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Abstract. We report a fiber-optic plasmonic probe with nanogap-rich gold nanoislands for on-site surface-
enhanced Raman spectroscopy (SERS). The plasmonic probe features nanogap-rich Au nanoislands on the top
surface of a single multimode fiber. Au nanoislands were monolithically fabricated using repeated solid-state
dewetting of thermally evaporated Au thin film. The plasmonic probe shows 7.8 × 106 in SERS enhancement
factor and 100 nM in limit-of-detection for crystal violet under both the excitation of laser light and the collection of
SERS signals through the optical fiber. The fiber-through measurement also demonstrates the label-free SERS
detection of folic acid at micromolar level. The plasmonic probe can provide a tool for on-site and in vivo SERS
applications. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this
work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JBO.24.3.037001]
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1 Introduction
In vivo molecular biosensing of disease-related biomarkers
enables early diagnosis of diseases diseases,1 intraoperative
guidance for cancerous tissue removal,2 and monitoring bio-
markers of chronic diseases, such as diabetes3 and atherosclero-
sis.4 Intrinsically, rare biomolecular detection for such diseases
in the complex biological environment is still challenging in
in vivo molecular diagnostics.5 Surface-enhanced Raman
spectroscopy (SERS) allows highly specific and ultrasensitive
molecular diagnostics. The substantial enhancement of both
an excitation light and Raman scattering of small molecules
near electromagnetic hotspots of plasmonic nanostructures
results in extraordinary sensitivity of SERS.6 For decades,
plasmonic nanostructures on miscellaneous substrates7–9

have enabled biomedical SERS applications from in situ
point-of-care testing10 to in vivo molecular sensing.3 In par-
ticular, labeled plasmonic nanoparticles have been extensively
utilized as SERS reporters for the in vivo detection and intra-
operative guidance of cancerous lesions.11–13 However, tech-
nical challenges of plasmonic nanoparticles probes, such
as labeling of Raman-active molecules, high administered
dosage, or toxicity, still remain substantial obstacles for
SERS-based in vivo molecular detection.14

Fiber-optic probes can serve as minimal invasive, flexible,
and biocompatible sensing platforms for detecting optical
signals from biochemical molecules in a remote location.15

Implementation of plasmonic nanostructures on a fiber-top
surface provides an ideal nanoplatform for in vivo SERS
biosensing.16 Recently, plasmonic fiber-optic probes for SERS
were fabricated on the top surface with precisely defined
metallic nanostructures using nanolithographic methods.17,18

Furthermore, the direct implementation of the nanostructures

has been achieved on the fiber-top surface using oblique
angle deposition19 or subsequent thermal annealing.20 However,
a cost-effective nanofabrication of biocompatible Au nano-
structures on fiber-top surfaces with quantitative analysis is
still under development for utilizing plasmonic fiber-optic
probe as an in vivo SERS sensor.

Here, we report a plasmonic fiber-optic probe with nanogap-
rich Au nanoislands on the fiber-top surface using repeated
solid-state dewetting. Figure 1(a) illustrates the schematic dia-
gram of the fiber-optic plasmonic probe. An excitation laser of
633 nm is coupled through the end of a multimode fiber (MMF),
and surface-enhanced Raman scattering of small biomolecules
near the SERS-active fiber-top surface is collected through the
same fiber. Figure 1(b) shows the schematic illustration of Au
nanoislands on the plasmonic fiber optic. Repeated solid-state
dewetting effectively constructs nanogap-rich Au nanoislands
on the fiber-top surface, which induce strong electromagnetic
(EM) hotspots and thus enable strong light excitation as well
as highly sensitive SERS detection of biomolecules through
the plasmonic probe.

2 Design and Batch Nanofabrication
Standard multimode silica optical fibers [Thorlabs, FG105LCA,
numerical aperture (NA) 0.22] were used for the nanofabrication
procedures. SERS signals on the fiber-top surface radiatively
scatter in all directions and thus an MMF is highly suitable
for high photon collection, compared to a single-mode fiber
(SMF) with low NA.17 The percentage of total scattered light
collected on the top surface of both SMF and MMF was calcu-
lated for the maximum collection efficiency of SERS signals.17

