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ABSTRACT. Significance: When developing a new quantitative optoacoustic computed tomog-
raphy (OAT) system for diagnostic imaging of breast cancer, objective assessments
of various system designs through human trials are infeasible due to cost and ethical
concerns. In prototype stages, however, different system designs can be cost-
efficiently assessed via virtual imaging trials (VITs) employing ensembles of digital
breast phantoms, i.e., numerical breast phantoms (NBPs), that convey clinically
relevant variability in anatomy and optoacoustic tissue properties.

Aim: The aim is to develop a framework for generating ensembles of realistic three-
dimensional (3D) anatomical, functional, optical, and acoustic NBPs and numerical
lesion phantoms (NLPs) for use in VITs of OAT applications in the diagnostic
imaging of breast cancer.

Approach: The generation of the anatomical NBPs was accomplished by extending
existing NBPs developed by the U.S. Food and Drug Administration. As these were
designed for use in mammography applications, substantial modifications were
made to improve blood vasculature modeling for use in OAT. The NLPs were mod-
eled to include viable tumor cells only or a combination of viable tumor cells, necrotic
core, and peripheral angiogenesis region. Realistic optoacoustic tissue properties
were stochastically assigned in the NBPs and NLPs.

Results: To advance optoacoustic and optical imaging research, 84 datasets have
been released; these consist of anatomical, functional, optical, and acoustic NBPs
and the corresponding simulated multi-wavelength optical fluence, initial pressure,
and OAT measurements. The generated NBPs were compared with clinical data
with respect to the volume of breast blood vessels and spatially averaged effective
optical attenuation. The usefulness of the proposed framework was demonstrated
through a case study to investigate the impact of acoustic heterogeneity on OAT
images of the breast.

Conclusions: The proposed framework will enhance the authenticity of virtual OAT
studies and can be widely employed for the investigation and development of
advanced image reconstruction and machine learning-based methods, as well as
the objective evaluation and optimization of the OAT system designs.
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1 Introduction
Optoacoustic computed tomography (OAT), also known as photoacoustic computed tomogra-
phy, is a non-invasive imaging modality being actively developed for clinical breast imaging and
other biomedical applications.1–8 A unique feature of OAT is the ability to produce an image
based on the endogenous optical contrast associated with chromophore concentrations and oxy-
genation states within tissue, without ionizing radiation and the loss of spatial resolution typically
related to purely optical techniques such as diffuse optical tomography.1,9 This permits the
imaging of tissue metabolism and angiogenesis, which have been identified to play a critical
role in tumor growth and progression.7,10 Therefore, optoacoustic imaging is ideally positioned
to resolve these two hallmarks of cancer in vivo.2–8,10 As such, an optimized and validated OAT
system can be a powerful tool for the management of breast cancer. By assessing the tumor
microvasculature density and blood oxygenation, it can enable the initial evaluation of tumor
aggressiveness to inform the treatment plan and prognosis. It also allows for the monitoring of
tumor response to treatment over time. However, to realize its full diagnostic potential, OAT
should be equipped with the capability of providing quantitative information on true values
of the optical absorption coefficient, which is proportional to molecular concentrations.7,11,12

A large number of different system designs for three-dimensional (3D) breast OAT that
deploy varying light delivery and acoustic detection strategies have been proposed.3–6,13 This
is unlike in X-ray mammography, breast magnetic resonance imaging (MRI), and breast ultra-
sound, in which similar implementations are typically in use per modality. Ideally, candidate
designs of new quantitative OAT systems would be evaluated based on clinically relevant objec-
tive image quality measures via human subject studies. However, this is not a feasible solution
given the large space of possible (technical trade-offs considered) design parameters of OAT
imaging systems, the large variety in breast sizes and compositions, and the cost and potential
ethical concerns associated with such studies. Instead of clinical trials, virtual imaging trials
(VITs), i.e., computer-simulation studies, have been advocated for assessment and optimization
of system and algorithm designs in the early stages of technology development. For VITs to be
clinically relevant, realistic numerical phantoms must be employed as the to-be-imaged
objects.14–20 Moreover and importantly, because imaging technologies are not typically opti-
mized for use with only a single subject, ensembles of different phantoms that possess clinically
relevant variability in anatomy and tissue properties must be virtually imaged. In this way,
ensemble-averaged objective measures of image quality can be computed.21

Several numerical breast phantoms (NBPs) and numerical lesion phantoms (NLPs) have
been proposed.16–20,22 However, most of the existing NBPs and NLPs were created from a limited
number of clinical data, resulting in a lack of variability or oversimplified anatomical struc-
tures.16–19 The virtual imaging clinical trials for regulatory evaluation (VICTRE) project at the
U.S. Food and Drug Administration (FDA)14 released software tools to generate realistic NBPs
and NLPs for use in mammography applications. Although the VICTRE NBPs are considerably
realistic for VITs of mammography in terms of principal tissue compositions, significant
improvements are required for use in VITs of breast OAT. Bao et al.20 reported optoacoustic
NBPs based on the VICTRE tools. However, these phantoms do not introduce adaptations
of the blood vascular network for use in VITs of OAT and do not account for physiological
variability in tissue optoacoustic properties, the values of which are fixed and deterministic for
each tissue type.

Although simulation tools for photon transport and acoustic wave propagation23–25 in gen-
eral media with spatially varying voxel-wise properties are available, the reported studies that
employed NBPs did not leverage this capability. Not only in Ref. 20 but also in the other previous
studies,16–19,22 piecewise-constant optical properties were assigned to each tissue type in the
NBPs and NLPs without taking into account spatial variability in the property distribution
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induced by oxygen transport between tissues. In addition, a correlation between optical proper-
ties and both chromophore concentrations and the oxygenation state of the tissue has not been
addressed in the existing NBPs and NLPs.16–20,22 Therefore, further enhancements are needed to
establish physiologically realistic NBPs and NLPs for use in VITs of OAT.

In this work, an end-to-end framework for producing ensembles of realistic 3D anatomical,
functional, optical, and acoustic NBPs and NLPs for use in VITs of quantitative OAT of breast
cancer is established. The generation of the anatomical NBPs is accomplished by extending the
VICTRE NBPs with blood vasculature modifications for use in VITs of OAT. Tissue compo-
sition within the anatomical NLPs is modeled according to different lesion types and aggressive-
ness. Depending on the type of cancer of interest, the lesions can contain a necrotic core and/or a
tumor angiogenesis region surrounding the viable tumor cell region, which can be modeled
because of the proposed modifications to the VICTRE NLPs. Realistic functional, optical, and
acoustic properties are stochastically assigned for each breast tissue. The optical absorption
coefficient is modeled based on the concentrations of the primary chromophores considered,
which are stochastically chosen within their physiological ranges. Our modified version of the
VICTRE tool code package,26 which is a fork of the original software, has been released under
the same creative commons zero license (CC0) used by the original project. Furthermore, the
software framework to generate stochastic distributions of the functional, optical, and acoustic
properties based on the modified VICTRE anatomical phantoms has been made publicly avail-
able under the GNU general public license version 3 (GPLv3). The software, named stochastic
optoacoustic NBP (SOA-NBP),27 is implemented in Python, and it includes capabilities for
inserting superficial blood vasculature under the skin layer; creating anatomical NLPs; and
assigning functional, optical, and acoustic properties to each breast tissue type. To enable
researchers to immediately benefit from this work, 84 datasets were released under the CC0;
these consist of anatomical, functional, optical, and acoustic NBPs and the corresponding
simulated multi-wavelength optical fluence, initial pressure, and OAT measurement data.28–30

The remainder of this article is organized as follows. Relevant background information
including a description of the VICTRE and previous NBPs for OAT is provided in Sec. 2.
The proposed framework is described in Sec. 3, and several examples of NBPs generated
employing the proposed framework are presented in Sec. 4. A case study that investigates the
impact of acoustic breast heterogeneity on image reconstruction quality is provided in Sec. 5,
as an example of how the proposed stochastic phantoms can enable important studies. The article
concludes with a summary and discussion in Sec. 6.

