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Abstract. Distribution of scattered image patterns hinges on morphological and optical characteristics of cells.
This paper applied a numerical method to simulate scattered images of real cell morphologies, which were
reconstructed from confocal image stacks dyed by fluorescent stains. Two approaches, contourlet transform
(CT) and gray level co-occurrence matrix (GLCM), were then used to analyze the simulated scattered images.
The results showed that features extracted using GLCM contained more information than those extracted using
CT. Higher classification accuracy could be achieved with a single GLCM parameter than CT and GLCM could
achieve higher accuracy with fewer parameters than CT when using multiple parameters. Meanwhile, GLCM
requires less computational cost. Thus, GLCM is more suitable and efficient than CT for the analysis of cell-
scattered images. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of

this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JBO.21.8.086013]
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1 Introduction
Mitochondrion is one of the most important organelles in most
cells; it supplies the energy used by cells and plays a significant
role in many cell activities,1 including cell differentiation and
apoptosis. Cell-scattered light stimulated by coherent light can
provide deep insight into a cell’s morphology.2–4 Previously,
polarization diffraction imaging flow cytometry was developed,
which could simultaneously obtain cross-polarized scattered
images or a polarization-scattered image (p-SI) pair per cell
carried by core flow and illuminated by a laser. It has been
shown that the spatial patterns in p-SI images correlate with
morphological features of biological cells,5–8 but it is difficult
to distinguish scattered images obtained from different cell mor-
phologies. Therefore, an effective assay algorithm for analyzing
the scattered images corresponding to the cell morphology is
necessary.

This paper reports a simulation method based on an accurate
process of scattered light simulation6,9–12 and a reconstructed
real cell morphology obtained in previous studies6,12–14 to sim-
ulate the polarized cell-scattered images. The main characteristic
of scattered images is pattern distribution, which can be treated
as a type of frequency information. Contourlet transform (CT)
can decompose an input image into several subimages that con-
tain different scales and direction frequency information.15–18

Gray level co-occurrence matrix (GLCM) analyzes the proba-
bility of pixel pairs, which is also frequency information.19,20

Thus, these two algorithms were applied to analyze scattered
images simulated from real cell morphologies with different
mitochondria volumes and refractive indices (RIs). The results
our comparative study showed that features extracted using
GLCM contain more information than those extracted using CT.

Higher classification accuracy could be achieved with a single
GLCM parameter than CT, and GLCM could achieve high
accuracy with fewer parameters than CT when using multiple
parameters. Meanwhile, GLCM requires less computational
cost. GLCM is a more appropriate assay method than CT for
cell-scattered images.

2 Materials and Methods

2.1 Reconstructed Cell Three-Dimensional Structure
and Refractive Index Model

The reconstructed cell three-dimensional (3-D) structures were
acquired using a laser scanning confocal microscope (LSM510,
Zeiss, Germany). Cells were stained with two fluorescent dyes,
Syto 61 and Mito Tracker Orange CMTMRos (S11343 and M-
7510, Life Technologies), using the same protocol as described
in previous papers.6,12 Syto 61 marks the nucleic acids mainly
distributed inside the nucleus, and Mito Tracker Orange
CMTMRos mostly adheres to mitochondria. Stimulated by two
laser beams with wavelengths of 633 and 532 nm, two 12-bit
fluorescent intensity images of the nucleus and mitochondria
were saved in the red and green channels, respectively, of an
image stack with a resolution of 0.07 μm in the X- and Y-direc-
tions and 0.5 μm in the Z-direction as FrðrÞ and FgðrÞ, where r
is the voxel position inside the cell. Approximately 60 slices
were acquired for each cell at different focal planes with a step
size of 0.5 μm in one stack. Figure 1(a) shows some images at
different focal planes of one normal human prostate epithelial
cell, termed PCS (PCS440010, ATCC).

After acquisition, the confocal image stack was processed
with in-house software. The cell was segmented into three
regions, nucleus, mitochondria, and cytoplasm, which were
denoted as Ωn;Ωm, and Ωc, respectively. Ωn was further divided
into three subregions denoted as Ωnl, Ωnm, and Ωnh with*Address all correspondence to: Yu Sa, E-mail: sayu@tju.edu.cn
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relatively low, medium, and high RIs according to their pixel
intensities, respectively; larger intensity means more nucleic
acids, which should have a larger RI. To achieve accurate simu-
lated diffraction images, cell 3-D structures should have the
same resolution in all three directions. Thus, interpolation
between confocal slices was performed. As Amsterdam discrete
dipole approximation (ADDA) code treated scatterer as an array
of voxel that has the same size in three directions, equal reso-
lution in three dimensions is also necessary for accurate simu-
lation. Because of the different resolution of confocal images
between different directions, 0.07 μm in X and Y and 0.5 μm
in Z, the 3-D cell structures were interpolated in Z direction
to obtain the same resolution as in X- and Y-directions, and
the precise cell structure used for ADDA code. Details of seg-
mentation and interpolation have been described elsewhere.12,14

The reconstructed 3-D cell structure is shown in Fig. 1(b) in
which the nucleus, mitochondria, and cytoplasm can be clearly
observed.