The percentage of collected total SERS signals of MMF
(∼1.2%) is about 4.9 times higher than the that of SMF
(Thorlabs, SM600, NA 0.1) (∼0.25%) under the same condition.
In addition, MMF of low-OH (hydroxyl) content pure silica
core with acrylate coating was used for the minimum Raman*Address all correspondence to Ki-Hun Jeong, E-mail: kjeong@kaist.ac.kr
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background noise.21 In the experiment, acrylate coating of each
fiber was first removed using a fiber stripper and isopropyl alco-
hol to avoid thermal degradation. A compact automated fiber
cleaver (Vytran®, LDC401A) was used for preparing 15-cm-
long optical fibers with a smooth fiber-top surface. The optical

fibers were fixed on a home-built batch-loading mount
(60 × 30 × 2 mm3) designed for aligning the top surfaces of
fibers normal to an Au target source in a thermal boat of an
evaporator, as shown in Fig. 2(a). Thin Au film was directly
evaporated on the fiber-top surfaces at 1 Å∕s in deposition

Fig. 1 Fiber-optic plasmonic probe for SERS with nanogap-rich Au nanoislands on the top surface of
a MMF. (a) A schematic illustration of the plasmonic probe, where both the laser excitation and the col-
lection of SERS signals are transmitted through a multimode optical fiber. (b) Plasmonic Au nanoislands
on the fiber-top surface fabricated using a single or repeated solid-state dewetting of thin Au film.
The repeated solid-state dewetting simply creates nanogap-rich Au nanoislands with highly dense
and strongly coupled EM fields, i.e., plasmonic hotspots, and thus allow strong light excitation as
well as highly sensitive SERS detection of biomolecules, compared to the single dewetting.

Fig. 2 Nanofabrication procedure for fiber-optic plasmonic SERS probe. (a) A batch-loading mount
for multiple optical fibers, which can be placed on the loading chuck of thermal evaporator.
(b) Nanofabrication procedures of nanogap-rich Au nanoislands on a fiber-top surface using repeated
solid-state dewetting of thin Au film. (c) A SEM image of the fabricated plasmonic fiber-optic probe (top)
and an optical image of multiple plasmonic probes on the batch-loading mount (bottom). (d) SEM images
of Au nanoislands on the fiber-top surfaces using single or repeated dewetting of different initial thin
Au film thickness. Au nanoislands by single dewetting for 5- and 10-nm film thicknesses denoted by
t1Au ¼ 5 and 10 nm, respectively, and those of repeated dewetting for initial and additional 5-nm
thicknesses of Au films denoted by t1Au ¼ 5 nm and t2Au ¼ 5 nm. (e) Effective diameters and effective
gap size of Au nanoislands for each fabrication condition extracted from the SEM.
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rate under the chamber pressure of 5 × 10−5 torr. Subsequently,
the fibers were detached from the mount and arranged on
a quartz wafer without any adhesive for thermal annealing in
a box furnace. Solid-state dewetting of thin Au film on the
fiber-top surfaces was done by thermal annealing in the box fur-
nace at 500°C for 1 h, as shown in Fig. 2(b). Figure 2(c) shows
a scanning electron microscopic (SEM) image of the fabricated
fiber-optic plasmonic probe (top) and an optical image of
the multiple plasmonic probes on the batch-loading mount
(bottom). The experiment results in Fig. 2(d) confirm that the
effective gap of Au nanoislands becomes clearly narrow after
the repeated dewetting compared to the single dewetting for
a constant total film thickness.8 Figure 2(e) shows the effective
diameter and gap size of Au nanoislands depending on the initial
Au thickness. The physical dimension of the effective diameter
and gap was precisely extracted from the binary formats of
each SEM images [region of interest (ROI): 550 × 550 nm2]
for Au nanoislands on the fiber top using ImageJ® software.
Assuming the same number of “unit cells” as the number of
Au nanoislands in ROI, each Au nanoislands with “effective
diameter” is included in each unit cell and the “effective
gap” is defined by subtracting the effective diameter from the
width of a unit cell. For a constant Au thickness of 10 nm,
the Au nanoislands after single dewetting clearly show a much

larger standard deviation for the effective diameter than that of
repeated dewetting [Fig. 2(e)]. In addition, it is also confirmed
that the effective gap between Au nanoislands fabricated by the
repeated dewetting is narrower than that of single dewetting of
t1Au ¼ 5 nm. As a result, Au nanoislands from the repeated
dewetting create strong and uniform plasmonic hotspots due
to the large diameter and narrow gap22 with low standard
deviation, compared to those from the single dewetting.

