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Introduction

Abstract. Tomographic phase microscopy (TPM) is a unique imaging modality to measure the three-dimen-
sional refractive index distribution of transparent and semitransparent samples. However, the requirement of
the dense sampling in a large range of incident angles restricts its temporal resolution and prevents its appli-
cation in dynamic scenes. Here, we propose a graphics processing unit-based implementation of a deep con-
volutional neural network to improve the performance of phase tomography, especially with much fewer incident
angles. As a loss function for the regularized TPM, the #;-norm sparsity constraint is introduced for both data-
fidelity term and gradient-domain regularizer in the multislice beam propagation model. We compare our method
with several state-of-the-art algorithms and obtain at least 14 dB improvement in signal-to-noise ratio.
Experimental results on HelLa cells are also shown with different levels of data reduction. © The Authors.
Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires
full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JB0.23.6.066003]
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and the limited sampling rates in Fourier domain. Both
intensity-coded and phase-coded structured illumination

Most biological samples such as live cells have low contrast
in intensity but exhibit strong phase contrast. Phase contrast
microscopy is then widely applied in various biomedical
imaging applications.! In the past decades, the development of
quantitative phase imaging®® gives rise to a label-free imaging
modality, tomographic phase microscopy (TPM), which deals
with the three-dimensional (3-D) refractive index distribution of
the sample.*® The label-free and noninvasive character makes
it attractive in biomedical imaging, especially for cultured
cells.”®

However, most of the current methods require around 50
quantitative phase images acquired at different angles®!! or dif-
ferent depths® for optical tomography. This speed limitation
greatly restricts its field of applications. For example, the differ-
ence of the refractive index may be blurred during the angular
(or axial) scanning when observing fast-evolving cell dynamics
or implementing high-throughput imaging cytometry.!! Another
challenge for TPM is the missing cone problem, which limits its
reconstruction performance, especially for limited axial resolu-
tion compared with the subnanometer optical-path-length
sensitivity. !>

To relieve the missing cone problem, many methods have
been developed for better signal-to-noise ratio (SNR) with
fewer images. Different regularizations such as the positivity
of the refractive index differences*!® and the sparsity in some
transform domain'*!> are added to an iterative reconstruction
framework based on the theory of diffraction tomography,'®!”
for reducing the artifacts induced by the missing cone problem

*Address all correspondence to: Qionghai Dai, E-mail: ghdai@tsinghua.edu.cn
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methods further promote the performance by their better multi-
plexing ability compared with conventional plane-wave
illumination.'®!* However, these methods suffer from the
great degradation when the scattering effects become significant
in the sample. The beam propagation method (BPM)* is then
applied in phase tomography to provide a more accurate
model by considering the nonlinear light propagation with
scattering.”"**> And the multislice propagation modeling is def-
initely similar to the neural network in the field of machine
learning.”*** By combining the nonlinear modeling and the
sparse constraint in the gradient domain, the Psaltis group
has validated the competitive capability of this learning
approach over conventional methods.?'** Despite its success
in modeling with £,-norm constraint, the current method is
still a preliminary network, especially compared with the
state-of-the-art deep learning frameworks,”” and the iterative
reconstruction is challenging to deploy in practice due to the
high computational cost and the difficulty of the hyperparameter
selection. More potential can be exploited in both optimization
algorithms and better network architectures.

In this paper, we propose a graphics processing unit (GPU)-
based implementation of a deep convolutional neural network
(CNN) to simulate the multislice beam propagation for TPM.
A loss function consisting of an Z|-norm data-fidelity term
and an 7;-norm gradient-domain regularizer is devised to
achieve higher reconstruction quality even with fewer training
data. To deal with the vast quantities of parameters and regular-
izers, we apply the adaptive moment estimation (Adam)
algorithm®® for optimization, which can also be regarded as
the training process of the CNN. Compared with previous
works using stochastic gradient descent,”>** our method ensures
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a faster convergence and a better robustness to the initial value.
Both simulation and experimental results on polystyrene beads,
and HeLa cells are shown to validate its reconstruction perfor-
mance. We anticipate that our work can not only boost the per-
formance of optical tomography, but also guide more
applications of deep learning in the optics field.

