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Abstract. Of the three measurement schemes established for diffuse fluorescence tomography (DFT), the time-
domain scheme is well known to provide the richest information about the distribution of the targeting fluorophore
in living tissues. However, the explicit use of the full time-resolved data usually leads to a considerably lengthy
time for image reconstruction, limiting its applications to three-dimensional or small-volume imaging. To cope
with the adversity, we propose herein a computationally efficient scheme for DFT image reconstruction where
the time-dependent photon density is expanded to a Fourier-series and calculated by solving the independent
frequency-domain diffusion equations at multiple sampling frequencies with the support of a combined multicore
CPU-based coarse-grain and multithread GPU-based fine-grain parallelization strategy. With such a parallelized
Fourier-series truncated diffusion approximation, both the time- and frequency-domain inversion procedures are
developed and validated for their effectiveness and accuracy using simulative and phantom experiments. The
results show that the proposed method can generate reconstructions comparable to the explicit time-domain
scheme, with significantly reduced computational time. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)
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1 Introduction
Diffuse fluorescent tomography (DFT) is being increasingly
used as a noninvasive and highly sensitive method to image
the fluorescent properties of tissues that report physiopatholog-
ical processes in intact organisms, preferably using near-infrared
radiation.1–4 And its methodology has been extensively explored
within the framework of three measurement techniques in
diffuse optics.5,6 In comparison with the continuous-wave (CW)
and frequency-domain (FD) modes, the time-domain (TD)
approach acquires much richer information about the fluoro-
phore distribution in a living tissue and, therefore, offers
potential to achieve higher spatial resolution, better recovered
contrast, as well as effective separation among multiple proper-
ties (yield and lifetime) and compositions.7–10 Gao et al. have
developed a finite-element time-difference photon diffusion
modeling to solve the time-dependent coupled diffusion equa-
tions. Results show that the TD–DFT simultaneous reconstruc-
tion of the fluorescent yield and lifetime in a two-dimensional
(2-D) circular domain can achieve superior quantitative accu-
racy, spatial resolution, and noise robustness, than using CW
or transformed FD reconstructions.11 Zhu et al. have also applied
finite element based TD–DFT model to a three-dimensional
(3-D) mouse model. Simulative results demonstrate that the
incorporation of early and late time-bins can effectively improve
the image accuracy.12 However, since the photon migration
modeling, i.e., the forward calculation, normally requires
adequate recursive steps to temporally resolve the relevant

physical quantities (boundary flux and interior photon density)
at a numerically stable interval, the conventional approach of
TD–DFT image reconstruction that explicitly uses the full time-
resolved (TR) data with no parallelization potentials usually
leads to a lengthy computational process, especially for 3-D
scenarios and large-sized tissues, such as those in small animal
whole-body imaging or optical mammography.13–16

Until now, many approaches have been proposed to reduce
the computational complexity of the TD–DFT problems.17–20

Holt et al. have proven that proper multiple time gates are impor-
tant to provide superior image accuracy in TD–DFTwhen com-
pared to the CW-DFT method.17 Furthermore, an overlap time
gate is applied by Li to achieve better spatial resolution and
fidelity, compared to those using the CW mode and traditional
multiple time gate.21 Most of the aforementioned approaches
are based on a featured-data scheme utilizing either Mellin or
Laplace transformation of the time-dependent diffusion model,
which has been proven to be computationally simple and dem-
onstrate redundancy reduction.19,20 However, since the high-
order Mellin or real-number Laplace transformation is prone to
be highly correlated, increasingly subjected to noise, and/or
mathematically incomplete, simulative and experimental recon-
structions with such a scheme both exhibit inferior quantitative
performance and poor spatial resolution than directly using the
full time-resolved measurements, severely limiting its applica-
tion in high-fidelity imaging. Therefore, to uncover the potential
of TD–DFT for clinically required accuracy and spatial details
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in an effective way, there is a critical need to effectively use
the full profiles of the TR measurements.

Since the TD system is mathematically equivalent to the
combination of many FD ones employing a wide range of
modulation frequencies, a Fourier transformation can therefore
be used to possess the approximate optical information about the
fluorophore distribution in a TD measurement mode. Recently,
Pulkkinen et al. have employed a truncated Fourier-series
approximation to simplify the finite-element solutions of the
TD radiative transfer equation. Simulations on a homogeneous
rectangular computational domain show that although the
method with truncated Fourier-series approximation requires
more memory and time to solve the equation of a singular fre-
quency component, than that with the time-difference solution
of a single temporal step, the total time of the former with 35
frequency components is only 1/5th that of the latter with 400
temporal steps, which greatly shortens the calculation time.22

However, the studies are only for the forward calculations of
a 2-D domain. Ziegler et al. have applied the Fourier transfor-
mation to the nonlinear DFT reconstruction of a 3-D compressed
breast-simulating phantom in a transmission-reflection measure-
ment pattern, where the nearest source–detector distance is
10 mm, and only three angular frequency components are
needed to obtain an accurate TR data.23 However, the number
is severely insufficient for applications with a smaller source–
detector distance or larger size, where quite a number of fre-
quency components and a long computation time are required.
On that occasion, it is more significant to expand the truncated
Fourier-series strategy to the full TR-DFT reconstruction prob-
lem, where a great challenge lies in the computational efficiency
and severely increased unsuitability of obtaining the accurate
anatomical structure and pathological information, due to the
rapid growing in the number of the unknowns and the nonlinear
dependency of the measurements on the optical properties.
Conveniently, a parallelization strategy is necessary and easily
utilized in the reconstruction.

