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Abstract. Red blood cell (RBC) anomalies are significant symptoms for identification of health disorders and
several blood diseases, which involve the modification of the parameters and biophysical characteristics of such
cells. The aim of this study is to measure the three-dimensional phase information of healthy RBCs and their
parameters, such as cell diameter, thickness, and hemoglobin (Hb) content, using Talbot-projected fringes. The
Talbot image of linear grating is projected onto an RBC slide. The deformed grating lines due to the shape and
refractive index of RBCs are recorded by a CCD camera through a 20×microscope objective. Hilbert transform is
used to extract the phase image from the deformed projected grating lines. Experimentally calculated values of
diameter (8.2 μm), thickness (2.7 μm), and Hb content (28.7 pg∕cell) are well within the limits available in
the literature. The proposed system is robust and user-friendly and performs the imaging of RBCs with high axial
and lateral resolution (2.19 μm). © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.22.10.106009]

Keywords: Talbot effect; self-imaging; red blood cell imaging; Hilbert transform.

Paper 170390R received Jun. 16, 2017; accepted for publication Sep. 22, 2017; published online Oct. 13, 2017.

1 Introduction
In recent decades, several optical quantitative phase imaging
techniques have been developed for biological cells, including
human red blood cell (RBC) imaging. These techniques are spa-
tial phase-shifting (e.g., Ref. 1), Fourier phase microscopy (e.g.,
Refs. 2 and 3), Hilbert phase microscopy (e.g., Ref. 4), digital
holographic microscopy (e.g., Ref. 5), diffraction phase micros-
copy (e.g., Ref. 6), etc. In these methods, coherent, monochro-
matic light source such as lasers are used to measure the
properties of biological cells. Because different properties of
the biological cells, for example, phase, refractive index, and
dry mass, are wavelength-dependent,7,8 some different interfero-
metric or microscopic techniques, such as spectroscopic phase
microscopy (e.g., Ref. 9), spectroscopic diffraction phase
microscopy (e.g., Ref. 10), quantitative dispersion microscopy
(e.g., Ref. 11), quantitative phase spectroscopy (e.g., Ref. 12),
and dynamic spectroscopic phase microscopy (e.g., Ref. 13),
etc., have been developed. In these techniques, multiple wave-
length lasers, color filter wheels, and a broadband source with
acousto-optic tunable filters are used to filter the multiple wave-
lengths and to determine the wavelength-dependent properties
of biological cells. However, all of these techniques are costly,
require complicated setups to align, need more optical compo-
nents, and involve many mechanical moving parts. Partially
coherent light (temporally low-coherent) sources such as a
white light source,14 superluminescent diode,15 and light-emit-
ting device8 are also used for biological cell imaging. Although
these (spectrally broad band) sources reduce the unwanted
speckle noise, they also require a dispersion compensation
mechanism for the dispersion correction. Furthermore, it is
not a good choice to use a spectrally broad light source if the
object or medium has an inhomogeneous spectral response.16

The fringe projection is a noncontact technique that can be
performed either with coherent or incoherent light, by illuminat-
ing the object with a fringe pattern generated by a binary or
sinusoidal grating. The advantages of using a binary fringe
pattern are—(1) simple: the coding and decoding algorithms
are very simple, (2) fast: because the processing algorithm
is very simple, it can reach very fast processing speeds, and
(3) robust: since only two levels are used, it is very robust to
the noise.17 The projection of a light pattern with a regular struc-
ture is a noncontact technique and easy to implement for meas-
uring the three-dimensional (3-D) profile of a biological cell,
which is decoded from the deformed fringe pattern recorded
on the object.18 The digital fringe projection technique based
on the Lau effect, Moiré method, Talbot effect has been used
for surface profiling and contouring of reflecting objects.17–20

If the Talbot image of grating is projected on the object, the sur-
face information is depth encoded in a deformed fringe pattern
by a carrier frequency corresponding to the grating frequency.21

This depth encoded shape information is obtained by the phase
extraction and image processing techniques.21–23 The Talbot-
projected fringe technique has been used for profiling an object
from the macroscopic (0.5 mm)22 to microscopic (11 μm)21

scales. Rodriguez-Vera et al.21 demonstrated the 3-D contouring
of diffuse objects for shape measurement using Talbot fringe
projection. Microscopic shape and deformation measurement,
calibration of microtopographic measurement system, and
vibration analysis at microscale, etc. have also been investigated
by the Talbot fringe projection method.22,23

In this paper, the microscopic 3-D imaging of RBCs is dem-
onstrated using the Talbot-projected fringes in transmission
mode. The phase information is extracted by Hilbert transform
(HT). HT is simple to implement, and phase information can be
extracted from deformed fringe patterns with a phase measure-
ment accuracy of λ∕25.24 It requires less computational time, as
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compared with other phase extraction methods, such as Fourier
transform, phase-shifting, etc.