Because of the heterogeneity between and inside organelles,
the cell RIs were modeled as the sum of a constant term, a mean
RI value with a specific value in a specific region, and a ran-
domly fluctuating term that indicates the heterogeneity inside
organelle as follows:

EQ-TARGET;temp:intralink-;e001;63;287nαðrÞ ¼ nα0 þ ðnα0 − nwÞ · Aα · RND; ∀ r ∈ Ωα; (1)

where α ¼ c;m; nl; nm, or nh, which indicates the region or sub-
region, nα0 is the mean value of RI in the region of Ωα; nw is the
RI of water, Aα is the fluctuation amplitude, and RND denotes
random numbers uniformly distributed in [−1;1]. To simulate
the heterogeneity inside organelle and distinguish different
organelles, Aα was set to 10% in this paper, which gave every
organelle an independent RI range. Combining reconstructed
cell 3-D structures with RI, a cell model was obtained. By vary-
ing RI or modifying the cell structure, a series of cell models
was derived from one confocal stack.

2.2 Simulation of p-SIs Using a Cell Model

To obtain the scattered light distribution of a cell model in a host
medium, an open source code of a parallel ADDA algorithm for
discrete dipole approximation was applied to simulate angularly
resolved Mueller matrixes Sij where i; j ¼ 1;2; 3;4.11,21 The cell
model was divided into several voxels in three directions, and

each voxel was treated as a dipole. For example, the PCS cell
mentioned above was treated as a 116 × 110 × 86 dipole array,
and the number of dipoles per wavelength used for this cell was
3.8. Sij were calculated from all fields scattered by these dipoles
that were excited by an incident light. With the incident wave-
length of 532 nm and RI of host media (water) nw ¼ 1.334,
the polarizabilities could be calculated. ADDA code could be
executed on a parallel computing cluster to calculate Mueller
matrixes (Sij), which are functions of scattering polar angles
(θ;ϕ). Mie theory was used to validate ADDA code with a
10-μm sphere, which was represented by a 126 × 126 × 126

dipole array, and the number of dipoles per wavelength was
10.08. The normalized S11 calculated by Mie theory and ADDA
are shown in Fig. 2(a). The absolute error and relative error
between ADDA and Mie theory S11 are shown in Fig. 2(b).

The configuration of the simulation system is shown in
Fig. 3(a). First, the scattered light was projected onto an
input plane Pin, which is an arbitrary plane defined between
the scatterer and the objective to obtain an input p-SI denoted
as Iin−klðy; zÞ used for the simulation process. Iin−klðy; zÞ was
obtained using a linear combination of Mueller matrix elements,
which carry the spatial distribution of scattered light for specific
scattered polarization k ¼ p or s and incident polarization
l ¼ p; s, or 45 deg. A total of three pairs of input p-SI were
obtained with three types of incident polarizations. For example,
the input p-SI Iin−klðy; zÞ of scattered polarization p and incident
polarization p was calculated by

EQ-TARGET;temp:intralink-;e002;326;243Iin−ppðy; zÞ ¼ S11 þ S12 þ S21 þ S22: (2)

Other equations of different polarizations can be found in
Refs. 8 and 22.

A ray-tracing software program (Zemax-EE v2005, Zemax
Development Corp.) was used to trace the rays of input p-SI
Iin−klðy; zÞ at the input plane Pin to the imaging unit at image
plane Pim and obtain the p-SI Iklðy; zÞ at Pim, which is the
conjugate image of the object plane at defocus position
x ¼ 150 μm. Simulated p-SIs Iklðy; zÞ are similar to the mea-
sured images obtained in our cell-scattered image measurement
experiments with a microscope objective as indicated by
their similar GLCM parameter distribution ranges (shown in
Table 1). Some examples of simulated p-SI Iin−klðy; zÞ and
Iklðy; zÞ and measured p-SI are shown in Figs. 3(b) and 3(c).