To better take advantages of the TR measurements while
effectively reducing the lengthy computation time incurred
from the requisite temporal steps, we herein propose a parallel-
ized Fourier-series truncated diffusion approximation (DA) to
accelerate the full TR-DFT reconstruction. In our scheme, the
time-dependent photon density is expanded to a Fourier series,
based on which the TD diffusion equation (DE) can be solved
through a series of independent FD–DEs at multiple sampling
frequencies. Moreover, a combined multicore CPU-based
coarse-grain and multithread GPU-based fine-grain paralleliza-
tion strategy is employed to accelerate the process. The resulting
temporal point spread functions (TPSFs) are tested in compari-
son with those of TD finite-difference (TDFD) solution and
Monte Carlo (MC) simulation. With such forward calculations,
both the TD and FD inversion procedures are developed based
on a block algebraic reconstruction technique (ART). Simula-
tions and phantom experiments are performed to compare
with the explicit TD scheme to validate the accuracy and com-
putational resources of the proposed method.

2 Methods
In general, the goal of DFT reconstruction (referred to as the
inverse problem) is to quantitatively derive the distributions
of the fluorescent properties in a tissue domain, by fitting
the model predictions (referred to as the forward problem) to

the diffusive excitation and emission light measurements on
the boundary.

2.1 Fourier-Series Truncated DE for Full TR Data

For the TD forward problem, the model-predicted boundary flux
is calculated using the Fick’s law with the Robin boundary con-
dition, under the Galerkin finite-element method (FEM) to
transform the continuous DE into an N-dimensional discrete
problem of finding the nodal field photon density Φðri; tÞ at
all nodes riði ¼ 1;2; · · · ; NÞ; the resulting matrix equation
can be given by24

� ½KðκνÞ þ CðμaνcÞ�ΦνðtÞ þ B ∂ΦνðtÞ
∂t ¼ QνðtÞ − bνðtÞ

ΓνðtÞ ¼ c
2

1−Rf

1þRf
ΦνðtÞ

;

(1)

where K;C;B ∈ RN×N are symmetric sparse matrices. Φ is the
photon density under the source Q and the boundary quantity b.
Γ is the measured boundary flux. The subscript ν ¼ ½x;m�
denotes the variation at the excitation or the emission wave-
length, respectively, κ ¼ ½3ðμa þ μ′sÞ�−1 is the diffusion coeffi-
cient with an absorption coefficient μa and a reduced scattering
coefficient μ′s. c denotes the speed of light in the medium and Rf
is the internal reflection coefficient on the boundary.

To reduce the amount of the full TR data that is too large to
be handled on the hardware within an acceptable period, one can
either use the temporal filters or carry out the calculation in
the FD. In our approach, we choose the second strategy by
approximating the TD photon density Φðr; tÞ as a weighted
combination of the truncated Fourier series at multiple fre-
quency components:

Φðr; tÞ ¼
XNω

k¼−Nω

Φðr;ωkÞ expðjωktÞ; (2)

where Φðr;ωkÞ denotes the frequency component with Fourier
frequency ωkðk ¼ 0;1; · · · ; NωÞ, whose choice is shown in
Sec. 2.3.

Thus, the TD forward calculation can be obtained by solving
a series of uncorrelated FD–DEs.

½KðκνÞ þ CðμaνcÞ þ jωkB�ΦνðωkÞ ¼ QνðωkÞ − bνðωkÞ;
k ¼ 0;1; · · · ; Nω: (3)

2.2 Full TR–DFT Method with Fourier-Series
Truncated DE

Before directly using the TR measurement for the image
reconstruction, several necessary data preprocessing steps are
acquired. First, as only a finite interval of the collected TPSF
data is of interest, an identical start–end time is chosen to
cover the most effective range of the TPSF curve, for an efficient
implementation of the subsequent Fourier transformation.
Second, to reduce the amount of calculation and effectively
enhance the noise robustness of the reconstructions while still
preserving the advantages of the full TR scheme, an overlap-
delaying time gate method is employed to deal with the mea-
surements.21 Third, a self-normalized data type as described
in Ref. 11 is employed in the research to avoid the required
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scaling-factor calibration and spectroscopic characterization of
the experimental system, and effectively reduce the adversity of
system fluctuations that may occur between excitation and emis-
sion measurements.