2 Background

2.1 VICTRE Project by the FDA
The VICTRE project by the FDA14 developed software tools to generate 3D numerical repre-
sentations of human female breasts and lesions for use in simulating X-ray mammography appli-
cations. These tools can create ensembles of stochastic, anatomically realistic breast structures
and lesions within a user-defined 3D volume by specifying breast density (i.e., fat fraction),
shape, size, and tissue composition parameters.14 The produced NBPs correspond to one of the
following four types defined in the breast imaging reporting and data system (BI-RADS)31: (A)
breast is almost entirely fatty, (B) breast has scattered areas of fibroglandular density, (C) breast is
heterogeneously dense, and (D) breast is extremely dense. The tissue types in the VICTRE NBPs
are fat, skin, glandular tissue, nipple, muscle, ligament, terminal duct lobular unit (TDLU), duct,
artery, and vein.14 The VICTRE tools can also generate NLPs based on microcalcification clus-
ters or spiculated masses.14 The NLPs are inserted at locations randomly selected from those
predicted based on the duct and TDLU structures that are well-known sites for lesion formation.32

There exist several challenges that must be addressed to extend the VICTRE project to pro-
duce NBPs for use in VITs of breast OAT technologies. To perform such VITs, NBPs and NLPs
that describe the optical and acoustic properties of the breast and lesion need to be established;
they should be stochastic in nature and describe realistic values under typical physiological and
pathological conditions for each tissue type. Because many 3D OAT technologies are not hand-
held and utilize a fixed imaging geometry, the breast shape parameters need to be determined to
be consistent with a prone position during a 3D OAT scan.3–6 Additionally, the representation of
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blood vasculature in the NBPs generated using the VICTRE tools, albeit sufficiently realistic for
mammography applications,14 needs to be improved for realistic VITs of OAT because the
VICTRE tool primarily produces deep-seated blood vessels rather than those near the skin layer
that are dominantly exhibited in clinical OAT images.3–6,33 This is consequential because OAT
has greater sensitivity to blood vessels than other tissues.1,9

2.2 Previous NBPs for OAT
Several NBPs for OAT have been proposed,16–20,22 and their features are summarized in Table 1.
The NBPs in Refs. 17–19 have oversimplified structures, and only a handful of relatively thick
blood vessels are included in the NBPs created via tissue segmentation from a limited number of
X-ray mammography22 and MRI images.16 In Refs. 18, 19, and 22, a rounded-shaped NLP was
inserted into the NBP, but the malignant tumors’ characteristics revealed in OAT images, such as
tumor hypoxia and angiogenesis, were not modeled.

Bao et al.20 presented FDA’s VICTRE NBPs with deterministic oxygen saturation and opti-
cal and acoustic properties assigned in a piecewise constant manner at two wavelengths of 700
and 900 nm. Also, the VICTRE NBPs were used without any modifications to the breast
anatomy and shape, so the above mentioned challenges related to the blood vascular network
and the patient’s position during the OAT scan remain unmet by this phantom design. The assign-
ment of piecewise constant optical properties has been commonly adopted in most previous stud-
ies on numerical phantoms for OAT.16–20,22 However, this choice was mostly due to the need to
reduce modeling and computational complexity. This limits the realism and usefulness of the
generated optical phantoms. The optical absorption coefficient is determined by chromophore
concentrations and hemoglobin oxygenation states within the tissue.34,35 Because the oxygen
carried by blood diffuses through the surrounding tissue, the oxygen saturation distribution, and
thus the optical absorption coefficient distribution, spatially varies in tissues. In Ref. 20, the
oxygenation levels were neither considered nor correlated to the optical properties, except for
the arteries and veins. The levels were set with fixed values of 95% for the arteries and 75% for
the veins despite their varied values within a certain range.36 The optical properties at two wave-
lengths of 700 and 900 nm were directly assigned to the NBPs, and thus, these phantoms are
unsuitable for VITs of breast multispectral OAT.

Table 1 Previous NBPs for OAT.

References Phantom features

17 • 3D single breast tissue type and a cylindrical cyst

• Optical absorption coefficient (μa), reduced scattering coefficient, scattering anisotropy (g),
and refractive index (n) for a wavelength of 1064 nm; sound speed (c) and acoustic
attenuation coefficient (α0) with a power law exponent (y )

18 and 19 • 2D single breast tissue type and an elliptical18/circular19 tumor

• μa and optical scattering coefficient (μs) for a wavelength of 800 nm; c and density (ρ)19

16a
• 3D skin, fat, and fibroglandular tissues, as well as a handful of blood vessels,
segmented from MRI images

• μa, μs , g, and n for a wavelength of 760 nm; c and ρ

22 • 2D skin, fat, fibroglandular, and rounded tumor tissues, segmented from digital
mammography

• μa and μs for an unknown wavelength; c

20 • 3D NBPs of FDA’s VICTRE without any modifications for healthy breast tissues, and
lesion models of fibroadenoma, DCIS, and IBC

• μa, μs , g, and n for wavelengths of 700 and 900 nm; c and ρ

aThree datasets are publicly available.
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Oval-shaped fibroadenoma and irregularly shaped ductal carcinoma in situ (DCIS) and
invasive breast cancer (IBC) were modeled in Ref. 20 using the VICTRE tool. As modifications
to the VICTRE NLPs, a few thin veins were inserted inside the DCIS mass, and a centripetal vein
and a surrounding arterial area with its irregularly shaped boundary were added for IBC.
However, the characteristics and diameters of the inserted vasculature did not account for realistic
lesion growth. Specifically, the features of the inserted vasculatures were based on clinical data
of aggressive DCIS and IBC lesions larger than or equal to 47 mm in diameter,37 whereas the
diameter of the simulated lesion was less than 10 mm. Furthermore, the method to generate the
centripetal vein and the irregularly shaped arterial area was not explained in Ref. 20.

3 Methods
To circumvent the limitations described above, adaptations and customizations of the VICTRE
NBPs were developed to enable the generation of large ensembles of realistic optoacoustic NBPs
that exhibit clinically relevant variability in anatomical structures and functional, optical, and
acoustic properties. The flow chart of optoacoustic NBP generation is illustrated in Fig. 1, and
details of each step are explained in the following sections.

3.1 Generation of Realistic Anatomical NBPs and Lesion Insertion
In this first step, the construction of ensembles of realistic anatomical NBPs for different BI-
RADS breast types [(A) breast is almost entirely fatty, (B) breast has scattered areas of fibro-
glandular density, (C) breast is heterogeneously dense, and (D) breast is extremely dense] using a
modified version of the VICTRE tool is described. Additionally, the generation and insertion of
anatomical NLPs into the NBPs are described.