Fig. 1 PCS cell confocal images (a) typical confocal images of a PCS cell stackmarked by the slice index
at the upper left corner, (b) a section of the cell morphology reconstructed from (a); dark blue, green, and
light blue represent the external surfaces of cell membrane, nucleus, and mitochondria, respectively.
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2.3 Analysis of Simulated p-SI with CT

CT is an algorithm that combines the merits of wavelet
transform and directional filter banks. It can decompose
the image into multiple subimages with different scales γ ¼
1;2; 3; : : : ; γmax and directions δ ¼ 1;2; 3; : : : ; δmax, which
enable simultaneous analysis of p-SI information at different
scales and directions in the frequency domain. First, Iklðy; zÞ,
denoted as Ikl;0−0ðy; zÞ, which can be treated as the low-pass
image with overview information in scale 0, is processed by

the Laplacian pyramid algorithm. Iklðy; zÞ is down-sampled
by a weighted smoothing filter, so a low-pass image denoted
as Ikl;1−0ðy; zÞ is acquired, carrying the overview information
of Ikl;0−0ðy; zÞ in scale 1. The bandpass image Ikl;1−dðy; zÞ is
then obtained by the difference of Ikl;0−0ðy; zÞ and the up-
sampled images of Ikl;1−0ðy; zÞ. By repeating this procedure
on low-pass images in each scale, a series of low-pass and
bandpass images are acquired at different scales denoted as
Ikl;γ−0ðy; zÞ and Ikl;γ−dðy; zÞ, respectively, with overview and

Fig. 3 System setup and scattered images: (a) the configuration of the ADDA simulation system,
(b) representative scattered images simulated from the cell in Fig. 1(b) by ADDA: the first column
contains p-SIs at the input plane with the field of view indicated with the rectangle, and the second
column contains p-SIs at the image plane; (c) three experimental cell-scattered images.

Table 1 Distribution range of GLCM parameter for simulated and measured images.

SVAp45 SENp45 MEAp45 SVAs45 SENs45 MEAs45

Simulated images 46.24� 8.09 4.80� 0.18 23.12� 4.04 47.50� 12.19 4.56� 0.38 23.74� 6.09

Measured images 43.51� 12.77 4.60� 0.40 21.75� 6.39 54.39� 15.38 4.85� 0.30 27.19� 7.69

Fig. 2 Validation of ADDA by Mie theory: (a) Mie theory S11 with blue line and ADDA S11 with red line for
10-μm sphere in common logarithm coordinates (b) absolute error and relative error between Mie theory
S11 and ADDA S11 for 10-μm sphere.
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detail information, where γ is the scale index. Second, bandpass
images Ikl;γ−dðy; zÞ are processed by directional filter banks.
Ikl;γ−dðy; zÞ is decomposed into several directional images
denoted as Ikl;γ−δðy; zÞ where δ ¼ 1;2; 3; : : : ; δmax, which con-
tain the detail information in specific directions. This report
used γmax ¼ 5 and δmax ¼ 23 for scales1–4 and δmax ¼ 22 for
scale 5. In this study, 41 low-pass and bandpass subimages
were obtained from one simulated p-SI, and 12 parameters
were calculated from each subimage. These parameters were
then tested by some stripe images with different periods or
directions. The results showed that four of these 12 parameters
varied significantly among the 41 subimages. Thus, these four
parameters were chosen to characterize subimages, and the
parameters energy E, contrast C, variance V, and fluctuation
F were defined as
EQ-TARGET;temp:intralink-;e003;63;584

Ekl;γ−δ ¼
XNy

y¼1

XNz

z¼1

I 0kl;γ−δðy; zÞ2

Ckl;γ−δ ¼
XNy

y¼1

XNz

z¼1

SLCkl;γ−δðy; zÞ
4NyNz − 2ðNy þ NzÞ

Vkl;γ−δ ¼
1

NyNz − 1

XNy

y¼1

XNz

z¼1

½I 0kl;γ−δðy; zÞ − AVEkl;γ−δ�2

Fkl;γ−δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Vkl;γ−δ

p

AVEkl;γ−δ
; (3)

where k indicates the polarization of scattered light from cells;
l indicates the polarization of incident light; Ny and Nz are the
pixel numbers of CT image Ikl;γ−δðy; zÞ in y- and z-directions,
respectively; and squared local contrast SLC and mean value
AVE are defined as
EQ-TARGET;temp:intralink-;e004;63;370