To simplify the validation of the proposed method, we only
consider the reconstruction of fluorescent yield, whose Jacobian
matrix can be efficiently calculated by

Jðξd;ζs;ωkÞ

¼ c
W

X
j

�
Gmðξd;r;ωkÞ ·Φxðr;ζs;ωkÞ ·

1

1þiωkτ

�
Ωn→j

VðΩn→jÞ;

(4)

where Gmðξd; r;ωkÞ denotes the photon density at ξd with an
isotropic source at r under the wavelength of the emission
light λm, referred to as the Green’s function. Φxðr; ζs;ωkÞ is
the photon density at rwith an isotropic source at ξs at the wave-
length of the excitation light λx. VðΩn→jÞ is the volume of the
element with Ωn→j denoting the j′th element associated with the
nth node. The symbol h·iΩn→j

represents the mean value over
element Ωn→j. The factor W is the order of the shape function,
depending on the shape of the used finite element, with the value
being 3 and 4 for a triangle and tetrahedron, respectively.25 τ is
the fluorescence lifetime.

At last, the block ART technique is employed here for the
reconstruction of the fluorescent properties, allowing a group
of equations that belong to the same source–detector pair to per-
form concurrently in each block.26

According to the data processing in the TD or FD, we herein
develop two inversion procedures, with the diagrams shown in
Fig. 1. Figure 1(a) is the flow chart of the Fourier-series trun-
cated DA-based DFTwith time-block ART. In this DFT scheme,
the TR measurements Γ̂xðξd; ξs; tÞ and Γ̂mðξd; ξs; tÞ are prepro-
cessed using the overlap-delayed time-gating method; then its
self-normalized data type χðξd; ξs; tÞ is ready for the reconstruc-
tion. On the other hand, the Green’s function Gmðξd; r;ωÞ and
the photon density Φxðr; ζs;ωÞ that are calculated from Eq. (3)
are used for producing the Jacobian matrix Jðξd; ζs;ωkÞ accord-
ing to Eq. (4). After an inverse Fourier transformation, the TD
Jacobian matrix Jðξd; ζs; tÞ can be applied to the time-block
ART. Another inversion procedure is the Fourier-series trun-
cated DA-based DFT with frequency-block ART, as the flow

chart shown in Fig. 1(b). The Fourier-transformed frequency
measurements χðξd; ξs;ωkÞ are herein directly used in the fre-
quency-block ART, with the FD Jacobian matrix Jðξd; ζs;ωkÞ.

2.3 Selection for the Sampling Frequency

According to the FD sampling theorem, the sampling pulse
function is δωs

ðωÞ ¼ P∞
n¼−∞ δðω − nωsÞ, where ωs ¼ ð2π∕TsÞ

(Ts denotes the sampling period) is the sampling frequency.
Since the frequency spectrum of the temporal shaped inci-

dent light pulse is continuously decaying in amplitude as a func-
tion of frequency and the higher-frequency components always
show lower signal-to-noise ratios, the truncated Fourier-series
approximation only takes into account the Nω smallest frequen-
cies of the incident light.

The periodicity of the radiance due to truncated Fourier-
series approximation is not always physically realistic. Accord-
ing to the diffusion theory, the light–tissue interaction will cause
the spreading of the propagating light pulse in temporal and spa-
tial domains. The further away from the light source the pulse is
inspected, the more spreading it will generally be, causing
narrowing of its Fourier spectrum, which means that with the
increase of the source–detector distance, fewer Fourier compo-
nents are required to obtain the approximate pulse of a certain
accuracy.

Therefore, to recover the TPSF curves with a balance of
accuracy and computation time, we herein use the maximum
measured time Tm of all the detectors, based on the Nyquist
theorem Ts > 2Tm, to decide the sampling rate. In this work,
a GPU-accelerated fluorescence MC simulation is used to esti-
mate the maximum measured time Tm.

27

2.4 Parallelization Strategy

Due to the intrinsic parallelization mechanism of the frequency
components Φðr;ωkÞ, as well as the element-dependent feature
of the stiffness matricesM and B in the forward calculation and
the Jacobian matrix J in the inverse implementation,28 the FD–
DEs in Eq. (3) under multiple frequencies can be easily paral-
leled using a combined multicore CPU and multithread GPU
parallelization strategy.