3.1.1 Definition of breast size and shape

Based on clinical data and constraints by designs of the existing OAT breast imaging systems3–6

(where a breast should fit within a scanning radius of 85 mm), the distributions of breast size
parameters were determined for each BI-RADS breast type.38 The VICTRE tool generates
anatomical NBPs according to the parameters specified in the configuration file. Among the
parameters, the breast volume extent parameters a1t, a1b, a2l, a2r, and a3 and the breast shape
parameters ϵ1, B0, B1, H0, and H1 were specified in the VICTRE configuration file. These
parameters are explained in Ref. 15, and the probability distributions for the parameters that
are consistent with the patient’s position during a 3D OAT scan are summarized in Table 2.
Here, a truncated Gaussian distribution (TN) was chosen among the possible distributions
because it is the maximum entropy distribution supported in a bounded interval with a specified
mean and standard deviation.39

Fig. 1 Generation of optoacoustic NBPs.
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The generated anatomical NBPs were discretized in three dimensions using a uniform
Cartesian lattice. A voxel size of 0.125 mm was chosen for the discretization, considering com-
putation time and memory usage. This choice allows for avoiding the discretization inverse crime
when performing image reconstruction as the typical resolution in OAT breast images is between
0.2 and 0.5 mm. Each voxel value corresponds to an unsigned 8-bit integer tissue label.14 The
anatomical NBPs were rotated to be consistent with a prone position during a 3D OAT scan and
cropped to exclude the chest muscle region.

3.1.2 Realizations of blood vasculature

A specific innovation in our adaptation is the introduction of realistic blood vasculature, as shown
in Figs. 2(a) and 2(d). The VICTRE tool iteratively generates sibling and child branches of
arterial and venous blood vessel trees within the breast volume, using randomly sampled values
based on blood vessel parameters (Table 4) in the configuration file.20 However, the tool assumes
four arterial and five venous blood vessel trees with their entry locations predefined by fixed
polar angles θ and a fixed distance from the breast edge dedge ¼ 20 mm [Fig. 2(e)]. This is incon-
sistent with the anatomy of the breast. Furthermore, the values were hardcoded within the C++
source code of the VICTRE tool, making it inaccessible for users to adjust them through the
configuration file. Thus, to more realistically model breast anatomy,41 the source code of the
VICTRE tool was modified to incorporate five sets of blood vessel trees: internal mammary,
thoraco-acromial, lateral thoracic, subscapular and thoraco-dorsal, and intercostal arteries and
veins [Fig. 2(d)]. Two tunable parameters, vesselEdgeSep1 and vesselEdgeSep2 [dedge in
Table 3], were added to the configuration file to set the distances from the breast edge (1) to
the internal mammary, thoraco-acromial, lateral thoracic, and subscapular and thoraco-dorsal
arteries and veins and (2) to the intercostal arteries and veins, respectively [Fig. 2(d)].
Table 3 summarizes the entry locations of the blood vessel trees in the left breast, and those
in the right breast were set to be bilaterally symmetric.

Among blood vessel tree, branch, and segment parameters in the VICTRE tool, the param-
eters maxBranch, initRad, minRadFrac, numTry, maxTry, and absMaxTry provided in Table 4
were tuned based on the breast volume percentage occupied by blood vessels estimated from four
clinical OAT datasets. The clinical datasets used as references were acquired by TomoWave
Laboratories (Houston, Texas, United States) using LOUISA-3D3 at the MD Anderson Cancer
Center. The experimental 3D OAT images were reconstructed using a filtered back-projection

Table 2 Shape and size parameters.

Parameter Types A and B Type C Type D

a1t (mm) TNð59.70; 3.58;50.77;71.5Þ TNð50.05;3.58; 42.9;57.2Þ

a1b∕a1t Nð1; 0.02Þ

a2r∕a1t Nð1; 0.05Þ

a2l∕a2r Nð1; 0.05Þ

a3∕a1t TNð0.85; 0.14;0.8;1.2Þ TNð0.85;0.12; 0.7;1.1Þ TNð0.85; 0.1; 0.7; 1.1Þ

ϵ1 Nð1;0.1Þ

B0 TNð0; 0.1;−0.18;0.18Þ

B1 TNð0; 0.1;−0.18;0.18Þ

H0 TNð0;0.15;−0.11;0.11Þ

H1 TNð0; 0.25;−0.3;0.3Þ

Nðμ; σÞ: Gaussian distribution with mean μ and standard deviation σ.
TNðμ; σ; a; bÞ: truncated Gaussian distribution in interval ða; bÞ.
For hemispherical shapes (a1t ¼ a1b ¼ a2r ¼ a2l ¼ a3), the ϵ1 value is set to “1,” and the B0, B1, H0, and H1
values are set to “0.”
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Fig. 2 Blood vessels in an NBP (type B, left breast) with (a and d) and without (b and e) blood
vasculature customization and (c) a clinical OAT image acquired by TomoWave Laboratories
employing LOUISA-3D3 at the MD Anderson Cancer Center and postprocessed to extract blood
vascular structures.33 Paraview40 was used for volume rendering.

Table 4 Blood vessel parameters.

Parameter Description Value

maxBranch Target number of branches 500

initRad Initial radius of tree (mm) 0.6

minRadFrac Minimum starting radius as a fraction of parent end radius 0.85

numTry Number of trial segments to generate 50

maxTry Maximum number of segments to generate before reducing length 100

absMaxTry Total number of segment tries 1000

Table 3 Entry locations of blood vessel trees.

Blood vessel θ (rad), artery θ (rad), vein dedge (mm)

Internal mammary 11π∕15, −8π∕9 41π∕45, −32π∕45 2

Thoraco-acromial 2π∕5 17π∕30

Lateral thoracic −2π∕45 π∕5

Subscapular and thoraco-dorsal −π∕2 −13π∕45

Intercostal 16π∕45, −π∕12 π∕6, −3π∕10 24

θ: angle in the polar coordinate system.
dedge: distance from the edge of the breast along the radial direction.
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(FBP) method.42 To compute the breast volume percentages occupied by blood vessels from the
reconstructed images, the distributions of the total hemoglobin concentration were estimated by
employing spectral linear unmixing with optical fluence normalization.33 Then, a vessel enhance-
ment filter43 was applied to the estimated distributions of the total hemoglobin concentration
[Fig. 2(c)], and the ratio of the numbers of the blood vessel voxels and breast voxels was
calculated.

The blood vessels within the depth of 10 mm under the skin layer are dominantly observed
with relatively high image contrast in clinical OAT images, i.e., estimated distributions of the
initial pressure, but are missing in the VICTRE NBPs [Figs. 2(b) and 2(e)]. To address this,
additional blood vasculature [Figs. 2(a) and 2(d)] was stochastically generated using computa-
tionally efficient methods (random sampling, Gaussian blurring, Otsu’s thresholding,44 and skel-
etonization), which are commonly used in image processing. The diameter of the blood vessels
and their depth from the skin are tunable and were set to 0.75 and 0.375 mm, respectively.
Multiple blood vessel segments were formed and alternately divided into arteries and veins
depending on the segment locations. Instead of the proposed method, another user-defined
method can be employed in our proposed framework if desired. Details of the blood vasculature
generation are provided in Appendix A.

3.1.3 Generation and insertion of lesions

Most common types of malignant lesions, such as invasive ductal carcinoma and invasive lobular
carcinoma, have anatomically irregular outlines and develop in milk ducts and lobules.32

Depending on the type of lesion and its aggressiveness, the lesion growth can be accompanied
by severe hypoxia in the center region, tumor necrosis, and tumor angiogenesis in the periphery
of the viable tumor cells.45–47 Users can model lesions as being composed solely of a viable tumor
cell (VTC) region or containing a necrotic core, VTC region, and peripheral angiogenesis (PA)
region [Fig. 3(a)].47–49 The irregular spiculated boundary of the VTC region was created employ-
ing the VICTRE tool. The necrotic core region and PA region were formed via erosion and
dilation operations50 applied to the surface of the VTC region using spherical structuring ele-
ments, i.e., matrices that identify the voxel and its neighboring voxels within a spherical area to
be eroded or dilated, respectively. Here, the radii of the spherical structuring elements were
0.75 mm (the thickness of the ring-shaped VTC region)49 for the erosion and 5 mm48 for the
dilation. The generated anatomical NLPs can be optionally inserted into the anatomical NBP.
Among the candidate lesion locations predicted via the VICTRE tools, those that do not overlap
with other (already inserted) lesions or the skin, nipple, and muscle were randomly chosen as the
sites at which to insert the NLP.