SLCkl;γ−δðy; zÞ ¼
X

i¼−1;1
f½I 0kl;γ−δðyþ i; zÞ − I 0kl;γ−δðy; zÞ�2

þ ½I 0kl;γ−δðy; zþ iÞ − I 0kl;γ−δðy; zÞ�2g

AVEkl;γ−δ ¼
1

NyNz

XNy

y¼1

XNz

z¼1

I 0kl;γ−δðy; zÞ: (4)

2.4 Analysis of Simulated p-SI with GLCM

GLCM is an image texture-analyzing algorithm based on
the occurrence probability of gray level pairs. GLCM can be
used to describe the orientation, amplitude, and period informa-
tion of an image texture.19,20 First, the GLCMs Pði; j; d;ψÞ are
calculated by the numbers of repetitive pixel pairs (i; j) in the
p-SI Iklðy; zÞ, which have an assigned distance d at an assigned
angle ψ with intensities i and j where i; j ¼ 1;2; 3; : : : ; G,
G is the maximum intensity, d can be any integer smaller
than the image size, and ψ can be 0 deg, 45 deg, 90 deg, or
135 deg. Then, the normalized GLCMs pði; j; d;ψÞ are obtained
by normalizing Pði; j; d;ψÞ with the number of total pixel
pairs. To study adjacent pixels, pixel pair distance d was set
to 1, and four normalized GLCMs pði; j; d;ψÞ could be termed
as pði; j;ψÞ with ψ ¼ 0 deg, 45 deg, 90 deg, and 135 deg. A
total of 17 texture parameters (correlation COR, dissimilarity
DIS, contrast CON, inverse difference moment IDM, entropy
ENT, sum entropy SEN, difference entropy DEN, angular

second moment ASM, variance VAR, sum variance SVA, differ-
ence variance DVA, mean MEA, sum average SAV, cluster
shade CLS, cluster prominence CLP,23 maximum probability
MAP, and minimum probability MIP) were extracted from
each GLCM to characterize p-SI Iklðy; zÞ, defined as follows:

EQ-TARGET;temp:intralink-;e005;326;697

CORkl;ψ ¼ 1

σxσy

XG−1

i¼0

XG−1

j¼0

ðijÞpði; j;ψÞ − μxðψÞμyðψÞ

DISkl;ψ ¼
XG−1

i¼0

XG−1

j¼0

ji − jjpði; j;ψÞ

CONkl;ψ ¼
XG−1

i¼0

XG−1

j¼0

ði − jÞ2pði; j;ψÞ

IDMkl;ψ ¼
XG−1

i¼0

XG−1

j¼0

1

1þ ði − jÞ2 pði; j;ψÞ

ENTkl;ψ ¼ −
XG−1

i¼0

XG−1

j¼0

pði; j;ψÞ · log½pði; j;ψÞ�

SENkl;ψ ¼ −
X2 G−2

h¼0

pxþyðh;ψÞ · log½pxþyðh;ψÞ�

DENkl;ψ ¼ −
XG−1

h¼0

px−yðh;ψÞ · log½px−yðh;ψÞ�

ASMkl;ψ ¼
XG−1

i¼0

XG−1

j¼0

½pði; j;ψÞ�2

VARkl;ψ ¼
XG−1

i¼0

XG−1

j¼0

½i − μðψÞ�2pði; j;ψÞ

SVAkl;ψ ¼
X2 G−2

h¼0

ðh − SENkl;ψÞ2pxþyðh;ψÞ

DVAkl;ψ ¼ 1

G − 1

XG−1

h¼0

½px−yðh;ψÞ − p̄x−yðψÞ�2

MEAkl;ψ ¼
XG−1

i¼0

i
XG−1

j¼0

pði; j;ψÞ ¼ μxðψÞ

SAVkl;ψ ¼
X2 G−2

h¼0

kpxþyðh;ψÞ

CLSkl;ψ ¼
XG−1

i¼0

XG−1

j¼0

½iþ j − 2μðψÞ�3pði; j;ψÞ

CLPkl;ψ ¼
XG−1

i¼0

XG−1

j¼0

½iþ j − 2μðψÞ�4pði; j;ψÞ

MIPkl;ψ ¼ min½pði; j;ψÞ�
MAPkl;ψ ¼ max½pði; j;ψÞ�; (5)

where k indicates the polarization of scattered light from cells,
l indicates the polarization of incident light, pði; j;ψÞ are the
normalized GLCMs of p-SI Iklðy; zÞ, G is the maximum gray
level of p-SI Iklðy; zÞ, H and W are the height and width of
p-SI Iklðy; zÞ, respectively, and
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EQ-TARGET;temp:intralink-;e006;63;586