3 Plasmonic Properties of AU Nanoislands
on the Fiber-Top Surfaces

Both incident light and Raman scattering of molecules are
strongly enhanced in the localized EM fields, i.e., hotspots,
near Au nanoislands and significantly contribute to EM
enhancement of SERS signals.23 Figures 3(a) and 3(b) show
the electric field distribution of fabricated Au nanoislands
depending on the initial thin Au film thickness was numerically
calculated at an excitation wavelength of 633 nm using the
finite-difference time-domain (FDTD) method for the extruded
three-dimensional models of the binary image. The individual
Au nanoislands were considered as a cylindrical shape and
the height was set to the total thickness of Au film. The
enhanced E-field clearly shows a large area for the Au nanois-
lands from repeated dewetting of t1Au ¼ 5 nm and t2Au ¼ 5 nm

Fig. 3 Plasmonic properties of nanogap-rich Au nanoislands on fiber-top surfaces. (a) The calculated
electric field distribution of Au nanoislands obtained from (a) single dewetting and (b) repeated dewetting
using the FDTD method. (c) Areal ratio of hotspots for the total enhanced E -field enhancement.
(d) Areal SERS EFs of Au nanoislands depending on the initial thicknesses of Au thin film.
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[Fig. 3(b)], compared to those from the single dewetting of
t1Au ¼ 10 nm [Fig. 3(a)]. Figure 3(b) also clearly demonstrates
the E-field between the Au nanoislands is localized along
the direction of E-field polarization. In addition, the “hottest”
sites of extraordinary strong EM fields compared to other
hotspots largely contribute to total SERS signals.8,23,24 In this
perspective, the areal ratio of EM hotspots to the total enhanced
E-field substantially contributes to the enhancement of SERS
signals. Figure 3(c) shows that Au nanoislands from the
repeated dewetting clearly show a large areal ratio of “hottest
sites,” i.e., hotspots with EM enhancement over 107, compared
to those from single dewetting. The areal SERS enhancement
factor (EF) was introduced to compare the average EM enhance-
ment for Au nanoislands over the ROI (550 × 550 nm2) because
the hottest sites exist in a small fraction of the total ROI.
The areal SERS EF was calculated by integrating the fourth
power of enhanced E-fields over an incident E-fields within
the ROI.25 Figure 3(d) clearly shows that the repeated dewetting
for t1Au ¼ 5 nm and t2Au ¼ 5 nm has the maximum areal SERS
EF, comparable to the single dewetting conditions as well as
other repeated dewetting conditions.

4 Fiber-Through SERS Measurement
The SERS EFs for plasmonic probes were first measured on the
fiber-top surface depending on the repeated dewetting condition
as shown in Fig. 4(a). In the experiment, the fiber tips were
immersed for 12 h in a 3 mM BT (Sigma-Aldrich) in methanol.

The SERS signals of BT were measured using He-Ne laser
(Thorlabs, λ ¼ 632.8 nm, 0.46 mW) and a spectrometer
(Princeton Instruments, MicroSpec 2300i) with an inverted
microscope (Zeiss, Axiovert 200 M, objective lens NA ¼ 0.5).
Direct excitation onto BT molecules adsorbed on the fiber-top
surface of plasmonic probe and collection of the SERS
signals were done with the objective lens. The intensity of
the 1069-cm−1 peak of BT molecules from the SERS and
Raman measurements was used to calculate the SERS EF,
i.e., EF ¼ ðISERS∕NSERSÞ∕ðIRaman∕NRamanÞ.26 As a result, the
SERS EF for the plasmonic probe resulting from repeated
dewetting for t1Au ¼ 5 nm and t2Au ¼ 5 nm was 7.8 × 106,
which is increased by 10.4 times compared to that from
the single dewetting. The experimental results match with
numerically calculated areal SERS EFs in Fig. 3(d). In particu-
lar, repeated dewetting for t1Au ¼ 5 nm and t2Au ¼ 5 nm has
less densely distributed Au nanoislands compared to those
for t1Au ¼ 3 nm and t2Au ¼ 3 nm [Fig. 3(a)]. However, the
enlarged Au nanoislands have high polarizability and high
coupled dipole EM fields of nanoislands and thus result in
high plasmonic enhancement for SERS signals.22 Finally, the
plasmonic probe from the repeated dewetting of t1Au ¼ 5 nm
and t2Au ¼ 5 nm was utilized for the fiber-through SERS mea-
surements of crystal violet (CV) and folic acid (FA). Figure 4(b)
shows an experimental setup for the fiber-through SERS meas-
urement. An excitation laser beam (λ ¼ 632.8 nm, 5.4 mW)
was delivered to the fiber-top surface by coupling on the bare
surface of plasmonic probe with an objective lens (Zeiss,