The flow chart of the parallelization strategy for the full
TR-DFT reconstruction is illustrated in Fig. 2. First, an Nω-core
CPU is employed for the coarse-grain parallelization, on which

(a) (b)

Preprocess the measurements 

d s d s
ˆ ˆ( , , ) ( , , )x mt tξ ξ ξ ξΓ Γ

using the overlap time-gating method

Fourier transform for d s( , , )kχ ξ ξ ω

Calculate the 

( ), ,m d kG ξ ωr  and 

( ), ,x s kζ ωΦ r

using the forward operator

Calculate the Jacobian matrix 

( , , )d s kJ ξ ζ ω

Frequency-block ART reconstruction for the fluorescent properties 

Gain the self-normalized data d s( , , )tχ ξ ξ

Preprocess the measurements 

d s d s
ˆ ˆ( , , ) ( , , )x mt tξ ξ ξ ξΓ Γ

using the overlap time-gating 
method 

Inverse Fourier transform for d s( , , )J tξ ξ

Calculate the 

( ), ,m d kG ξ ωr  and ( ), ,x s kζ ωΦ r

using the forward operator 

Calculate the Jacobian matrix ( , , )d s kJ ξ ζ ω

Time-block ART reconstruction for the fluorescent properties 

Gain the self-normalized 
data-type d s( , , )tχ ξ ξ

Fig. 1 Reconstruction flow chart of the Fourier-series truncated diffusion approximation (DA)-based dif-
fuse fluorescence tomography (DFT) method with (a) time-block and (b) frequency-block algebraic
reconstruction technique.
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each FD–DE is performed independently. Second, in each FEM
solution of FD–DE, the time-consuming calculations of the
stiffness matrices M and B, and the Jacobian matrix J are
concurrently executed using thousands of threads in the GPU,
respectively. Furthermore, in the multisource incentive issues,
the FD–DE is often solved using the lower upper (LU) decom-
position in the real field form. However, due to the lack of
structure of the sparse matrix and the dependency among the
elements, the LU decomposition is quite time-consuming and
unable to be accelerated by optimization of the procedure or
other parallelization strategy. For this purpose, we use the
following matrix manipulation under a GPU acceleration
mechanism:

�
ReΦνðωkÞ
ImΦνðωkÞ

�
¼
� ðB−1MÞ∕ωkE

−EðB−1MÞ∕ωk

�
½ðMB−1MÞ∕ωk þωkB�−1

×
�
Re½QνðωkÞ−bνðωkÞ�
Im½QνðωkÞ− bνðωkÞ�

�
; (5)

where M ¼ KðκÞ þ CðμacÞ. The calculation of ½ðMB−1MÞ∕
ωþ ωB�−1 in the Gaussian elimination method can be acceler-
ated using a multithread GPU by concurrently executing many
threads of normalization operations and a block of elimination
operations in the speedy shared storage. It is obvious from
Eq. (5) that for different sampling frequencies, we only need
to calculate ½ðMB−1MÞ∕ωþ ωB�−1, as ðB−1MÞ and ðMB−1MÞ
are invariable for all the frequencies.

The aforementioned accelerated calculations using the multi-
thread GPU are referred to as fine-grain parallelization strategy.
The whole GPU is divided into Nω blocks, each corresponding
to a frequency component and performing respective calcula-
tions, leading to thousands of speed-ups in theory. Overall, the
proposed parallelization strategy could effectively accelerate
the calculation of the Fourier-series truncated DA.

3 Results

3.1 Forward Results from Simulations

To simulate the fluorescent target embedded in the tissue, we
consider throughout this study a fluorescent cylindrical region
with a radius of r ¼ 3.75 mm and a length of L ¼ 40 mm,
embedded in a cylinder background with a radius of R ¼
15 mm and a length of L ¼ 40 mm at the location of (ρ ¼
7.5 mm, θ ¼ 0 deg, Z ¼ 20 mm), with the top view shown
in Fig. 3(a). The optical properties of the background and target
are assumed to be the same at both the excitation and emission

wavelengths with the values of μðBÞax;m ¼ μðTÞax;m ¼ 0.004 mm−1

and μðBÞsx;m ¼ μðTÞsx;m ¼ 1.0 mm−1 (B denotes the background
and T denotes the target), which is well justified since the optical
properties change slightly with wavelength in the spectral range
considered, and the Stocks shift of the fluorescent dye is com-
parable to the width of its fluorescence band. The fluorescent

yield and lifetime are set to be ημðBÞaf ¼ 1 × 10−5 mm−1, ημðTÞaf ¼
0.001 mm−1, and τðBÞ ¼ τðTÞ ¼ 1000 ps. For the forward model,
the excitation re-emission and fluorescent emission are tempo-
rally measured at θ ¼ 0, 90, and 180 deg of the horizontal plane
of Z ¼ 20 mm (shown as D1, D2, and D3 in the figure, respec-
tively), under a δ–shaped exciting laser pulse at a polar angle of
θ ¼ 0 deg. The FEM mesh contains 60,750 triangle elements
that join at 11,536 nodes. A workstation with eight 3.60 GHz
processors of Intel Core i7-3820, a total RAM of 32 GB,
and a GPU card of Nvidia GeForce GTX 660 is used as the
execution platform. All the eight CPU cores are used for the
parallelized process.