pxði;ψÞ ¼
XG−1

j¼0

pði; j;ψÞ

pyðj;ψÞ ¼
XG−1

i¼0

pði; j;ψÞ

pxþyðh;ψÞ ¼
XG−1

i¼0

XG−1

j¼0

iþj¼h

pði; j;ψÞ

px−yðh;ψÞ ¼
XG−1

i¼0

XG−1

j¼0

ji−jj¼h

pði; j;ψÞ

μxðψÞ ¼
XG−1

i¼0

ipxði;ψÞ

μyðψÞ ¼
XG−1

j¼0

jpyðj;ψÞ

σxðψÞ2 ¼
XG−1

i¼0

½pxði;ψÞ − μxðψÞ�2

σyðψÞ2 ¼
XG−1

j¼0

½pyðj;ψÞ − μyðψÞ�2

μðψÞ ¼ μxðψÞ ¼ μyðψÞ. (6)

To combine the four-directional characteristic of p-SI
Iklðy; zÞ, the average of these 17 parameters over four directions
was calculated and denoted as CORkl, DISkl, CONkl, IDMkl,
ENTkl, SENkl, DENkl, ASMkl, VARkl, SVAkl, DVAkl, MEAkl,
SAVkl, CLSkl, CLPkl, MAPkl, and MIPkl. Together with three
other parameters, strength STRkl, mass-z MSZkl, and mass-y
MSYkl, a total of 20 parameters were used to characterize
one p-SI

EQ-TARGET;temp:intralink-;e007;63;177

STRkl ¼
XH

y¼1

XW

z¼1

Iklðy; zÞ;

MSZkl ¼
1

STRkl

XH

y¼1

XW

z¼1

Iklðy; zÞ × z;

MSYkl ¼
1

STRkl

XH

y¼1

XW

z¼1

Iklðy; zÞ × y: (7)

3 Results

3.1 Simulated p-SIs

Erosion and dilation of three pixels of the mitochondria regions
inside the cell for each slice, including the interpolated ones,
generated two new virtual cell models, denoted as PCS−3 and
PCS3, whereas the original one was denoted as PCS0; these
models are shown in Figs. 4(a), 4(b), and 4(c), respectively.
The morphology parameters of PCS−3, PCS0, and PCS3 are
shown in Table 2. Furthermore, three virtual cell models
of a human prostate cancer cell termed PC3 (CRL-1435,
ATCC) were also derived, which are denoted as PC3−3, PC30,
and PC33.

To eliminate the influence of cell orientation, 26 cell
orientations, which could be treated as 26 virtual cells, were
employed in the three virtual cell models described above by
rotating the original one by specific Euler angles, which were
uniformly distributed over the 4π solid angle range. Six sets
of virtual cells with different mitochondria volume ratios were
used to execute ADDA simulation. The actual RI of mitochon-
dria could not be precisely measured. Several RI models have
been tested for simulated images and these simulated images
were compared with experimental images by GLCM parame-
ters. Then, two of these RI models Na and Nb that yielded
simulated images similar to experimental images were used
in the simulation process to study the influence of mitochondria
RI for diffraction images. Two sets of diffraction images were
simulated with the same cell structure and the two RI models
Na and Nb. The RI mean values and standard deviations for
cell organelles of RI models Na and Nb used by ADDA are
shown in Table 3.

For each cell model, each orientation and each RI, six p-SIs
Iklðy; zÞ were simulated with different polarizations. Figure 5

Fig. 4 Reconstructed cell structures: (a) a section of the reconstructed cell morphology with erodedmito-
chondria by 3 pixels, (b) a section of the reconstructed cell morphology with original mitochondria, and
(c) a section of the reconstructed cell morphology with dilated mitochondria by 3 pixels.

Table 2 Morphology parameters of cell models.

Cell model V c
a (μm3) Vm

a (μm3) Rmc
a (%)

PCS−3 1392 54 3.88

PCS0 149 10.70

PCS3 279 20.04

aV c is the volume of the cell, Vm is the volume of the mitochondria,
and Rmc is the volume ratio of the mitochondria.
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shows some simulated images with different cell structures,
orientations, and RI models.