3.2 Definition and Assignment of Functional, Optical, and Acoustic Properties
Functional, optical, and acoustic NBPs can be separately established via assignment of the spe-
cific properties of breasts to each tissue type in the anatomical NBPs described in Sec. 3.1. The
optical contrast exhibited in OAT images is determined by light absorption by chromophores, and
the concentration distributions and molar extinction coefficients of the chromophores determine
the optical absorption distribution in the tissue.34 The primary chromophores of the breast
relevant to OAT are oxy- and deoxy-hemoglobin, water, fat, and melanin. The hemoglobin
concentration in the tissue can be described by the total hemoglobin concentration in blood and
the volume fraction of blood in the tissue, whereas the melanin concentration in the epidermis
can be assumed to be proportional to the volume fraction of melanosome, an organelle where
melanin is synthesized.34 The volume fraction of the optical absorption coefficient of a pure
chromophore can be a surrogate of its concentration in the tissue.34,51–54 In the proposed method,
therefore, such functional properties were assigned to each tissue type in the anatomical NBPs,
and then the corresponding optical properties were computed and assigned. Sections 3.2.1–3.2.3
elaborate on how the functional, optical, and acoustic properties were stochastically assigned to
each tissue type. The prescribed statistical characteristics of the functional, optical, and acoustic
properties were informed by a comprehensive literature survey to faithfully represent anatomi-
cally and physiologically realistic values and variations.15,34–36,51–80
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3.2.1 Stochastic assignment of functional properties

NBPs that describe the functional properties of the breast tissues without and with lesions were
established as follows. The functional properties considered were the total hemoglobin concen-
tration of blood ctHb;blood (μM); oxygen saturation s (%); and volume fractions of blood fb, water
fw, fat ff, and melanosome fm (%). Although other chromophores exist, their contribution to the
optical absorption coefficient at the wavelength in the near infrared (NIR) range (700 to 1100 nm)
is negligible, so they are omitted. For this reason, the sum of the volume fractions of the primary
chromophores (fb þ fw þ ff þ fm) in Table 5 is always less than or equal to 100%. The value of
ctHb;blood for each NBP was randomly sampled from a uniform distribution Uð1860; 2325Þ μM
corresponding to a normal hematocrit level (36% to 44%) for women.55

NBPs without lesions. Functional property values (s, fb, fw, ff, and fm) for each breast
tissue type were sampled from the predefined probability distributions and assigned to the cor-
responding tissue voxels in the anatomical NBPs [Sec. 3.1]. A comprehensive literature survey
was conducted to faithfully represent physiologically realistic values and variations,36,51–54 and
Table 5 provides the probability distributions of the functional properties defined for each tissue
type. To mimic physiological spatial variation in the oxygen saturation distribution, the oxygen
saturation in the tissues was modeled by solving a diffusion-reaction partial differential equation
(PDE)81 using FEniCS,82 which is an open-source finite element library for solving PDEs.
Specifically, the oxygen saturation s values sampled from the probability distributions in
Table 5 were assigned to the specific tissues (skin, nipple, artery, and vein). Then the solution
to the PDE was used to define the s distribution in the surrounding tissues (fat, ligament, TDLU,
duct, and glandular tissues).

NBPs with lesions. For the NBPs containing malignant lesions, tumor hypoxia11 was mim-
icked by assigning a relatively low s value sampled from the probability distribution in Table 5 to
the voxels corresponding to the VTC region and necrotic core in the anatomical NBP [Fig. 3(b)].

Fig. 3 Malignant lesion model: (a) anatomical NLPs without (top) and with a necrotic core and a
peripheral angiogenesis region (bottom), and distributions of (b) oxygen saturation s and (c) blood
volume fraction f b . The two lesions were inserted at physiologically plausible locations randomly
selected among the candidate sites produced by the VICTRE tools. In panels (a)–(c), halves of the
lesion volumes are presented to show their cross-sections. In panels (b) and (c), the partial breast
volumes clipped at the y -coordinate at which both lesions are exhibited are illustrated. The arrows
in panel (b) indicate the simulated tumor hypoxia and those in panel (c) indicate the simulated
tumor angiogenesis, necrotic tumor core, and relatively high total hemoglobin concentration of the
viable tumor cells compared with healthy tissues. These are from a type A breast. Paraview40 was
used for volume rendering, and color maps were adjusted for better visibility.
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More details are provided in Appendix B. In addition to tumor hypoxia, other features of aggres-
sive malignant lesions are (1) a relatively high total hemoglobin concentration, i.e., blood volume
fraction fb, in the lesion and its peripheral region (tumor angiogenesis) compared with healthy
tissues and (2) tumor necrosis.45–47 For aggressive malignant lesions, the fb distribution was
modeled to mimic tumor necrosis by assigning an fb value of 0% to the necrotic core. The
capillaries newly sprouted from the vascularized lesions have diameters ranging from
3 to 40 μm45 and, therefore, are too small to be geometrically resolved in the discretized NBP
(a voxel size of 0.125 mm). For this reason, the presence of such capillaries was accounted for
by assigning a spatially varying local increase in blood volume fraction fb within the VTC and
PA regions [Fig. 3(c)]. Additional details are presented in Appendix B.

3.2.2 Assignment of optical properties

NBPs that describe the optical properties of the breast tissues were established as follows. The
optical properties considered were optical absorption coefficient μa (mm−1), optical scattering
coefficient μs (mm−1), scattering anisotropy g, and refractive index n. Illumination wavelengths
were selected from the NIR spectral range from 700 to 1100 nm, which is commonly used in
OAT breast imaging.3–6,13 The optical properties are wavelength-dependent; however, g and n do
not vary significantly over the NIR range.34 Thus, constant g and n values were defined for each
tissue type regardless of the wavelength and were assigned to the corresponding tissue voxels, as
presented in Table 6. For the PA region, the g and n values of its underlying tissues (fat/ligament/
TDLU/duct or glandular tissues) were assigned to the corresponding voxels.

The μa value at r ¼ ðx; y; zÞ ∈ R3 at a wavelength of λ was calculated based on the specified
functional NBPs as34,35

EQ-TARGET;temp:intralink-;e001;117;445μaðr; λÞ ¼
X
i∈I

fiðrÞμa;iðλÞ; (1)

where I ¼ f oxygenated blood, deoxygenated blood, water, fat, melanosome g is a set of chro-
mophores of interest. fiðrÞ and μa;iðλÞ are the volume fraction at r and the optical absorption
coefficient at a wavelength of λ of the pure chromophore indexed by i, respectively. The volume
fractions of oxygenated blood foxybloodðrÞ ¼ fbðrÞsðrÞ and deoxygenated blood fdeoxybloodðrÞ ¼
fbðrÞf1 − sðrÞg were computed using the blood volume fraction fbðrÞ and oxygen saturation
sðrÞ defined in Sec. 3.2.1. The corresponding optical absorption coefficients were computed
as μa;oxybloodðλÞ ¼ lnð10ÞctHb;bloodϵHbO2

ðλÞ for oxygenated blood and μa;deoxybloodðλÞ ¼
lnð10ÞctHb;bloodϵHbðλÞ for deoxygenated blood, where ϵHbO2

and ϵHb are molar extinction coef-
ficients (mm−1 M−1) of oxy- and deoxy-hemoglobin, respectively. The values of ϵHbO2

, ϵHb, and
optical absorption coefficients of water, fat, and melanosome for the NIR range were from the
data in Refs. 35 and 57–59.