To investigate the accuracy of the parallelized Fourier-series
truncated diffusion approximation (PFST–DA) in recovering the
full TR data, we compare the normalized TPSF curves of the
excitation and emission at the measuring sites, using the pro-
posed PFST–DA, TDFD, and MC methods. According to the
prior knowledge of the fluorescence MC simulation, the maxi-
mum flight times of the fluorescence signal at the farthest and
nearest measuring positions are 8000 and 125 ps, respectively.
Thus, the fundamental frequency is π∕8000, and the total
number of Fourier components is 64. To achieve an adequate
accuracy of the forward calculation while avoiding an excess
computational cost,11 400 temporal steps and 1010 photon pack-
ages are used for the TDFD solution and the GPU-accelerated
fluorescence MC simulation, respectively. Figures 3(b)–3(d) are
the normalized TPSF curves of the excitation and emission light
at the measuring sites using the three methods. From left to right
are the light detected at D1, D2, and D3, respectively. For the
excitation light, the max relative errors of the PFST–DA method
to the TDFD method and MC simulation at the three detection
sites are <0.24 and 0.2%, respectively. Although the emission
results of the PFST–DA are a little worse than the excitation
ones, the values are still within 0.35%. As to the computation
time, the one with the PFST–DA scheme is 205.46 s, much less
than that of the TDFD scheme by 2655.17 s.

To verify the accuracy of the selection criterion for the sam-
pling frequencies, we assess the influence of the number of
sampling frequencies on the forward calculation. A series of
Nω ¼ 20, 40, 64, and 160 sampling frequencies are used for
the PFST–DA method with the detection site D2 shown in
Fig. 3(a). Compared normalized TPSF curves for the excitation
and emission light are shown in Figs. 4(a) and 4(b), respectively.
The maximum relative difference between that of Nω ¼ 64 and

CPU Core Nω : solution of the frequency-domain DE at Nω
ω

CPU Core 2: solution of the frequency-domain DE at 2ω
CPU Core 1: solution of the frequency-domain DE at 1ω

Copy the subdivision 
information and optical 

parameters

Assemble the stiffness 

matrices M and B

GPU Block 1

Thread S D N× × : Calculate ( )1, , r ,S D Nξ ζ ωJ

Thread 2: Calculate ( )1 1 2 1, , r ,ξ ζ ωJ

Thread 1: Calculate ( )1 1 1 1, , r ,ξ ζ ωJ

Task 3:  Calculate the Jacobian matrix 
Calculate the photon density 

( )1, ,x ωΦ r ζ  and Green’s 

function ( )1, ,mG ωξ r

Assemble the Jacobian  

matrix ( )1ωJ

Assemble the matrix inversion

( )[ ] 1
1

1 1ω ω
−− +MB M B

Thread 1: Normalization and elimination for 

the first row of ( )[ ] 1
1

1 1ω ω
−− +MB M B

Task 2:  Calculate the matrix inversion 

Thread 2: Normalization and elimination for 

the second row of ( )[ ] 1
1

1 1ω ω
−− +MB M B

Thread N: Normalization and elimination for 

the Nth  row of ( )[ ] 1
1

1 1ω ω
−− +MB M B

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Thread V : Calculate ( )VM and ( )VB

Thread 2: Calculate ( )2M and ( )2B

Task 1:  Calculate the stiffness matrices GPU

Thread 1: Calculate ( )1M and ( )1B

Fig. 2 Flow chart of the parallelization strategy for the Fourier-series
truncated DA-based DFT.
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that of Nω ¼ 160 is only 0.08%, which is considerably accurate.
It is worth noting that, for assuring an adequate accuracy of the
forward calculation without any excess computational cost, the
number of the sampling frequencies is enough to be decided
according to the selection criterion in Sec. 2.3.

3.2 Reconstruction Results from Simulations

The performance of the proposed method is evaluated for a cyl-
inder background with a radius of R ¼ 15 mm and a length of
L ¼ 40 mm, embedded with one and two fluorescence targets,
called samples 1 and 2. A total of 64 coaxially aligned source–
detector optodes are hierarchically and equally distributed
around the cylinder by four layers at the horizontal planes of
Z ¼ 5, 15, 25, and 35 mm. To make the simulated data realistic,
the measurements are generated by a GPU-accelerated MC sim-
ulation with 1010 photon packages for each source radiation. We
compare four reconstruction methods under the ART technique:
the CW method with ART, the TDFD method with time-block
ART (tTDFD), the PFST–DA method with time-block ART

(tPFST–DA), and the PFST–DA method with frequency-
block ART (fPFST–DA).