3.2 Classification Results for Simulated p-SIs Using
CT and GLCM

For one p-SI pair with the same incident polarization and two
scattered polarizations as described above, 82 subimages and
four types of parameters were calculated for one subimage,
so a total of 328 parameters were extracted to characterize
one p-SI pair. Because too many parameters for just one p-SI
pair consume a large amount of computational time, they were
divided into four sets C;E; F, and V of 82 parameters to be
analyzed separately. Simulated p-SIs with the same RI of Nb;
different cell models—PCS0 versus PCS3, PCS−3 versus PCS3
and PCS3 versus PC33—and the same cell model PCS0; and
different RIs—Na versus Nb—illuminated by a 532 nm wave-
length laser with polarizations p; s, or 45 deg were classified
by an SVM algorithm24,25 with four different kernel functions:
linear (Lin), polynomial (Pol), sigmoid (Sig), and radial basis
functions (Rbf). The sample size for every simulated p-SI set
was 26. Given the small sample size of simulated diffraction
images, all samples were used as training sets and no test
process was performed. The goal of this study was to test the
ability of CT and GLCM for characterizing cell diffraction
images. Thus, the SVM was used only to achieve classification
accuracy.

The brief classification results are shown in Table 4. All four
sets of classification could achieve very high classification

accuracy A, greater than 98%, which was the ratio of the cor-
rectly classified p-SI number to the total p-SI number. This
result shows that E parameters could result in better perfor-
mance with a larger A for each set than the other parameters.
The three highest classification accuracy levels indicated by
larger A values with a single E parameter corresponding to the
classification results in Table 4 with E parameters are shown
in Fig. 6.

With a specific incident polarization k, a total of 40 GLCM
features were applied to characterize one p-SI pair described
above. The same four sets of p-SIs were classified by SVM
with four of kernel functions. All four sets of classification
results could also achieve very high classification accuracy A,
greater than 98%, as shown in Table 5. The three highest
classification accuracy levels indicated by larger A values with
a single GLCM parameter corresponding to the results in
Table 5 are shown in Fig. 6.

3.3 Classification Results for Experimental p-SIs
Using CT and GLCM

Three sets of experimental PCS and PC3 cell images were also
analyzed and classified as simulated images. The experimental
cell image sample size is shown in Table 6. As with the simu-
lated images, all samples are used as training sets.

Tables 7 and 8 show the classification results of experimen-
tal cell images with CT and GLCM features. Both CT and
GLCM algorithms can also achieve high classification accuracy
with experimental cell images. As with the simulated results,

Table 3 RI models of cell models.

RI nc
a nnl

a nnm
a nnh

a nm
a

Na 1.3675� 0.0019 1.4183� 0.0049 1.4692� 0.0078 1.5200� 0.0107 1.4200� 0.0050

Nb 1.5534� 0.0127

anc, nnl, nnm, nnh, and nm are the mean value and standard deviation of the RIs in regions Ωc, Ωnl, Ωnm, Ωnh, and Ωm, respectively.

Fig. 5 p-SI of different cell models: columns (a), (b), (c), and (d) were p-SIs of original cell morphology
with RI model Na, original cell morphology with RI model Nb, eroded mitochondria cell morphology
with RI model Nb, and dilated mitochondria cell morphology with RI model Nb, respectively.
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E parameters resulted in better performance with a larger
A than the other parameters. The three highest classification
accuracy levels indicated by larger A values with a single E
parameter corresponding to the classification results in Table 7
with E parameters and a single GLCM parameter corresponding
to the results in Table 8 are shown in Fig. 7.

4 Discussion
The actual variation of mitochondria volume change by erosion
or dilation was obtained by replacing the mitochondria RIs of
eroded regions with cytoplasm RIs or setting the dilated regions
with mitochondria RIs instead of cytoplasm RIs. Thus, volume
change essentially reflects local RI change. Visually, it is clear

Table 4 The SVM classification accuracy of different cell models or RIs with CT parameters.