Table 6 Scattering coefficient parameters, scattering anisotropy, and refractive index of breast
tissues and lesion.

Medium μs
0ðλrefÞ (mm−1) b g n

Fat/ligament/TDLU/duct 0.8361 0.61761 0.9862 1.4463

Glandular 1.0664 0.5264 0.9662 1.3663

Skin/nipple (3.72, 4.78)65,66 (1.39, 2.453)65,66 0.6567 1.3768

Artery/vein (2.2, 2.295)69,70 (0.66, 0.872)69,70 0.97671 1.3572

VTC/necrotic core (2, 2.07)61,62 (0.725, 1.487)61,62 0.95562 1.3973

A reference wavelength (λref) is 500 nm.
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The μs value was calculated according to the power law34 as

EQ-TARGET;temp:intralink-;e002;114;724μsðr; λÞ ¼
μs

0ðr; λÞ
1 − gðrÞ ¼

μs
0ðr; λrefÞ

1 − gðrÞ
�

λ

λref

�
−bðrÞ

; (2)

where λref is a reference wavelength of 500 nm and μs
0ðr; λrefÞ and bðrÞ are a reduced scattering

coefficient (mm−1) at a wavelength of λref and a scattering power law exponent, respectively.
To account for the correlation between μs

0ðr; λrefÞ and bðrÞ observed from data in Ref. 34, both
values were jointly sampled as

EQ-TARGET;temp:intralink-;e003;114;632

μs
0ðr; λrefÞ ¼ ½μs;u 0ðr; λrefÞ − μs;l

0ðr; λrefÞ�X þ μs;l
0ðr; λrefÞ and

bðrÞ ¼ ½buðrÞ − blðrÞ�X þ blðrÞ; (3)

where X ∼ Uð0;1Þ is a random variable, μs;u 0ðλrefÞ and μs;l
0ðλrefÞ correspond to upper and lower

bounds of μs 0ðλrefÞ, respectively, and bu and bl are upper and lower bounds of b, respectively.
These values for each tissue type are summarized in Table 6. The μs value of water at a wave-
length of λ was assigned with an estimate from a curve based on Eq. (2) that fits to the mea-
surements reported in Ref. 60. The VTC and necrotic core regions have a relatively high μs value
due to tumor cell proliferation, compared with healthy tissues83 [see Table 6]. For the PA region
in the NBP, the μs values of the underlying tissues (fat/ligament/TDLU/duct or glandular tissues)
were assigned to the corresponding voxels.

3.2.3 Stochastic assignment of acoustic properties

Acoustic NBPs for ultrasound computed tomography (USCT) were proposed by some of the
authors in Ref. 15, with the tissues that are invisible in USCT imaging being excluded from
consideration. For virtual OAT imaging, NBPs that describe the acoustic properties of the breast
tissues were established as follows. The acoustic properties considered were sound speed c
(mm∕μs), density ρ (g∕mm3), and acoustic attenuation coefficient α0 (dB∕MHzy mm) with
power law exponent y. Table 7 provides the probability distributions of c, ρ, and α0 for each
tissue type.15 For the PA region, similar to the assignment of μs, g, and n values in Sec. 3.2.2, the
acoustic properties of the underlying tissues (fat/ligament/TDLU/duct or glandular tissues) were
assigned to the corresponding voxels. Several widely used time-domain wave propagation sim-
ulators assume a spatially homogeneous y25 although the exponent y varies between 1 and 1.5
depending on the tissue type.84 Accordingly, the homogeneous values of 1.1151, 1.1642, 1.2563,
and 1.3635 were used for breast types A to D, respectively, as reported in Ref. 15. Once the

Table 7 Acoustic properties of breast tissues and lesion.

Medium c (mm∕μs) ρ (g∕mm3) α0 (dB∕MHzy mm)

Watera 1.52174 0.993 × 10−375 2.2 × 10−475

Fat TNð1.44; 0.021;1.41;1.49Þ76,77 TNð0.911; 0.053;0.812;0.961Þ × 10−375 Nð0.038; 0.004Þ75

Glandular/
TDLU/duct

TNð1.54;0.015;1.517;1.567Þ76,77 TNð1.041;0.045;0.99; 1.092Þ × 10−375 Nð0.075; 0.008Þ75

Ligament TNð1.457; 0.019; 1.422; 1.496Þ76,77 TNð1.142;0.045; 1.1;1.174Þ × 10−375 Nð0.126; 0.013Þ75

Skin/nipple TNð1.555;0.01;1.53;1.58Þ76 TNð1.109;0.014; 1.1;1.125Þ × 10−375 Nð0.184; 0.019Þ75

Artery/vein TNð1.578; 0.011;1.559;1.59Þ75 TNð1.05; 0.017;1.025;1.06Þ × 10−375 0.02175

VTC/necrotic
core

TNð1.548; 0.01;1.531;1.565Þ78 TNð0.945;0.02; 0.911; 0.999Þ × 10−379 Nð0.269;0.02Þ80

aAcoustic properties of water are consistent with an assumed temperature of 37°C, which is often used in breast
OAT to minimize patient discomfort.
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simulators start supporting spatially varying y distributions and tissue type-dependent y data
becomes available, it will be possible to investigate the error induced by the spatially homo-
geneous y.

4 Examples of Generated NBPs and Corresponding OAT Images
To provide insight into the visual and quantitative characteristics of NBPs created by the pro-
posed framework and the corresponding OAT images, example NBPs were produced as
explained in Sec. 4.1. Subsequently, OAT measurement data were simulated based on a target
imaging system described in Sec. 4.2, and 3D estimates of the induced pressure distributions
were reconstructed using an FBP method.

4.1 Examples of Generated NBPs
A total of 84 NBPs of various sizes, 21 for each breast type [(A) breast is almost entirely fatty,
(B) breast has scattered areas of fibroglandular density, (C) breast is heterogeneously dense, and
(D) breast is extremely dense] were created with a voxel size of 0.125 mm. Of these NBPs,
44 have shapes compatible with the patient’s position during a 3D OAT scan and the others
have hemispherical shapes compatible to the use of breast cups to stabilize the breast during
imaging.3,6 Three target wavelengths of 757, 800 (the isosbestic point of deoxy- and oxy-
hemoglobin), and 850 nm were selected. Four lesions of different sizes, each smaller than
10 mm in diameter and composed solely of a VTC region, were inserted into each of 80
NBPs (40 natural-shaped and 40 hemispherical-shaped NBPs). Two lesions, one with a necrotic
core and PA region and the other without, were inserted into each of the remaining four natural-
shaped NBPs [Fig. 4].

The generation of anatomical structures of the breast using the VICTRE tool with the mod-
ifications in terms of the blood vessel trees described in Sec. 3.1.2 took approximately 100 to
310 mins using a 16-core Intel Xeon Gold 6130 CPU and 256 GB of memory. The computation
time varied depending on the volume of the phantoms. Note that breast sizes, shapes, and struc-
tures varied among NBPs [see Fig. 4]. The computation time to generate and insert the blood
vasculature under the skin layer and the lesions was 1 to 6 mins (depending on the phantom
volume), and the assignment of functional, optical, and acoustic properties took approximately
40, 15, and 2 mins, respectively, using the same machine.