First, sample 1 is employed to compare the reconstruction
results in terms of the maximum and the full width at half maxi-
mum (FWHM), respectively. The fluorescence target in sample
1 locates at (ρ ¼ 7.5 mm, θ ¼ 0 deg, Z ¼ 22.5 mm) with a
radius of r ¼ 2.5 mm and a length of l ¼ 15 mm. The recon-
structed yield images at the horizontal slice of Z ¼ 22 mm and a
vertical slice of Y ¼ 0 mm using the four reconstruction strat-

egies with a target yield of ημðTÞaf ¼ 0.001 mm−1 are shown in
Fig. 5; so are the corresponding X-profiles and Z-profiles.
Similarly, Figs. 6(a) and 6(b) and Figs. 6(c) and 6(d) are the

corresponding profiles for the target yield of ημðTÞaf ¼ 0.002

and 0.003 mm−1, respectively. Further comparisons among the
four reconstruction strategies with respect to the reconstructed
peak value and FWHM are shown in Table 1. It can be observed
that the locations and sizes recovered by the three full TR meth-
ods are more in agreement with the true locations. The peak
values of the tPFST–DA method at the three realistic targets

Fig. 3 The forward calculation for a three-dimensional cylinder domain containing a centered, circular
fluorescent heterogeneity: (a) the two-dimensional (2-D) geometrical setup and (b)–(d) the normalized
temporal point spread function (TPSF) curves of the excitation (top) and fluorescent emission (bottom)
detected at D1, D2, and D3, respectively.

Fig. 4 The normalized TPSFs of the (a) excitation and (b) fluorescent emission light by different numbers
of sampling frequencies.
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are 2.16, 2.05, and 2.02%, a little lower than that with the
tTDFD method, whereas in the fPFST–DA method, the values
are 3.33, 4.26, and 4.58%, respectively. As for the computa-
tional time, it takes ∼624.56 min for the tTDFD method to
reconstruct the yield images, which is ∼1.15 and 9.83 times
those with the tPFST–DA and the fPFST–DA methods, respec-
tively, at an approximate number of projection. The results
reveal that, compared to the tTDFD method, the two PFST–
DA methods can obtain the approximately accurate recon-
structed images with much shorter computation time, especially
with the fPFST–DA method.

For sample 2, the two fluorescence targets are with the same
radius and length as that in sample 1 at the locations of (θ ¼
0 deg, Z ¼ 22.5 mm) and (θ ¼ 180 deg, Z ¼ 12.5 mm), under

a fixed target fluorescent properties of ημðTÞaf ¼0.001mm−1. To
compare the four reconstruction methods by the spatial resolu-
tion, the center-to-center separations (CCS) of the two targets
are set as 8, 11, and 14 mm, respectively, with a measure defined

as R ¼ ½ðημafÞmax
− ðημafÞðx¼0mmÞ�∕½ðημafÞmax

− ðημafÞmin
� in

the X-profile of the reconstructed yield image. Figures 7–9
illustrate the reconstructed yield images at the horizontal
slice of Z ¼ 18 mm and a vertical slice of Y ¼ 0 mm, with
the corresponding profiles along the X axis and Z axis.
Further comparison among the four reconstruction strategies is
shown in Table 2. The images in Figs. 7 and 8 reveal that the
tTDFD method can best separate the two targets, similar to the
tPFST–DA and the fPFST–DA methods, and much better than
the CW method. This is because the tTDFD method carries the
richest and truest information about the targets. As of Fig. 9
where CCS ¼ 14 mm, the spatial resolution by the fPFST–DA
method is the highest, where the spatial resolutions of the two
PFST–DA methods are even 0.64 and 3.53% better than that of
the tTDFD method, respectively, which may be explained as
the reconstruction quality of ART algorithm is related to an
optimal iteration number and relaxing factor. In this situation,
the parameters are more fit for the fPFST–DA method.

Fig. 5 Reconstructed yield images and corresponding profiles of sample 1 at (a) Z ¼ 22 mm and
(b) Y ¼ 0 mm by continuous wave (CW), time-domain finite-difference method with time-block algebraic
reconstruction technique (tTDFD), parallelized Fourier-series truncated diffusion approximation method
with time-block algebraic reconstruction technique (tPFST–DA), and PFST–DA method with frequency-
block algebraic reconstruction technique (fPFST–DA) methods, with target yield of 0.001 mm−1.

Fig. 6 X - and Z -profiles of sample 1 at [(a) and (c)] Z ¼ 22 mm and [(b) and (d)] Y ¼ 0 mm by CW,
tTDFD, tPFST–DA, and fPFST–DA methods, with target yield of [(a) and (b)] 0.002 mm−1 and [(c) and
(d)] 0.003 mm−1.
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3.3 Reconstruction Results from Experiments