2 Theory
The imaging of a periodic object without any imaging device
is known as the Talbot effect.25–27 For plane wave illumination
of a grating, behind periodic objects, at a distance ZT ¼
ka2∕λðk ¼ 2; 4; 6; 8; : : : Þ, Fresnel diffraction gives well-defined
images of periodic objects, known as Fourier images or Talbot
images/self-images, whereas the intermediate intensity distribu-
tion appearing between the Fourier image planes is a Fresnel
image.28,29 If these Talbot fringes (self-image) are projected
on an RBC slide, these fringes are deformed according to the
surface profile and refractive index of RBC.30 These deformed
Talbot-projected fringes or codified optical signals are recorded
by the CCD camera and used to decodify or extract the phase
information21 of RBCs.

The diffraction intensity distribution of the grating G1 at the
Talbot plane, after passing through the object (RBCs) is given
as31,32

EQ-TARGET;temp:intralink-;e001;63;531IðxÞ ¼ AðxÞ þ B cos

�
2πmx
a

þ ϕðxÞ
�
; (1)

where AðxÞ is the background intensity distribution, B is a con-
stant, m is the grating order, a is the period of grating, and ϕ is
the phase delay due to the presence of transparent phase
object (RBCs).

The object phase is extracted using HT. HT is a linear oper-
ator that takes a function and produces a function with a shift of
π∕2 in the same spatial domain. The imaginary part of the ana-
lytical signal can be practically generated by passing the original
signal through a “Hilbert transform.” A real function and its
Hilbert-transformed function are related to each other in such
a way that they together create an analytical signal, which can
be written with an amplitude and phase, and the derivative of
the phase can be identified as the instantaneous frequency.4,32,33

The background intensity must be eliminated prior to the
application of HT for retrieving the phase. To isolate the sinus-
oidal term and to eliminate the background intensity, Eq. (1) is
highpass filtered in the spatial domain. The filtered image can be
written as

EQ-TARGET;temp:intralink-;e002;63;292I 0ðxÞ ¼ B cos

�
2πmx
a

þ ϕðxÞ
�
: (2)

Now the HT of the filtered image is performed to get the
complex analytical signal associated with the real function
I 0ðxÞ. The complex analytical signal ZðxÞ is given by4,33

EQ-TARGET;temp:intralink-;e003;63;218ZðxÞ ¼ 1

2
fI 0ðxÞ þ iHT½I 0ðxÞ�g; (3)

where HT is the Hilbert transform.
The phase associated with ZðxÞ can be extracted as

EQ-TARGET;temp:intralink-;e004;63;155Δϕ ¼ arctan

�
HT½I 0ðxÞ�
I 0ðxÞ

�
: (4)

The complex analytical signal ZðxÞ exhibits rapid phase
modulation with spatial frequency 1∕a; thus, Δϕ is strongly
wrapped. Finally, the phase ϕðxÞ associated with the presence
of the object is extracted as4,32,33

EQ-TARGET;temp:intralink-;e005;326;752ϕðxÞ ¼ Δϕ − qðxÞ; where qðxÞ ¼ 2πm
a

: (5)

The wrapped phase, Δϕ, is unwrapped using the Goldstein
phase unwrapping algorithm.34

3 Experimental Setup
Figure 1 shows the schematic diagram of the experimental setup.
A light beam from a He–Ne laser of wavelength 632.8 nm is
expanded using a 40× microscope objective (NA ¼ 0.65) by
Melles Griot (model No. 160/017 40/0.65) and filtered by a pin-
hole of 5-μm diameter. A collimating lens of diameter 50 mm
and focal length 250 mm is employed to illuminate the grating
G1 (300 lines∕mm) by a collimated beam. The RBC slide is
placed at Talbot distance (ZT ) from the grating G1 (1.62 cm),
so the Talbot-projected fringes (self-image of grating) lie on the
RBC slide surface.

To increase the lateral resolution for RBC imaging, a micro-
scope objective (20×, NA ¼ 0.40) is placed such that the RBC
slide with Talbot-projected fringe image should be at the focus
of the microscope objective. A CCD camera is placed at a dis-
tance of 3.24 cm from the microscope objective to capture the
maximum field of view.