Fig. 4 Distributions of functional, optical, and acoustic properties: (a) oxygen saturation s, (b) blood
volume fraction f b , (c) optical absorption coefficients μa, and (d) optical scattering coefficients μs at
a wavelength of 800 nm, (e) sound speed c, and (f) density ρ of type A to D breasts (top to bottom).
The type A and B breasts (top two rows) have two lesions inserted, one with a necrotic core and PA
region and the other without, whereas the type C and D breasts (bottom two rows) have four
lesions of different sizes inserted, each smaller than 10 mm in diameter and composed solely
of a VTC region. Insets of (a)–(c) show cross-sections, with the lesion location indicated with
arrows. Paraview40 was used for volume rendering, and color maps were adjusted for better
visibility.
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Figure 5(a) presents box plots of the breast volume percentages occupied by blood vessels in
which 40 proposed NBPs and 40 unmodified VICTRE NBPs are compared. Figure 5(b) shows
box plots of the spatially averaged effective optical attenuation μeff estimated from 40 proposed
NBPs at the three wavelengths via the Beer–Lambert law-based estimation method in Ref. 33.

As shown in Fig. 5(a), the reference value (0.439%) of the breast volume percentage occu-
pied by blood vessels, i.e., an estimated mean of the clinical OAT images (a dotted horizontal
line), is within the interquartile range of the proposed NBPs (0.336% to 0.48%, median of
0.438%), but it is not within the interquartile range of the VICTRE NBPs (0.249% to
0.39%, median of 0.31%). In Fig. 5(b), the μeff estimates of female breasts reported in
Ref. 51 and 85–87 all fall within the interquartile range of the proposed NBPs for light excitation
wavelengths of 800 and 850 nm. For a light wavelength of 757 nm, the two μeff estimates from
Ref. 51 are slightly out of the interquartile range of the proposed NBPs (the 84th and 85th per-
centiles). Once more data on the functional and optical properties of breasts, specifically the fw
and μa values of breast fat and glandular tissues for different breast types, become available and
are incorporated into NBPs, the μeff values are expected to better match the reference values
found in the existing literature.

4.2 Example OAT Images from Simulated Data
OAT images that depict the induced pressure distributions were reconstructed from simulated
measurement data corresponding to the considered NBPs. The light delivery subsystem of the
virtual OAT imaging system consisted of 20 arc-shaped illuminators uniformly distributed along
the azimuthal angle. Each illuminator arc had a radius of 145 mm and was modeled using 25 cone
beam sources as illustrated in Fig. 6. The acoustic detection subsystem consisted of 51,472 trans-
ducer elements uniformly distributed on a hemispherical aperture with a scanning radius of
85 mm. Each virtual transducer element recorded 3,720 time samples of pressure data at a sam-
pling frequency of 20 MHz. Additional details on the virtual OAT imaging system are presented
in Appendix C.

OAT data were virtually acquired via multiphysics simulation of the photoacoustic effect and
subsequent wave propagation. First, the simulation of photon transport in biological tissues was
conducted using the GPU-accelerated MCX version 1.9.023,24 to compute the induced initial
pressure distribution at the three optical wavelengths of interest (757, 800, and 850 nm).
Figures 7(a) and 7(b) illustrate the simulated distributions of optical fluence ϕ and true initial
pressure p0, and Figs. 7(c) and 7(d) show the p0 ratios of the breast blood vasculature and lesions
between wavelength pairs of 800 and 757 nm and of 850 and 800 nm, respectively.

Fig. 5 Box plots of (a) breast volume percentages occupied by blood vessels in which 40 pro-
posed NBPs (left) and 40 unmodified VICTRE NBPs (right) are compared and (b) spatially
averaged effective optical attenuation coefficients μeff estimated from 40 proposed NBPs at
wavelengths of 757, 800, and 850 nm (left to right). The used NBPs have hemispherical shapes
with radii stochastically sampled from the probability distribution (a1t ) in Table 2. In panel (a), the
black dotted horizontal line indicates the estimated mean of four clinical OAT images acquired by
TomoWave Laboratories (Houston, Texas, United States) using LOUISA-3D3 at the MD Anderson
Cancer Center. In panel (b), the reference values were calculated from the measurements in
Refs. 51 and 85–87.
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Next, wave propagation in acoustically heterogeneous media was simulated using the GPU-
accelerated k-Wave toolbox version 1.3,25 and pressure traces measured by the virtual transducer
elements were recorded. Finally, measurement noise was modeled as independent and identically
distributed Gaussian noise with zero mean and a standard deviation equal to 1% of the maximum
optoacoustic signal strength of the entire ensemble for all three wavelengths, as was empirically
determined based on the in vivo breast OAT data.3,33 Using the simulated noisy acoustic mea-
surements, the images, i.e., p0 estimates, were reconstructed employing the FBP method with a
voxel size of 0.25 mm. Figure 8 presents a visual comparison of 3D OAT images reconstructed
from clinical measurement data and simulated measurement data produced using the proposed

Fig. 6 Virtual light delivery system: (a) five linear fiber-optic segments (red lines) are attached on
the surface of an arc-shaped illuminator (radius of 145 mm, central angle of 80 deg), and (b) five
cone beams (half-angle of 12.5 deg) are emitted from the locations uniformly distributed on each
linear fiber-optic segment. Panels (a) and (b) show light delivery at an illumination view. The total
number of illuminator arcs is 20, so 500 cone beams illuminate the breast.

Fig. 7 Simulated distributions of optical fluence ϕ and initial pressure p0: (a) ϕ and (b) p0 of the
breast in the water-filled imaging bowl at a wavelength of 800 nm, and the p0 ratio of the breast
blood vasculature and lesions between wavelengths (c) of 800 and 757 nm and (d) of 850 and
800 nm. These are from a type C breast. Paraview40 was used for volume rendering, and color
maps were adjusted for better visibility.
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NBP and the unmodified VICTRE NBP. The OAT image generated using the proposed NBPs
[Fig. 8(b)] plausibly resembles the 3D clinical OAT image [Fig. 8(a)], compared with the
unmodified VICTRE NBP [Fig. 8(c)].

5 Case Study: Acoustic Heterogeneity in Image Reconstruction
To demonstrate the usefulness of the proposed framework in virtual OAT studies, a case study
was conducted to explore the impact of acoustic heterogeneity in OAT images of the breast. One
phantom for each breast type (A, B, C, or D), four in total, was used for this case study. Acoustic
measurements were simulated via virtual OAT data acquisition based on the target imaging
system described in Sec. 4.2.

To explore the impact of acoustic heterogeneity in OAT images of the breast, the images, i.e.,
p0 estimates, were reconstructed from the noisy acoustic measurements simulated in Sec. 4.2
with a voxel size of 0.25 mm. Three different approaches were used, each with the following
assumptions: homogeneous acoustic properties of water in Table 7 for the entire computation
domain (Approach 1); two sound speed values for water (cwater) and breast tissue (cbreast) each,
and homogeneous density and acoustic attenuation properties of water for the whole domain
(Approach 2); and the true distributions of acoustic properties (Approach 3). For image recon-
struction, the LSQR88 algorithm was implemented89 to compute a least-squares estimate of p0.
As the stopping rule, the iteration was terminated when the squared error between the true p0 and
estimated p0 started to increase to avoid overfitting the noisy data. The goal of this case study
was not to illustrate a practical image reconstruction algorithm but to investigate the effect of
acoustic heterogeneity on image quality. Thus, a stylized stopping criterion, which requires
knowledge of the true object, was purposely chosen to isolate the effect of acoustic heterogeneity
from other sources of error or bias in OAT images, such as the design of an appropriate regu-
larization functional. Figure 9 shows the true p0 (first column) and the p0 estimates (second to
fourth columns) of Approaches 1 to 3, respectively. To tune cbreast in Approach 2, sound speed
values between 1.45 and 1.54 mm∕μs were swept with a step size of 0.005 mm∕μs, and the
selected values for each breast type are presented in Table 8.