2 Materials and Methods

2.1 Experimental Setup

Figure 1 shows the schematic diagram of the experimental
setup. In our system,” the sample placed between two cover
glasses is illuminated sequentially at multiple angles and the
scattered light is holographically recorded. A laser beam
(A =561 nm) is split into sample and reference arms by the
first beam splitter. In the sample arm, a galvo mirror varies
the angle of illumination on the sample using the 4F system cre-
ated by L1 and OB1. The light transmitted through the sample is
imaged onto the CMOS camera via the 4F system created by
OB2 and L2. The beam splitter (BS2) recombines the sample
and reference laser beams, forming a hologram at the image
plane. The numerical apertures (NAs) of OB1 and OB2 are
1.45 and 1.4, respectively. For data acquisition, we capture
multiple tomographic phase images by near-plane-wave illumi-
nation (Gaussian beam) with equally spaced incident angles. We
use a differential measurement between the phase on a portion of
the field of view on the detector that does not include the cell and
the cell itself to maintain phase stability. Accordingly, complex
amplitudes extracted from the measurements constitute the
training set of our proposed CNN.

2.2 Beam Propagation Method

We build the CNN, based on the forward model of light propa-
gation,”"** to model the diffraction and propagation effects of
light-waves. It is known that the scalar inhomogeneous
Helmholtz equation completely characterizes the light field at
all spatial positions in a time-independent form

[VZ +k*(r)]u(r) =0, (1)
BS1
Laser N
L3 ——
L4 <7

where r = (x,y, z) denotes a spatial position, u is the total light-

field atr, V2 = (;27 + ()"27 + %) is the Laplacian, and k(r) is the

wave number of the light field at r. The wave number depends
on the local refractive index distribution n(r) as

k(r) = kon(r) = ko[ng + n(r)], 2)

where ky = 2z/1 is the wave number in vacuum, ng is the
refractive index of the medium, and the local variation Sn(r)
is caused by the sample inhomogeneities. By introducing
the complex envelope a(r) of the paraxial wave u(r)=
a(r)exp(jkongz) for BPM, we can obtain an evolution
equation 2! in which z plays the role of evolution parameter

a(x’y, 74 52) — ejknén(r)ﬁz

2,2
X+'u,'

Sl — s s
—1 ) <k0»10+ k2n2w%w%) K
X |Fqe oo «a(-z) |, )

where 6z is a sufficiently small but a finite z step, w, and w,
represent angular frequency coordinates in the Fourier domain,
a(-, -, z) expresses the two-dimensional (2-D) complex envelope
at z depth, * refers to a convolution operator, and F~'{-} means
the 2-D inverse Fourier transform.

2.3 GPU-Based Implementation of CNN

A schematic architecture of our CNN is shown in Fig. 2. For
constructing our neural network, we divide the computational
sample space into thin slices with the sampling interval 6z
along the propagation direction z. One slice corresponds to
one layer in CNN. Within each layer, neurons specify the dis-
cretized light-field with transverse sampling intervals 6x and dy,
respectively. The input layer is the incident field upon the sam-
ple. In terms of the Eq. (3), inputs are then passed from nodes of
each layer to the next, with adjacent layers connected by alter-
nating operations of convolution and multiplication. At the very
last layer of our CNN, the output complex field amplitude is
then bandlimited by the NA of the imaging system composed

Fig.1 Experimental setup (BS, beam splitter; GM, galva mirror; L, lens; M, mirror; and OB, objective) and

measured hologram by CMOS. Scale bar, 10 ym.
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Fig. 2 Detailed schematic of our CNN architecture, indicating the number of layers (Nz), nodes
(Nxx Ny) in each layer and operations between adjacent layers. Here, ker(wy, w,) signifies

(0% + ?)/(kono + \/K3N% — w2 — ®?) and we take the 5n(r) of a polystyrene bead as example.

of lenses OB2 and L2 in Fig. 1. We implement the proposed successfully and efficiently.>! The full implementation and
network on the basis of TensorFlow framework. The connection the trained networks are available at https:/github.com/
weight én(r) can be trained using the Adam algorithm for opti- HuiQiaoLightning/CNNforTPM.
mization on the following minimization problem:
” 3 Resuits
min iz |Y,.(8n) = G,,(8n)||, + TR (Sn) Eor derponstration, we evaluate the designed network by poth
on M “— 1 simulation and experimental results of the TPM as described

before. To make a reasonable comparison, selected hyperpara-
s.t. R(on) = Z||V5n(r)||l and 6én >0, “ meters have been declared for all the other reconstruction
r methods. The selection of hyperparameters will be specifically

discussed in Sec. 4.2.

