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ABSTRACT. Significance: Imaging changes in subcellular structure is critical to understanding
cell behavior but labeling can be impractical for some specimens and may induce
artifacts. Although darkfield microscopy can reveal internal cell structures, it often
produces strong signals at cell edges that obscure intracellular details. By optically
eliminating the edge signal from darkfield images, we can resolve and quantify
changes to cell structure without labeling.

Aim: We introduce a computational darkfield imaging approach named quadrant
darkfield (QDF) to separate smaller cellular features from large structures, enabling
label-free imaging of cell organelles and structures in living cells.

Approach: Using a programmable LED array as the illumination source, we vary
the direction of illumination to encode additional information about the feature size
within cells. This is possible due to the varying levels of directional scattering
produced by features based on their sizes relative to the wavelength of light used.

Results: QDF successfully resolved small cellular features without interference
from larger structures. QDF signal is more consistent during cell shape changes
than traditional darkfield. QDF signals correlate with flow cytometry side scatter
measurements, effectively differentiating cells by organelle content.

Conclusions: QDF imaging enhances the study of subcellular structures in living
cells, offering improved quantification of organelle content compared with darkfield
without labels. This method can be simultaneously performed with other techniques
such as quantitative phase imaging to generate a multidimensional picture of living
cells in real-time.
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1 Introduction
Measuring dynamic reorganization in cellular structure and organelles is vital for the study of
disease progression and response to treatment.1–3 As cells switch phenotypes in response
to environmental or genetic signals, corresponding changes are observed in cellular compo-
nents including mitochondria,4 endoplasmic reticulum,5,6 Golgi apparatus,7 melanosomes,8,9
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microtubules,10–12 and the plasma membrane.13–15 These changes can be related to cellular events
such as necrosis,16 senescence,17 and the emergence of drug resistance.8 The quantification of
intracellular dynamics, therefore, serves as a critical indicator of a cell’s health, behavior, and
its response to therapeutic interventions.

Imaging approaches are commonly used to measure changes in subcellular structure. For
example, electron microscopy is commonly used to study details of organelle structure in fixed
cells8 but cannot quantify changes in living cells in real time. Fluorescence microscopy
has been widely used to study cell structure, including measurement of damage to plasma
membranes,15 measurements of melanosome maturation,18 localization of nuclei,19 and tracking
lysosomes during autophagy and other cell states.20,21 However, the need for a fluorescent mol-
ecule that binds to the specific target or for a cell to express a fluorescently tagged protein is one
of the limiting factors of fluorescence microscopy. In addition, labels can affect cell behavior
and the need for high-intensity illumination can cause phototoxicity, especially during live cell
imaging.22

Intrinsic scattering and autofluorescence can also be used for label-free imaging of cell
structures. Side scatter measurements in flow cytometry can be used to quantify changes in sub-
cellular structure without the need for fluorescent labels.23 Although forward scatter measure-
ments predominantly measure cell size, side scatter reflects the granularity of the internal
contents of the cell.23 However, flow cytometry cannot track changes in the same cell over
time.24 Raman spectroscopy utilizes the weak inelastic scattering of light that is dependent
on molecular composition to identify organelles and molecular composition within the cell, such
as nucleic acids, mitochondria, and endoplasmic reticulum.25 However, the Raman signal is
typically weak, necessitating the use of high-powered lasers or long exposure times to produce
sufficient signal-to-noise ratios.25 Light scattering spectroscopy (LSS) uses elastic backscattering
that is dependent on both wavelength and particle size to measure the concentration and size of
organelles.26–30 For example, the ability of LSS to measure the size of organelles and changes in
structure allowed for the detection of precancerous and malignant cells in multiple cancer
types.26,28,29 However, LSS is not an imaging technique and so cannot be used to study the locali-
zation of organelles inside cells. Autofluorescence is the natural phenomena of proteins emitting
light when excited using a suitable wavelength without the use of labels.31 However, the main
limitations of autofluorescence are the low signal that organelles produce, the need for a specific
wavelength of light for each organelle, and the limited number of organelles and structures that
are naturally fluorescent without labeling.31

Computational microscopy provides methods to measure the intrinsic contrast caused by
refractive index variation within cells. Multiple organelles, including lysosomes and mitochon-
dria, differ slightly in density and refractive index from the surrounding cytoplasm.32,33 This differ-
ence can be quantified using quantitative phase imaging (QPI)34 which measures phase shift as
light passes through the cell.35,36 One recent example used QPI to track lysosomes in living cells
without the use of fluorescent tags.32 Although the current trends and advances including using AI
to identify organelles are promising,37 tracking organelles can be difficult with two-dimensional
QPI due to the signal from overlapping cell components. Three-dimensional computational
methods such as Fourier ptychography,38 holography,39 or three-dimensional differential phase
contrast40 provide the needed information to resolve density or refractive index changes in each
3D voxel within the cells. However, these techniques require either tens of images per field of
view, limiting their temporal resolution and their ability to conduct high throughput experiments
in multi-well plates or the use of relatively more complex optical systems, hindering integration
with other techniques to provide multidimensional orthogonal data about the biological sample.