Cell models RI Pa (A, Np, kernel)-p
b (A, Np, kernel)-s

b (A, Np, kernel)-45 degb

PCS0 versus PCS3 Nb C 100%, 50, Lin 96.15%, 23, Lin 100%, 8, Lin

E 98.08%, 39, Lin 100%, 22, Lin 98.08%, 16, Lin

F 88.46%, 22, Sig 86.54%, 28, Lin 84.62%, 7, Lin

V 94.23%, 3, Lin 90.38%, 33, Sig 90.38%, 8, Lin

PCS−3 versus PCS3 Nb C 98.08%, 7, Lin 96.15%, 6, Sig 98.08%, 3, Lin

E 98.08%, 63, Lin 96.15%, 13, Sig 94.23%, 20, Lin

F 88.46%, 44, Rbf 88.46%, 38, Lin 78.85%, 14, Lin

V 96.15%, 60, Pol 90.38%, 15, Rbf 88.46%, 24, Pol

PCS0 Na versus Nb C 88.46%, 11, Lin 84.62%, 28, Lin 90.38%, 17, Lin

E 98.08%, 20, Lin 94.23%, 77, Lin 96.15%, 43, Lin

F 76.92%, 32, Lin 78.85%, 7, Lin 76.92%, 24, Lin

V 88.46%, 31, Lin 82.69%, 14, Sig 80.77%, 8, Sig

PCS3 versus PC33 Nb C 100%, 3, Lin 100%, 5, Lin 100%, 4, Lin

E 98.08%, 18, Lin 96.15%, 7, Lin 98.08%, 9, Rbf

F 92.31%, 25, Lin 88.46%, 48, Lin 82.69%, 12, Lin

V 100%, 14, Lin 94.23%, 17, Lin 96.15%, 9, Sig

aP indicates the CT parameters used for SVM C;E; F , or V .
bThe classification accuracy A of incident polarization p; s, and 45 deg with parameter numbers Np and the kernel function used in SVM.

Fig. 6 The three highest classification accuracy levels indicated by larger A values with a single E
parameter corresponding to the classification results in Table 4 with E parameters in blue lines and
single GLCM parameter corresponding to Table 5 in red lines.
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that a change in mitochondria volume or RI greatly influences
the p-SIs. The diffraction images have larger spots with larger
RIs or more mitochondria as shown in Fig. 5. Therefore,
changes in cell RIs can be studied by analyzing corresponding
p-SIs. In this report, two algorithms, CT and GLCM, were
applied to analyze the simulated p-SIs, which have different
mitochondria volumes or different mitochondria RIs, and exper-
imental cell images. The results showed that both CT and
GLCM algorithms could precisely classify the same simulated
and experimental p-SI sets with high accuracy, demonstrating
that both parameters extracted by these two methods can be
used to characterize and analyze p-SIs.

CT yielded more parameters than GLCM for a single p-SI
and GLCM achieved larger classification accuracy Awith a sin-
gle parameter as compared with the CT method, indicating that
the parameters extracted by GLCM contain more information
and are more efficient to describe both the simulated and exper-
imental p-SI as shown in Figs. 6 and 7. CT has disintegrated
the original p-SI into 41 subimages, which generate only very
few features of the original p-SI in one subimage. Therefore,
even though CT extracts many subimages and parameters, this
process did not significantly improve the performance of p-SI

analysis. A previous study also showed that the CT subimages
carry more information at coarse scales γ ≥ 3 of p-SI patterns
than the fine scales γ ¼ 1 or 2, and the former perform better
than the latter in SVM classification. Meanwhile, a long period
of time is needed for the calculation of these subimages and
parameters.14 CT consumed about 10 times computational cost
than GLCM for both feature calculation and SVM classification.
Therefore, the GLCM algorithm should be more suitable and
efficient for analysis of cell p-SIs. GLCM coupled with cell-
scattered images establishes a new rapid method that will benefit
cell basic research including cell assay and cell structure studies.

Although diffraction images with different mitochondria RIs
or volumes can be classified by the SVM algorithm, it is only
suitable for binary situations. By using SVM multiple times and
establishing a database with various types of cells, diffraction
images provide opportunities for the development of fast and
label-free cell assay methods in the future.

Since cell diffraction images mainly contain relatively low
frequency information, and many subimages and parameters
obtained by CT reflect relative high frequency information of
the analyzed images, CT should be more appropriate for
analyzing images with rich frequency information.

Table 5 The SVM classification accuracy of different cell models or RIs with GLCM parameters.

Cell model RI (A, Np, kernel)-p
a (A, Np, kernel)-s

a (A, Np, kernel)-45 dega

PCS0 versus PCS3 Nb 98.08%, 2, Lin 100%, 32, Rbf 100%, 26, Lin

PCS−3 versus PCS3 Nb 96.15%, 34, Pol 96.15%, 19, Lin 98.08%, 25, Pol

PCS0 Na versus Nb 98.08%, 25, Lin 94.23%, 2, Rbf 96.15%, 38, Pol

PCS3 versus PC33 Nb 98.08%, 30, Lin 98.08%, 2, Pol 96.15%, 3, Rbf

aThe classification accuracy A of incident polarization p; s, and 45 deg with parameter numbers Np and the kernel function used in SVM.