To validate the proposed method, a time-correlated single pho-
ton counting (TCSPC) system is employed to perform a series of
TD phantom experiments. As shown in Fig. 10, the light source
in the setup is a picosecond-pulsed laser system that employs
a programmable controller (PDL828, PicoQuant, Germany)
to drive 780 nm [the peak excitation wavelength of indocyanine
green (ICG)] fiber-coupled 70 ps pulsed laser diode heads
(LDH-P-P-780, PicoQuant, Germany). The output beam is dis-
tributed to 1662.5 μm source fibers by a 1 × 16 fiber switch for
the tissue scanning. The emergent photons are collected by
500 μm detection fibers placed at 16 sites equally spaced around
the phantom boundary on the imaging plane, in which only mea-
surements from the 11 detectors opposite to each of the 16

sources are employed for the image reconstruction. Then the
collected photons are delivered to a photomultiplier tube (PMT)
photon-counting header (PMC-100, Becker&Hickl, Germany)
and temporally resolved by a TCSPC module (SPC-134,
Becker&Hickl, Germany). In front of the PMT detector mounts
a six-hole filter wheel (FW103B, Thorlabs) that houses four
neutral density filters with the optical densities of 1 to 4, respec-
tively, and a bandpass filter (ICG-A Emitter, Semrock). To
facilitate the deployment of the fibers and the modeling of the
light propagation, the output ends of 16 source fibers and input
ends are paired into 16 coaxial optodes.

For the TCSPC setup, the output of a time-to-amplitude con-
verter is sampled into 4096 time bins with a width of ΔTb ¼
17.114 ps. The acquisition periods of the excitation and emis-
sion signals are adjusted to satisfy a suitable signal-to-noise ratio

Table 1 Comparison among the four reconstruction methods for simulation scenarios of sample 1.

Method

Yield

0.001 (mm−1) 0.002 (mm−1) 0.003 (mm−1)

Peak value
(mm−1)

FWHM- X∕Z
(mm)

Computation
time (s)

Peak value
(mm−1)

FWHM- X∕Z
(mm)

Peak value
(mm−1)

FWHM- X∕Z
(mm)

CW 8.0818 × 10−4 8.5/15.0 389.57 1.6047 × 10−3 8.5/15.0 2.4012 × 10−3 8.5/15.0

tTDFD 9.8269 × 10−4 7.0/14.5 40,218.01 1.9522 × 10−3 7.0/14.5 2.9217 × 10−3 7.0/14.5

tPFST–DA 9.6144 × 10−4 7.5/14.5 32,971.28 1.9124 × 10−3 8.0/14.5 2.8628 × 10−3 7.5/14.5

fPFST–DA 9.5001 × 10−4 8.0/15.5 4071.36 1.8690 × 10−3 8.0/15.0 2.7878 × 10−3 7.5/14.5

Note: CW, continuous wave; tTDFD, time-domain finite-difference method with time-block algebraic reconstruction technique; tPFST-DA, paral-
lelized Fourier-series truncated diffusion approximation method with time-block algebraic reconstruction technique; fPFST–DA, PFST–DA method
with frequency-block algebraic reconstruction technique.

Fig. 7 Reconstructed yield images and corresponding profiles of sample 2 at (a) Z ¼ 18 mm and
(b) Y ¼ 0 mm by CW, tTDFD, tPFST–DA, and fPFST–DA methods, with center-to-center separation
ðCCSÞ ¼ 14 mm.
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(SNR) respectively, within the scope of the effective counting
rate.16 To prevent the overflow of the Born-normalized TR
data and also assure an adequately high SNR, time ranges of
the excitation and emission TPSFs where the sample intensities
are >20% of their respective maximum are decided, and their
intersection is chosen for the reconstructions. For the full use of
the TR information, the gate interval in the overlap time-gating
method is set to the time-bin width of the measured TPSF, while
the gating width is set to 100 gate intervals.

To simulate the fluorescent targets embedded in the tissue,
a 5-mm-diameter cylindrical hole is drilled into a 30-mm-
diameter cylindrical phantom made from polyformaldehyde
and filled with a mixture of 1% Intralipid solution and ICG
concentration of ∼100 nM, leading to a fluorescent yield of
ημaf ¼ 0.001 mm−1. The absorption and the reduced scattering
coefficients of the targets are assumed to be equal at both the
excitation and emission wavelengths, and determined to be the
same as the background ones with μax¼μam¼0.0038mm−1

Fig. 8 Reconstructed yield images and corresponding profiles of sample 2 at (a) Z ¼ 18 mm and
(b) Y ¼ 0 mm by CW, tTDFD, tPFST–DA, and fPFST–DA methods, with CCS ¼ 11 mm.

Fig. 9 Reconstructed yield images and corresponding profiles of sample 2 at (a) Z ¼ 18 mm and
(b) Y ¼ 0 mm by CW, tTDFD, tPFST–DA, and fPFST–DA methods, with CCS ¼ 8 mm.
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and μsx ¼ μsm ¼ 0.978 mm−1, respectively, by the TR spectros-
copy technique,19 while the initial background fluorescent yield
is empirically set to ημaf ¼ 1 × 10−5mm−1, and the lifetime is
kept as a constant of τ ¼ 560 ps for both the background and
targets. Similar to the simulative investigations, 400 temporal
steps and 64 sampling frequencies are used for the TDFD sol-
ution and the PFST–DA methods, respectively.