For preparing a blood slide for RBC imaging (RBC slide),
the blood samples were collected from the Indian Institute of
Technology (IIT) Delhi, Hospital Pathology Lab, and approved
by the responsible ethics committee of IIT Delhi, Hospital. The
blood is diluted by mixing 1 ml of blood with 10 ml of saline
solution (NaCl) in a test tube. One drop of this diluted blood is
placed at one end of a slide and is dispersed using another slide
over the slide’s length. The aim is to get a region, called a mono-
layer, in which the cells are spaced far enough apart to be
differentiated.

When a prepared RBC slide is inserted at the Talbot plane,
the Talbot-projected fringes get distorted. These distorted
Talbot-projected fringes, having the phase, refractive index,
and thickness information of RBCs, are recorded by a CCD
camera (Make—Lumenera Corporation, Model—Infinity3-
1M). The pixel size on the CCD sensor is 6.45 μm × 6.45 μm.
The total number of pixels is 1392 × 1040, and the sensor chip
dimension is 2∕3 00.

4 Results
HT is used for the evaluation of the phase map from the cap-
tured image.

Fig. 1 Schematic diagram of the experimental setup.
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Initially, the experiment is carried out using a USAF res-
olution test chart and polystyrene beads to know the resolu-
tion of the setup. A small portion of the USAF chart is
captured by a CCD camera using Talbot-projected fringes
and a self-imaging effect to know the lateral resolution of
setup. No other imaging optics are used for recording the

image. Figure 2(a) shows the recorded image of the USAF
resolution test chart with Talbot-projected fringes. The phase
image of the USAF resolution test chart is reconstructed
using HT. From the reconstructed wrapped phase image of
the test chart, the sixth element of the seventh group can
be easily seen in Fig. 2(b). This element corresponds to
228.1 line pairs∕mm (i.e., the width of one line is 2.19 μm
in the USAF resolution test target). From the line profile of
the unwrapped phase image shown in Fig. 2(c), drawn along
line AB marked in the Fig. 2(b), the observed value of one
pixel is ∼0.4 μm, which is used for the determination of the
lateral dimension of object RBCs under study.

To study the accuracy of the system in retrieving the phase
map and profiles, measurements are performed on polystyrene
microbeads of a known diameter of 10 μm. The polystyrene
beads are diluted in an index matching oil medium and placed
on the glass slide to prepare the polystyrene beads sample slide.
Figure 3(a) shows the recorded image of polystyrene beads, and
Fig. 3(b) shows the reconstructed 3-D unwrapped phase corre-
sponding to Fig. 3(a).

From the 3-D unwrapped phase map shown in Fig. 3(b), the
phase of selected polystyrene bead is 3.8 rad. The size of the
polystyrene bead is calculated by ϕðxÞ ¼ ð2π∕λÞðnp − nmÞd,
where ϕðxÞ is the phase in radian, d is the size of the polystyrene
bead, np is the refractive index of the polystyrene bead (1.59),
and nm is the refractive index of the index matching oil
medium (1.55).

The calculated size of the polystyrene bead is 9.57 μm. The
size of the polystyrene bead, according to the specification by
the supplier (10 μm) is closely related to the calculated value.

Figure 4(a) shows the 3-D thickness map of a polystyrene
bead, and Fig. 4(b) shows the thickness profile along line
AB as shown in Fig. 4(a).

To check the consistency of the results, the same procedure
was repeated with various polystyrene beads of the same size.
Figure 5 shows the unwrapped phase map and the calculated
thickness profile of selected polystyrene beads. The calculated
size of different polystyrene beads as shown in Fig. 5 is 10.9,
9.4, 10.3, 10.1, and 9.7 μm. The experimentally calculated
size of polystyrene beads shows a standard deviation (SD) of
0.32 μm from the mean value of 9.96 μm. The results are
quite consistent with the size of these beads given by the sup-
plier. The percentage error between the experimentally calcu-
lated size of polystyrene beads (average size 9.96 μm with
SD 0.32) and the supplier specification (10 μm) is 0.4%.

A preliminary experiment is conducted on RBCs to ascertain
the phase map and the viability of this technique for biological

Fig. 2 USAF resolution test chart. (a) Recorded image, (b) recon-
structed wrapped phase image, and (c) line profile along line AB
on unwrapped phase image.

Fig. 3 Polystyrene beads. (a) Recorded image and (b) 3-D
unwrapped phase.

Fig. 4 (a) 3-D thickness map of polystyrene bead and (b) thickness profile along line AB.
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Fig. 5 3-D unwrapped phase map and the calculated thickness profile corresponding to selected beads.

Fig. 6 (a) Recorded image, (b) 2-D wrapped phase of RBC, and (c) 3-D unwrapped phase of RBC.