Table 6 Experimental sample size of cell images used for SVM.

Cell model

Sample size

p s 45 deg

PCS 602 407 390

PC3 731 733 794

Table 7 The SVM classification accuracy of experimental PCS and PC3 cells with CT parameters.

Cell type Pa (A, Np, kernel)-P
b (A, Np, kernel)-s

b (A, Np, kernel)-45 degb

PCS versus PC3 C 97.97%, 79, Lin 96.23%, 56, Lin 78.80%, 79, Lin

E 98.50%, 78, Lin 97.81%, 69, Pol 86.15%, 82, Lin

F 97.45%, 79, Lin 93.60%, 36, Lin 80.15%, 61, Lin

V 97.75%, 75, Lin 95.09%, 45, Lin 78.12%, 54, Lin

aP indicates the CT parameters used for SVM C;E; F , or V .
bThe classification accuracy A of incident polarization p; s, and 45 deg with parameter numbers Np and the kernel function used in SVM.

Table 8 The SVM classification accuracy of experimental PCS and
PC3 cells with GLCM parameters.

Cell model (A, Np, kernel)-p
a (A, Np, kernel)-s

a
(A, Np, kernel)-
45 dega

PCS versus
PC3

100%, 40, Lin 98.68%, 19, Lin 88.68%, 29, Pol

aThe classification accuracy A of incident polarization p; s, and 45 deg
with parameter numbers Np and the kernel function used in SVM.

Journal of Biomedical Optics 086013-8 August 2016 • Vol. 21(8)

Zhang et al.: Comparison of contourlet transform and gray level co-occurrence matrix for analyzing cell-scattered patterns



5 Summary
This paper used virtual cell models reconstructed and interpo-
lated from confocal image stacks stained by two fluorescence
dyes to simulate polarization-scattered images with different
mitochondria volumes modified by erosion and dilation or
different mitochondria RIs. These simulated images were then
analyzed with two algorithms, CT and GLCM. The results show
that GLCM can carry more information than CT with the same
number of parameters. Analysis of experimental images yields
similar results as the simulated situation. GLCM is a more
suitable and efficient method for cell-scattered image analysis
than CT.
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Fig. 7 The three highest classification accuracy levels indicated by larger A values with a single E
parameter corresponding to the classification results in Table 7 with E parameters in blue lines and single
GLCM parameter corresponding to Table 8 in red lines.

Journal of Biomedical Optics 086013-9 August 2016 • Vol. 21(8)

Zhang et al.: Comparison of contourlet transform and gray level co-occurrence matrix for analyzing cell-scattered patterns

http://dx.doi.org/10.1016/j.cub.2006.06.054
http://dx.doi.org/10.1038/nphoton.2013.350
http://dx.doi.org/10.1364/BOE.3.000296
http://dx.doi.org/10.1117/1.429979
http://dx.doi.org/10.1364/OL.34.002985
http://dx.doi.org/10.1002/jbio.v2:8/9
http://dx.doi.org/10.1002/cyto.a.v83.11
http://dx.doi.org/10.1002/cyto.a.v85.9
http://dx.doi.org/10.1016/j.jqsrt.2006.02.075
http://dx.doi.org/10.1364/OE.22.031568
http://dx.doi.org/10.1016/j.jqsrt.2007.01.034
http://dx.doi.org/10.1016/j.jqsrt.2007.01.034
http://dx.doi.org/10.1039/c2ib20153d
http://dx.doi.org/10.1117/1.JBO.21.7.071102
http://dx.doi.org/10.1364/OE.24.000366
http://dx.doi.org/10.1109/TIP.2005.859376
http://dx.doi.org/10.1109/TIP.2005.859376
http://dx.doi.org/10.1109/TIP.2007.891785
http://dx.doi.org/10.1109/TIP.2006.873450
http://dx.doi.org/10.1016/j.neucom.2008.02.025
http://dx.doi.org/10.1109/PROC.1979.11328
http://dx.doi.org/10.1109/PROC.1979.11328
http://dx.doi.org/10.1109/TSMC.1973.4309314
http://dx.doi.org/10.1016/j.jqsrt.2011.01.031
http://dx.doi.org/10.1016/j.jqsrt.2011.01.031
http://dx.doi.org/10.1364/AO.54.005223
http://dx.doi.org/10.1364/AO.54.005223
http://dx.doi.org/10.1109/36.752194
http://dx.doi.org/10.1109/36.752194
http://dx.doi.org/10.1023/A:1009715923555
http://dx.doi.org/10.1145/1961189