The relative squared error RSE ¼ kxtrue − xestk22∕kxtruek22 and structural similarity index
measure (SSIM)90 between the true p0 (xtrue) and the reconstructed image (xest) were calculated
to quantify the accuracy of the reconstructed images. Table 8 provides the average RSE and
SSIM calculated from the data of breast types A to D for all three wavelengths. The RSE and
SSIM improved for all breast types when acoustic heterogeneity was accounted for in the image
reconstruction. As shown in Fig. 9, the mitigation of clutter artifacts using the two-sound speed
model (Approach 2) with respect to the homogeneous model (Approach 1) was more significant

Fig. 8 Visual comparison of 3D OAT breast images reconstructed from (a) clinical measurement
data and simulated measurement data produced using (b) the proposed NBP and (c) the unmodi-
fied VICTRE NBP. In panel (a), the clinical data were acquired by TomoWave Laboratories using
LOUISA-3D.3 In the unmodified VICTRE NBP, tissue properties were assigned to each tissue type
in a piecewise constant manner. All three images were reconstructed using the FBP method.42

The images were visualized using Paraview’s volume rendering technique, which accumulates
intensities based on the selected color and opacity maps.40
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in the type A breast (almost entirely fatty breast) than the type D breast (extremely dense breast).
Here, clutter refers to background artifacts caused by uncompensated scattering or refraction
effects. For the fatty type breast, the sound speed mismatch between fatty tissue and water
is the main cause of clutter; therefore, the two-sound speed model (Approach 2) can effectively
mitigate such artifacts. However, for denser type breasts, glandular tissue has a sound speed
similar to water, and acoustic impedance heterogeneity across different breast tissues is the
primary cause of clutter; thus the two-sound speed model is less effective.

Fig. 9 True distributions of initial pressure p0 at a wavelength of 800 nm (first column) and p0

estimates reconstructed assuming homogeneous acoustic properties of water (second column),
two sound speeds for water and breast tissue regions each and homogeneous density and acous-
tic attenuation properties of water (third column), and true distributions of acoustic properties
(fourth column). The whole breast regions are presented from a side view in panels (a) and
(c), and the regions at depths between 10 and 20 mm from the breast surface are illustrated from
a front view in panels (b) and (d). The images in panels (a) and (b) are from a type A breast, and
those in panels (c) and (d) are from a type D breast. Paraview40 was used for volume rendering,
and color maps were adjusted for better visibility.

Table 8 Average relative squared error (RSE) and structural similarity index (SSIM).

Breast type
cbreast

(mm∕μs)

RSE SSIM

Approach 1 Approach 2 Approach 3 Approach 1 Approach 2 Approach 3

A 1.47 0.4605 0.4550 0.3637 0.9808 0.9827 0.9838

B 1.475 0.4296 0.4275 0.3256 0.9790 0.9801 0.9833

C 1.495 0.4291 0.4146 0.3238 0.9798 0.9807 0.9834

D 1.53 0.3552 0.3464 0.2699 0.9801 0.9801 0.9835

cbreast: breast sound speed used in Approach 2.
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6 Conclusion
In this work, a framework to generate realistic 3D NBPs that can be used in large-scale VITs of
OAT breast imaging was established. For the first time, anatomically, physiologically, and opto-
acoustically realistic 3D NBPs and NLPs in varying sizes and shapes could be produced using the
proposed framework. This was achieved by extending VICTRE tools to OAT imaging with sub-
stantial modifications. Because the proposed framework was implemented in a modular form,
it facilitates further customization of the NBPs. Users can replace the relatively simple lesion
model applied in this study with more biologically realistic models of tumor growth and metabo-
lism. For example, heterogeneous distributions of multiple necrotic regions and blood vessels
proliferating toward the lesion could be included. Future studies may also include explicit geo-
metric modeling of vascular growth associated with tumors, functional and optical modeling of a
specific type of breast cancer, analysis of lesion detectability as a function of their size and depth,
and mechanical deformations of the breast to simulate slight breast compression in the existing
OAT system. In summary, the produced NBPs and NLPs enhance the authenticity of virtual OAT
studies, and the proposed framework can be widely employed for the investigation and develop-
ment of advanced image reconstruction methods and machine learning-based methods, as well as
the objective evaluation and optimization of the OAT breast imaging systems. Code packages of
the proposed tools and 84 datasets that were made publicly available will enable researchers to
immediately benefit from this work.

7 Appendix A: Generation of Blood Vasculature under the Skin
Layer

Blood vasculature under the skin layer [Figs. 2(a) and 2(d)] was stochastically generated visually
similar to the blood vessels observed in the clinical OAT images3–6,33 via relatively computation-
ally inexpensive image processing methods (random sampling, Gaussian blurring, Otsu’s
thresholding,44 and skeletonization) that are commonly used.

In Algorithm 1, the inputs Nx, Ny, and Nz are the sizes of the anatomical NBP volume along
the x-, y-, and z-axes; inputs σ1 and σ2 of Gaussian filters control the distance between blood

Algorithm 1 Blood vasculature under the skin layer

Input: breast mask without skin, Nx , Ny , Nz , σ1, σ2, σ3

Output: artery mask, vein mask

1: Obtain a Ny × Nz random sample matrix from a uniform distribution

2: Obtain two blurred matrices via Gaussian filtering with σ1 and σ2 to the result of step (1)

3: Calculate the difference between the results of step (2)

4: Binarize the result of step (3) by Otsu’s thresholding

5: Skeletonize the result of step (4)

6: Obtain a Nx × Ny × Nz matrix that contains Nx copies of the result of step (5) in the first dimension of 3D

7: Perform bit-wise exclusive or operation (XOR) between breast mask without skin and that after erosion for
0.375 mm

8: Perform XOR of the results of steps (6) and (7)

9: Skeletonize the result of step (8)

10: Blur the result of step (9) by Gaussian filtering with σ3

11: Binarize the result of step (10) by Otsu’s thresholding

12: Obtain artery mask and vein mask by labeling the segments in the result of step (11) with either arteries or
veins, respectively

13: return artery mask, vein mask
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vessel branches in the vessel tree; and input σ3 determines the thickness of blood vessels under
the skin layer. Based on the breast volume percentage occupied by blood vessels estimated from
the clinical OAT images, the values of σ1, σ2, and σ3 were set to 3.875, 6.125, and 0.219 mm
(corresponding to the vessel diameter of 0.75 mm), respectively. The erosion in step (7) of
Algorithm 1 shrinks bright regions in the breast mask without skin, i.e., voxels under the breast
skin. Thus, the degree of erosion determines the distance between the inserted blood vasculature
and the skin. For example, three erosion iterations at a voxel size of 0.125 mm yield the blood
vessels at a depth of 0.375 mm under the skin. The proposed method does not produce a specific
number and volume of arteries and veins under the skin layer. Instead, it stochastically creates
visually plausible vascular structures employing computationally efficient methods, so the num-
ber and volume of the blood vessel segments produced in step (11) of Algorithm 1 are not always
even for arteries and veins. The blood vessel segments were assigned to the artery mask and vein
mask alternately, depending on the segment locations, in step (12) of Algorithm 1.