Fig. 7 Phase image: (a) 2-D unwrapped phase of selected portion and (b) 3-D unwrapped phase of RBC.
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cells. Figure 6(a) shows the recorded image of the RBCs. The
phase information is obtained by the application of HT using
Eq. (4). Figure 6(b) shows the wrapped phase, and Fig. 6(c)
shows the 3-D unwrapped phase map corresponding to

Fig. 6(a). The obtained phase map is wrapped between 0 and
2π. This 2π phase discontinuity is removed using the
Goldstein phase unwrapping algorithm.34 Figures 7(a) and 7(b)
show the two-dimensional (2-D) unwrapped phase map and 3-D

Fig. 8 (a) 3-D unwrapped phase of single RBC and (b) 2-D unwrapped phase profile.

Fig. 9 3-D unwrapped phase map and obtained diameter of RBCs.
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unwrapped phase map of selected RBCs from Fig. 6(b) (shown
in circle), respectively.

Figure 8(a) shows the unwrapped phase map of a single RBC
selected from Fig. 7(b), and Fig. 8(b) shows the phase profile with
respect to position in μm (RBC diameter), obtained by drawing
a line profile on phase map along line AB. The experimentally
calculated value of the selected RBC diameter is ≈8.2 μm.

The experiment was repeated for several RBCs. The
unwrapped phase map of RBCs as shown in Fig. 6(c) was
used to calculate the diameter of various RBCs. Figure (9)
shows the unwrapped phase map and diameter of RBCs
obtained by drawing a line profile on the phase image of various
selected RBCs. The calculated diameter of different RBCs as
shown in Fig. 9 is 6.8, 7.3, 8.1, 8.3, and 7.8 μm.

The mean value of the experimentally calculated diameter is
found to be 7.6 μm with SD 1.21 μm, which is in good agree-
ment with the value available in the literature.35,36

The phase information retrieved by the proposed method can
be expeditiously translated into thickness information, which in
turn can be utilized to measure other relevant morphological
parameters, such as cell shape and volume. As we know, the
refractive index of biological cells is a vital parameter for deter-
mining the thickness and hemoglobin (Hb) concentration in
RBC. The thickness of the human RBC can be calculated
using the following equation:

EQ-TARGET;temp:intralink-;e006;63;477t ¼ λ

2πðnRBC − nmÞ
ϕðxÞ; (6)

where λ is the wavelength of laser light, ϕðxÞ is the optical
phase, nRBC is the refractive index of a healthy RBC, nm is
the refractive index of medium, and t is the geometrical thick-
ness of RBC. The refractive index of saline water for He–Ne
laser wavelengths (632.8 nm) is 1.331, and the value of the
refractive index of a healthy RBC is 1.394, as reported in the
literature.37,38 The calculated value of the RBC thickness is
≈2.7 μm, which is in good agreement with the value available
in the literature.35,39 Figure 10(a) shows the 3-D thickness map
of RBC, and Fig. 10(b) shows the thickness profile along line
AB as shown in Fig. 10(a).

Hb content measures the amount of protein present in one
RBC. For the measurement of the Hb content, the measured
2-D phase at the normal angle was used. The Hb content of
an RBC is given as40,41

EQ-TARGET;temp:intralink-;e007;326;587Hb content ¼ λ

2πα

X
ϕðxÞ; (7)

where α is the refractive index increment (assuming average
α ¼ 0.2 ml∕g)40–42 and

P
ϕðxÞ is the 2-D optical phase inte-

grated over the entire cell area. The term
P

ϕðxÞ is calculated
by multiplying the phase ϕðxÞ to the projected cell area (shape
of the RBC is considered circular), so fewer errors are involved
in assessing the phase value over a small area.40 The calculated
mean value of the Hb content is ∼28.7 pg∕cell.40,41 Figure 11
shows the 2-D and 3-D Hb contents of one RBC.

Fig. 10 (a) 3-D thickness map of RBC and (b) thickness profile along line AB.

Fig. 11 Hemoglobin content of RBC: (a) 2-D and (b) 3-D.
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In addition, the Hb concentration in an RBC can also be
obtained from the Hb content divided by the cellular volume.

5 Conclusion
We have presented a simple and low-cost, quantitative phase
measurement technique for 3-D microscopic imaging of
RBCs using the Talbot-projected fringes of a linear grating.
The present method will open possibilities for diagnosing dis-
eases as well as studying the pathophysiology of human RBCs.
In addition, the stability of the proposed system from environ-
mental perturbation due to its common-path geometry as well
as its compactness and portability give it a high potential for
clinical applications.
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