans acquired
from four healthy subjects. The segmentation results were
found to be consistent with those by manual segmentation.
In addition, the thickness color maps of multiple layers were
generated based on the segmentation results and the thickness
measurements of different layers were also in agreement with
those reported in the prior literatures. Future study will focus
on testing the effectiveness of the proposed segmentation
algorithm on the 3-D OCT scans from representative patients.
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