where M denotes the number of measured views, || -||; indicates

the £,-norm, and V = (&, 2, 2) is the differential operator. For _ ) )

a given view m, ¥,,, and Gn; are the output of the last layer and 3.1 Tomographic Reconstruction of Simulated Data
the actual measurement acquired by the optical system, respec- In simulation, we consider a situation of three 5 ym beads of
tively. The design of our loss function will be specifically dis- refractive index n = 1.548 immersed into oil of refractive
cussed in Sec. 4.1. Compared with the £,-norm, the £ data- index ny = 1.518 shown in Fig. 3. The centers of the beads
fidelity term relaxes the intrinsic assumptions on the distribution are placed at (0,0,-3), (0, 0, 3), and (0, 5, 0), respectively,
of noise (symmetry and no heavy tails) and suits better for the with the unit of micron. The training set of the framework is
measurements containing outliers. Hence, it can be effectively simulated as 81 complex amplitudes extracted from the digi-
applied to the biomedical imaging especially when the noise tal-holography measurements with different angles of incidence
model is heavy-tailed and undetermined.?’ As a regularization evenly distributed in [-7/4, z/4] by BPM, whereas the illumi-
term, R(6n) imposes the #;-norm sparsity constraint on a gra- nation is tilted perpendicular to the x-axis and the angle is speci-
dient domain according to its better characteristic for the fied with respect to the optical axis z. The size of the
reconstruction from higher incomplete frequency information reconstructed volume is 23.04 ym X 23.04 ym X 23.04 um,

than #,-norm,”®?° whereas 7 is the positive parameter control-

ling the influence of regularization. The positivity constraint
takes advantage of the assumption that the index perturbation Cross-sectional
is real and positive when imaging weakly absorbing samples views

such as biological cells. The subgradient method® plays an
important role in machine learning for solving the optimization
framework under £;-norm and the Ref. 26 has verified the theo-
retical convergence properties of the Adam algorithm, which
will be specifically discussed in Sec. 4.3. We perform the neural
network computations on 4 NVIDIA TITAN Xp graphics cards
and the processing time to run the learning algorithm (100 iter-
ations) on 256 X 256 X 160 nodes is nearly 9 min. Obviously,
it is possible to make the optimization of hyperparameters,
which have an important effect on results, a more reproducible

and automated process and thus is beneficial for training Fig. 3 Simulation geometry comprising three spherical beads with a
the large-scale and often deep multilayer neural networks refractive index difference of 0.03 compared with the background.
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with the sampling steps of 6x = dy = 6z = 144 nm. For the net-
work hyperparameters, we choose 600 training iterations in our
GPU-based implementation with the batch size of 20, the initial
learning rate of 0.001, and the regularization coefficient of
7 = 1.5. The reconstructed results by our method and other
reconstruction methods are shown in Fig. 4. The SNR defined
in Ref. 21 of our result is 25.56 dB, 14 dB higher than the pre-
vious works. We can also observe much sharper edges of the
reconstructed beads at the interface with less noise in the back-
ground from Fig. 5. The comparison between the proposed loss
function and other regularized loss functions proves the higher
reconstruction quality of the £;-norm constraint than the £,-case
directly.

In addition, we analyze the performance of our method under
different noise levels and reduced sampling angles. For the noise
test, we add Gaussian noise of different power levels to the 81
simulated measured complex amplitudes, which are represented
as different SNRs of the training data. From the curve of the
reconstructed SNR versus the noise level, as shown in Fig. 6(a),
we can find our method maintains more robustness to the noise
than other methods. This is especially useful in the case of
shorter exposure time for higher scanning speed, where the data
are always readout-noise limited. For the test of reduced
sampling angles, we keep the range of incident angles fixed
from —z/4 to n/4. The total number of the incident angles
for the network training decreases from 81. The curve of the
reconstructed SNR versus the number of the incident angles
is shown in Fig. 6(b). Even with as few as 11 incident angles,
we can still achieve comparable performance as the previous
methods with 81 angles. This nearly eight-time improvement
facilitates the development of high-speed 3-D refractive index
imaging.
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Fig. 5 Comparison of the refractive index profiles along the z-axis
reconstructed by different algorithms and the ground truth.