Fig. 4 SERS EFs and fiber-though SERS measurements. (a) SERS EFs for Au nanoislands on the
fiber-top surfaces depending on the repeated dewetting conditions. (b) A schematic diagram of exper-
imental setup for fiber-through SERS measurement. Both laser excitation and collection of SERS
signals are coupled through the fiber-optic plasmonic probe. (c) Measured SERS signals through the
plasmonic fiber (t1Au ¼ 5 nm and t2Au ¼ 5 nm) depending on different concentrations of CV molecules.
(d) Quantitative SERS measurements of CV molecules using the plasmonic fiber-optic probe. Each
SERS peak of CV molecules increases with the concentration of CV molecules. (e) Measured SERS
signals of 1 μM FA, well-known as a cancer biomarker.
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NA ¼ 0.3). The acquisition time was 10 s for SERS spectra
during all the measurement. Raw spectrum of SERS signal
from fiber-through SERS measurement exhibits Raman back-
ground noise due to the optical fiber because an excitation
laser is guided through the optical fiber, similar to previous
works.17,27 The calibration was then done for all spectra
obtained by the fiber-through SERS measurement as follows:
a reference spectrum without analytes (deionized water for
CV, sodium hydroxide solution 0.1N for FA) and raw SERS
spectrum with analytes were initially obtained, and then normal-
ized SERS spectrum with the minimum Raman background
signals was taken by subtracting the reference spectrum from
the raw SERS spectrum. The normalized SERS spectrum
was used in all experiments, as shown in Figs. 4(c)–4(e).
Meanwhile, speckle noise signals from an excitation laser
were observed during the fiber-through measurement of an
MMF for the laser excitation and the SERS measurement.
However, the effect of speckle noise on SERS signal was not
significantly considered due to both signal reduction of excita-
tion and collection through a short-length MMF (15 cm in
length) are negligible.27 Figure 4(c) shows SERS spectra of
CV molecules with different concentration in the range of
100 nM to 1 mM. CV often serves as a reference molecule
to evaluate the performance of diverse SERS substrates.28

The plasmonic probes were prepared by immersing fiber-top
surface in CV (Sigma-Aldrich) in distilled water for 1 min with-
out additional drying process. Representative SERS peaks of
CV and their relative standard deviation (RSD) are shown in
Figs. 4(c)–4(d). These SERS peaks of CV at 915, 1190, 1385,
and 1617 cm−1 are originated from ring skeletal vibrations, such
as C─H in plane bending, N-phenyl stretching, and C─C

stretching.29 The limit-of-detection (LOD) was calculated by
the summation of limit-of-blank (LoB) and critical standard
deviation of the target molecule.30 The LoB obtained from the
SERS signal of deionized water (blank solution) and 100 nM
CV samples in three representative SERS peaks are shown in
Fig. 4(d). The plasmonic fiber-optic probe exceptionally shows
the LOD of 100 nM for the SERS measurement of CV,
compared to previously reported works.28,31 In addition, the
reproducibility of SERS signals was also evaluated by perform-
ing the SERS measurement of 1 μM CV measurement using
eight plasmonic probes from different batches under the same
fabrication conditions. The RSD was calculated from the SERS
signals from four representative Raman peaks of CV.29 The
RSD in SERS signals of the proposed plasmonic probe
shows 8.87% in average whereas the SERS probe fabricated
by anodic alumina oxide is 9.60% in RSD.32 Figure 4(e)
shows the SERS spectra for FA based on the fiber-through meas-
urement. FA molecules play an important role for cell synthesis
in facilitating one-carbon metabolism of amino acid in the body.
In particular, FA serves as a well-known biomarker of cancers
because folate receptors are overexpressed in the membranes of
most cancer cell lines, such as epithelial, breast, ovary, lung, and
brain.33 As a result, in vivo deficiency and low concentration of
FA can be utilized for cancer diagnosis34 and drug delivery
monitoring with FA-conjugated nanocarriers.35 In the experi-
ment, the plasmonic probes were prepared by immersing in
FA (Sigma-Aldrich) solution (0.1N NaOH, Sigma-Aldrich)
in aforementioned manner. The experimental results clearly
demonstrate that the fiber-through SERS measurement
allows the label-free detection of FA molecules at micromolar
level.

5 Summary
In summary, we have successfully demonstrated the fiber-optic
plasmonic probe with nanogap-rich Au nanoislands for highly
sensitive SERS of biomolecules. The plasmonic probe was
batch fabricated using repeated dewetting of thin Au film. The
plasmonic probe shows 7.8 × 106 in SERS EF and 100 nM in
LOD for CV through the fiber-through measurement. In addi-
tion, the plasmonic fiber has also successfully demonstrated
the SERS detection of FA at micromolar level. The plasmonic
probe can provide a tool for diverse on-site and in vivo SERS
applications.
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