Figure 11 shows the reconstructed yield images at the hori-
zontal slice of Z ¼ 30 mm and the corresponding X-profiles
using the CW, tTDFD, tPFST–DA, and fPFST–DA reconstruc-
tion strategies. It is obvious that the locations and quantitative

nature of the two targets are more in good agreement with the
true targets for the three TD schemes than those with the CW
scheme. Further quantitative details about the reconstructed
peak value of the two targets and the spatial resolution are
shown in Table 3. Compared to the tTDFD method, the maxi-
mum relative difference of the peak value by the two PFST–DA
methods is ∼5.86%. As to the spatial resolution, the relative
errors are 3.29 and 4.96% for the tPFST–DA and the fPFST–
DA methods, respectively. The computation time of the PFST–
DA method in the forward calculation is 54.48 s, <10% that of
the tTDFD method with 587.32 s. Although the reconstruction

Table 2 Comparison among the four reconstruction methods for simulation scenarios of sample 2.

Method

CCS

14 (mm) 11 (mm) 8 (mm)

Peak value left/right (mm−1) R Peak value left/right (mm−1) R Peak value left/right (mm−1) R

CW 5.3406 × 10−4∕5.1345 × 10−4 0.5205 4.8363 × 10−4∕4.7913 × 10−4 0.2053 4.9975 × 10−4∕4.9100 × 10−4 0.1073

tTDFD 8.6000 × 10−4∕7.8663 × 10−4 0.9294 7.0558 × 10−4∕6.4973 × 10−4 0.4760 7.4114 × 10−4∕6.4996 × 10−4 0.2131

tPFST–DA 8.5501 × 10−4∕8.3843 × 10−4 0.9358 6.6754 × 10−4∕6.8690 × 10−4 0.4516 7.0443 × 10−4∕7.0179 × 10−4 0.1961

fPFST–DA 8.1069 × 10−4∕8.5000 × 10−4 0.9647 5.6056 × 10−4∕5.7478 × 10−4 0.4377 5.6939 × 10−4∕5.8947 × 10−4 0.1993

Note: CCS, center-to-center separation.

(a) 

(b) 

Fig. 10 (a) Schematic diagram and (b) photo of the used time-correlated single photon counting system.

Fig. 11 Reconstructed (a) 2-D yield images and (b) corresponding profiles by CW, tTDFD, tPFST–DA,
and fPFST–DA methods.
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time of the tPFST–DA method is similar to that of the TDFD
time of 147.98 min, that of the fPFST–DA method is only
15.31 min, ∼10.35% that of the latter. All the observations
confirm to those in the simulative investigations.

4 Discussion and Conclusions
We propose in this paper a parallelized Fourier-series truncated
DA for the full TR–DFT image reconstruction. In this computa-
tionally efficient scheme, the time-dependent photon density is
expanded to a Fourier series and the TD–DE is calculated by
solving the independent FD–DEs at multiple sampling frequen-
cies, with the support of a combined multicore CPU-based
coarse-grain and multithread GPU-based fine-grain paralleliza-
tion strategy. Based on this forward model, both the TD and FD
inversion procedures are developed under the framework of
block ART, referred to as the tPFST–DA and fPFST–DA meth-
ods, respectively.

The forward resulting TPSF curves are tested by comparison
with those from the TDFD solution and the TD MC simulation.
The reconstructions are validated for their quantitativeness and
spatial resolution by both simulations and phantom experiments.
Results show that the proposed method can generate reconstruc-
tions comparable to the explicit TD scheme, with significantly
reduced computational time, especially by the fPFST–DA
method.

According to the studies done in Ref. 19, the advantage of the
truncated Fourier-series method mainly lies in the far fewer
number of frequency components needed than the temporal
steps in the tTDFD scheme. With the aforementioned acceler-
ating strategy, the truncated Fourier-series scheme is more suit-
able to be applied to the full TR–DFT reconstruction of 3-D or
larger-sized tissues that require more frequency components
for an accurate approximation. However, in the experimental
measurements, due to the large differentiation of the impulse
response function curve of individual fiber switching channel
and the fact of manual switching of fibers needed in the current
setup, the workload to accurately obtain all the instrument
response function curves was significantly increased. Consider-
ing the measuring time and system stability, the experimental
validations were performed in a 2-D mode.

It should be pointed out that the calculations of stiffness and
Jacobian matrices in the TDFD method are executed in the same
fine-grain parallelization strategy as the PFST–DA method,
while every time step is performed in a recursive way, leading
to no coarse-grain parallelization mechanism. Moreover,
although there is a potential of using the block iterative algo-
rithms on a parallel architecture, such as a multicore CPU or
multithread GPU, the block ART iteration needs Nω times stor-
age space of that in a conventional ART algorithm, to move the
Jacobian matrix into and execute the calculation in the GPU

device memory, which makes it difficult to effectively execute
in the device memory.
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