3.2 Tomographic Reconstruction of a Biological
Sample

To further validate the capability of the network, we display
the experimental results on HelLa cells performed by our
tomographic phase microscope as shown in Fig. 1. In detail,
we illuminate the HeLa cells in culture medium of refractive
index ng = 1.33 from 41 incident angles evenly distributed
from —35 deg to 35 deg. The measured hologram with an inci-
dent angle of 0 deg is shown in Fig. 1. The reconstructed volume
15 36.86 ym X 36.86 um X 23.04 pum, composed of 256 X 256 X
160 voxels (with the voxel size of 144 nm X 144 nm X
144 nm). After the selection of hyperparameters, we set the
regularization coefficient to 7 =5, with training iterations of
100, the batch size of 20, and the initial learning rate of 0.002.
The performance comparison of different methods under differ-
ent levels of data reduction is shown in Fig. 7. More details can
be observed by our method even with fewer incident angles.
Moreover, many fewer artifacts and noises exist in our results

15.64 dB

Fig. 4 Reconstruction results of three 5 um beads. Comparison of the cross-sectional slices of the 3-D
refractive index distribution of the sample along the x — y, x — z, and y — z planes reconstructed by
(a) proposed CNN, (b) CNN with ¢, fitting, #» regularization (L1 L2) and the regularization coefficient
of 5, (c) CNN with ¢; fitting, ¢4 regularization (L2 L1) and the regularization coefficient of 0.1, (d) learning
approach?® implemented on the same CNN settings (LA) with the regularization coefficient of 0.6, () opti-
cal diffraction tomography based on the Rytov approximation (ODT)'® with the positivity constraint and
100 iterations, and (f) iterative reconstruction based on the filtered backprojection method* with the pos-

itivity constraint and 400 iterations. Scale bar, 5 um.
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Fig. 6 Performance analysis for proposed approach with the same hyperparameter selection. (a) The
curve of the reconstructed SNR versus the noise level and (b) the curve of the reconstructed SNR versus

the number of the incident angles.
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Fig. 7 Comparison of three reconstruction algorithms for various levels of data reduction on a Hela cell.
(a—d) Proposed CNN, (e-h) LA with the regularization coefficient of 1.5, (i-I) ODT with the positivity con-
straint and 20 iterations, (a, e, and i) 41 training data, (b, f, and j) 21 training data, (c, g, and k) 11 training
data, and (d, h, and I) 6 training data. Scale bar, 10 um.
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Fig. 8 Comparison of the reconstructed Hela cell refractive index
profiles along the z-axis with 41 training data.
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with large data reduction than other methods, which can be seen
apparently in Fig. 8.

4 Discussion

41 Comparison between L,-Norm and L,-Norm for
Loss Function Design

Loss function design is a crucial element of learning algorithms,
which determines the training process of the neural network.
Regularized loss function comprises one data-fidelity term
and one regularization term.

To the best of our knowledge, the presented study is the first
to employ 7, fitting for the regularized TPM. Generally, the
choice of the data-fidelity term depends on the specified noise
distribution. However, it is particularly common for solving

June 2018 « Vol. 23(6)
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normal image restoration problems, as under various con-
straints, images are always degraded with mixed noise and it
is impossible to identify what type of noise is involved. The
¢5-norm fitting relies on strong assumptions on the distribution
of noise: there are no heavy tails and the distribution is symmet-
ric. If either of these assumptions fails, then the use of £,-norm
is not an optimal choice. On the other hand, for the so-called
robust formulation based on £ -norm fitting, it has been
shown that the corresponding statistics can tolerate up to
50% false observations and other inconsistencies.”’” Hence,
¢1-norm data-fidelity term relaxes the underlying requirements
for the #,-case and is well suited to biomedical imaging espe-
cially when the noise model is undetermined [as shown in
Figs. 4(a)-4(d)] and mixed [as shown in Fig. 6(a)].

As for the regularization term, we finally choose the aniso-
tropic total variation (TV) regularizer in our method, which is an
¢, penalty directly on the image gradient. It is a very strong
regularizer, which offers improvements on reconstruction qual-
ity to a great extent compared with the isotropic counterpart (£,
penalty).?’ Therefore, the edges are better preserved, which
can be seen apparently from the comparison between Figs. 4(a)
and 4(b).