The produced blood vasculature was embedded into the anatomical NBPs by assigning the
artery label to the artery mask region and the vein label to the vein mask region in the anatomical
NBPs [Figs. 2(a) and 2(d)].

8 Appendix B: Modeling Distributions of Oxygen Saturation
and Blood Volume Fraction

To model a spatially varying distribution of oxygen saturation sðrÞ at each spatial coordinate r
within the phantom, the following diffusion-reaction PDE81 was solved:

EQ-TARGET;temp:intralink-;sec8;117;473−μΔsðrÞ þ
X
i∈T s

χiðrÞðsðrÞ − siÞ ¼ 0:

Here, μ > 0 is a numerical parameter controlling the smoothness of the oxygen saturation
sðrÞ; Δ is the Laplace operator; T s ¼ f skin, artery, vein, lesion g is a set of tissues of interest;
χiðrÞ and si are the indicator function and the target value of oxygen saturation, respectively,
(randomly sampled according to the tissue-specific probability distributions in Table 5) assigned
to the tissue i (i ∈ T s).

Tumor angiogenesis was modeled in the blood volume fraction distribution fbðrÞ at a spatial
coordinate r within the phantom by solving the following diffusion-reaction PDE:

EQ-TARGET;temp:intralink-;sec8;117;352−μΔfbðrÞ þ
X
i∈T b

χiðrÞðfbðrÞ − fbiÞ ¼ 0;

where T b ¼ f VTC, necrotic core, fat/ligament/TDLU/duct, glandular, artery, and vein g is a set
of tissues of interest and fbi is the target value of the tissue blood volume fraction sampled from
the predefined probability distributions in Table 5 for the tissue i (i ∈ T b).

The PDEs above were solved using a linear finite element on an unstructured tetrahedral
mesh that is fitted to tissue interfaces. Unstructured meshes were generated using the pygalmesh
software,91,92 and the PDE was solved using the parallel finite element library FEniCS.82

9 Appendix C: Details of Virtual OAT Imaging System
and Data Acquisition

The light delivery mechanism and the measurement geometry of the target virtual OAT imaging
system were chosen to emulate one of the existing OAT systems for breast imaging, LOUISA-
3D3,33 developed by TomoWave Laboratories (Houston, Texas, United States). The detailed
illumination geometry of the virtual light delivery system using 20 arc-shaped illuminators
[see Fig. 6] is described in Table 9.

For the virtual OAT data acquisition, idealized point-like transducers, uniformly distributed
on the arc-shaped optoacoustic probe specified in Table 10, were assumed; the probe collects a
total of 3,720 time samples of pressure data at a sampling frequency of 20 MHz. For the sim-
ulation of OAT data acquisition, the k-Wave GPU code was used as the acoustic wave propa-
gation simulator. With the assumption of idealized point-like transducers, the possible option to
define transducer locations in the simulation supported by the k-Wave GPU code is a binary

Park et al.: Stochastic three-dimensional numerical phantoms to enable. . .

Journal of Biomedical Optics 066002-19 June 2023 • Vol. 28(6)



matrix, where the value at the corresponding transducer locations is “1” and at the others is “0.”
Therefore, 51,472 transducer locations were defined as a target measurement geometry, exclud-
ing the overlaps due to the discretization of Cartesian coordinates into the binary matrix with the
given voxel size.

Acoustic OATmeasurements were virtually acquired through the simulation of photon trans-
port in breast tissues, calculation of initial pressure distribution p0, and simulation of acoustic
wave propagation. In the simulation of the photon transport using the GPU-accelerated MCX, the
light source and direction parameters were set according to the target system design [Fig. 6 and
Table 9], and the simulation domain size was set to 340 × 340 × 170 voxels with a spatial step
size of 0.5 mm. Among the optical NBPs employed as inputs of the simulation, the distributions
μa and μs for wavelengths of 757, 800, and 850 nm were downsampled using linear interpolation
(from a voxel size of 0.125 to 0.5 mm), and constant values g and n were averaged within breast
tissues. With these inputs, the distributions of optical fluence ϕwere simulated using 108 photons
per beam for a time duration of 5 ns.

The true p0 ¼ Γμaϕ at a voxel size of 0.25 mm [Fig. 7(b)] was calculated via elementwise
multiplication of μa and the simulated ϕ, assuming a constant Grüneisen parameter Γ ¼ 1, as is
commonly done for soft tissues.16,33 The μa and the simulated ϕ were downsampled (from a
voxel size of 0.125 to 0.25 mm) and upsampled (from a voxel size of 0.5 to 0.25 mm) via linear
interpolation, respectively. The MCX simulation at a coarser grid accompanied by the upsam-
pling not only is equivalent to smoothing the p0 in the acoustic wave propagation simulation to
reduce the amplitudes of the high spatial frequency components but also significantly reduces the
computation time of the MCX simulation.

In the simulation of acoustic wave propagation using the k-Wave toolbox and its GPU
code,25 the measurement geometry was configured based on the target system design
[Table 10] as explained above. The voxel size was set to the smallest possible, i.e.,
0.25 mm, given the measurement geometry and the use of an NVIDIA Tesla V100 GPU with
32 GB memory. The simulation domain size was set to 700 × 700 × 350 voxels. The acoustic
NBPs c, ρ, and α0 employed to simulate acoustic measurements were downsampled using linear
interpolation (from a voxel size of 0.125 to 0.25 mm). An anisotropic absorbing boundary layer,
known as a perfectly matched layer, was set to be outside the simulation domain to prevent

Table 9 Light delivery geometry of arc-shaped illuminators.

Parameter Description

Illuminator radius and central angle 145 mm, 80 deg

Number of illuminators 20

Number of fiber-optic segments 5 (linear shape) per illuminator

Light source 500 cone beams (5 per fiber segment ×5 segments per
view ×20 illuminator arcs) with a half-angle of 12.5 deg

Light direction Perpendicular to the linear fiber segment
toward the chest wall center

Table 10 Measurement geometry of the arc-shaped optoacoustic probe.

Parameter Description

Number of tomographic views 480

Scanning radius 85 mm

Probe central angle 80 deg

Number of transducer elements 108 per probe
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undesired acoustic reflection at the boundaries. A pressure wavefield generated by the simulated
p0 was virtually propagated based on the acoustic NBPs and measured by the virtual transducer
elements in the target imaging system.
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Data, Materials, and Code Availability
Eighty-four datasets (21 per breast type) have been publicly released on the Harvard
Dataverse.28,29,30 Each dataset includes a natural-28 or hemispherical-shaped anatomical
NBP29 with four NLPs inserted, which are composed solely of a VTC region, or a natural-shaped
anatomical NBP30 with two NLPs inserted, one with a necrotic core and PA region and the other
without, as described in Sec. 3.1; distributions of functional (c tHb;blood, s, f b , f w , f f , and f m), optical
(μa, μs, g, and n), and acoustic properties (c, ρ, α0, and y ), as described in Sec. 3.2; and simulated
multi-wavelength optical fluence, initial pressure, and OAT measurements, as explained in Sec. 5.
Our modified version of the VICTRE tool code package and the Python library SOA-NBP imple-
menting the methods presented in this work are available under CC0 and GPLv3 fromRefs. 26 and
27, respectively. Information on how to contribute to our toolkit and developer guidelines can be
found in Ref. 27.
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