4.2 Selection of Hyperparameters

Selection of hyperparameters has an important effect on tomo-
graphic reconstruction results. In practice, many learning
algorithms involve hyperparameters (10 or more), such as initial
learning rate, minibatch size, and regularization coefficient.
Reference 31 introduces a large number of recommendations for
training feed-forward neural networks and choosing the multiple
hyperparameters, which can make a substantial difference (in
terms of speed, ease of implementation, and accuracy) when
it comes to putting algorithms to work on real problems.
Unfortunately, optimal selection of hyperparameters is challeng-
ing due to the high computational cost when using traditional
regularized iterative algorithms.?!?

In this study, our GPU-based implementation of CNN runs
computation-intensive simulations at low cost and is possible to
make the optimization of hyperparameters a more reproducible
and automated process with modern computing facilities. Thus,
we can gain better and more robust reconstruction performance
with the GPU-based learning method. During the simulation and
experiment, selection of hyperparameters varies with the bio-
logical sample and the range of incident angles. To make a con-
vincing comparison, optimal hyperparameters have been
selected for all the other reconstruction methods. The refractive
index difference 6n(r) is initialized with a constant value of 0 for
all the methods, and different optimal regularization coefficients
are chosen for different regularized loss functions due to the dif-
ferent combinations of data-fidelity term and regularization
term. The number of iterations is set to guarantee the conver-
gence of each method, as shown in Fig. 9.

4.3 Subgradient Method and Adam Algorithm

In convex analysis,*® the subgradient generalizes the derivative
to functions that are not differentiable. A vector g € R” is a sub-
gradient of a convex function at x if

f) = f(x) + 9" (y—x) Vy. ®)

If f is convex and differentiable, then its gradient at x is a
subgradient. But a subgradient can exist even when f is not
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Fig. 9 Reconstructed SNR plotted as a function of the number of iter-
ations for different reconstruction methods on simulated data.
Hyperparameters are declared in Sec. 3.1.

differentiable at x. There can be more than one subgradient of
a function f at a point x. The set of all subgradients at x is called
the subdifferential, and is denoted by df(x). Considering the
absolute value function |x|, the subdifferential is

1, x>0
ax| =4 -1, x<0. (6)
[-1.1], x=0

Subgradient methods are subgradient-based iterative
methods for solving nondifferentiable convex minimization
problems.

Adam is an algorithm for first-order (sub)gradient-based
optimization of stochastic objective functions, based on adaptive
estimates of lower-order moments. The method is aimed toward
machine learning problems with large datasets and/or high-
dimensional parameter spaces. The method is also appropriate
for nonstationary objectives and problems with very noisy and/
or sparse gradients. Adam works well in practice and compares
favorably with other stochastic optimization methods regarding
the computational performance and convergence rate.”® Tt is
straightforward to implement, is computationally efficient,
and has little memory requirements, which is robust and well
suited to TPM. Compared with the stochastic proximal gradient
descent (SPGD) algorithm reported in Ref. 21, our GPU-based
CNN trained with the Adam algorithm for optimization con-
verges to the same SNR level and achieves twice the rate of con-
vergence as shown in Fig. 10. To show the higher convergence
rate of Adam fairly, we use the proposed #;-norm loss function

30
—
==}
= 25
Z
% 20 SPGD
=
215
E
2 10
=}
S
g 5
-1

0

0 400 800 1200 1600 2000

Iterations

Fig. 10 Reconstructed SNR of proposed approach plotted as a func-
tion of the number of iterations for two different training optimization
algorithms on simulated data with the same hyperparameters
declared in Sec. 3.1.
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for both the Adam and SPGD training processes here, thus pro-
ducing the same reconstructed SNR after convergence.

5 Conclusion

We have demonstrated a GPU-based implementation of deep
CNN to model the propagation of light in inhomogeneous sample
for TPM and have applied it to both synthetic and biological sam-
ples. The experimental results verify its superior reconstruction
performance over other tomographic reconstruction methods,
especially when we take fewer measurements. Furthermore,
our CNN is much more general under different optical systems
and arbitrary illumination patterns as its design is illumination-
independent. Importantly, this approach can not only enlarge
the applications of optical tomography in biomedical imaging,
but also open rich perspectives for the potential of deep neural
networks in the optical society.
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