Some of the simplest techniques to study changes in cellular structure are brightfield and
darkfield imaging. Brightfield signal correlates with absorption which is usable in studying
organelles such as melanosomes that absorb light,41 but limited for other cell structures. On the
other hand, many subcellular features scatter light due to variations in refractive index between
organelles and cytoplasm.42 For cellular organelles (0.1 to 10 μm) imaged using visible light
(380 to 700 nm), this scattering is explained using Mie scattering theory23,43 and features within
this size range can be detected using darkfield imaging. Early uses of darkfield were to detect
contaminants in blood samples and to differentiate cell types due to its inherent contrast even
between objects close to the refractive index of the media used.44 Since then, darkfield has been
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used to quantitatively measure the size of red blood cells,45 to track in real-time respiratory
syncytial virus infecting cells using gold nanoparticles,46 to measure nanoparticle distribution
in lung cells,47 and to visualize and count sub-micron particles in suspension.48 When performing
darkfield using transillumination, larger features, such as the boundaries of cells, tend to have
higher signals. This is due to more directional refraction of light into the objective from large
features.43,49,50 As the feature size gets smaller, the light starts to scatter in a cone, bending more
light away from the objective and decreasing the signal. For a given wavelength, this cone keeps
growing as the feature size gets smaller leaving only a negligible amount of light to be collected
by the objective. This change is commonly used for sizing particles.49–51 In addition, the differ-
ence in directionality between larger and smaller objects means that illumination from different
directions can potentially resolve different features based on size.

In this paper, we develop a computational darkfield approach we call quadrant darkfield
(QDF). QDF differentially resolves smaller cellular features which scatter broadly as explained
by Mie scattering (∼λ) from larger features that more uniformly refract light (≫λ). This allows
imaging of small features of the cell such as cellular structures and organelles without interfer-
ence from larger structures such as cell edges. We demonstrate QDF on an inverted microscope
using a programmable LED array as the light source. This approach can be used simultaneously
with other modalities such as QPI to collect multimodal images of cells in standard multi-well
plates. Here, we demonstrate QDF’s ability to resolve features in polystyrene beads and both
pigmented melanoma cells and non-pigmented breast cancer cells. We demonstrate that QDF is
not impacted by changes in shape such as those that occur during cell division, in contrast to
traditional darkfield which is highly dependent on cell shape. Finally, we show concordance
between the QDF signal and side scatter from flow cytometry to differentiate melanoma cells
with different levels of pigmentation.

2 Materials and Methods

2.1 Darkfield and QDF Data Acquisition
QDF was performed on a custom-built microscope consisting of a 0.25 NA, 10× objective
(PLN 10×, Olympus, Japan), a monochrome 1920 × 1200 CMOS camera (GS3-U3-23S6M-C,
Teledyne FLIR, United States), and a 180 mm tube lens [Fig. 1(a)].52 The LED array was
illuminated between 1.05× to 1.33× NAobjective [Fig. 1(b)]. Four images were captured using
quadrant darkfield illumination patterns [Fig. 1(c)] at an exposure time of 220 ms and a gain
of 25 dB. Darkfield images were computed by summing the four quadrant images. For QDF
processing, the quadrant images were combined to compute the edge image, E, as

EQ-TARGET;temp:intralink-;e001;117;315E ¼ jTL − BRj þ jBL − TRj; (1)

where TL, BR, BL, and TR refer to images captured under top-left, bottom-right, bottom-left,
and top-right illumination, respectively [Fig. 1(b)]. All operations are performed pixel-wise. The
edge image was then subtracted from a scaled darkfield image to produce the QDF image

EQ-TARGET;temp:intralink-;e002;117;256QDF ¼ c × DF − E; (2)

where c is a scaling factor that is system-specific and determined experimentally to match
the darkfield signal at the edge of objects with the edge image and is typically in the range of
0.8 to 1.0 depending on the experimental setup (See discussion in the Supplementary Material).

2.2 QPI Data Acquisition
QPI was obtained using differential phase contrast (DPC) and reconstructed using Tikhonov
deconvolution.53,54 DPC images were captured with an exposure time of 50 ms, a gain of
25 dB, a coherence parameter of 1.25, and a regularization parameter of 4 × 10−3, which was
determined experimentally as described previously.52
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Fig. 1 (a) Schematic diagram of an inverted microscope with an LED array as a light source in a
darkfield illumination setup. (b) Bottom-up view of the LED array illumination pattern in a darkfield
with the numerical aperture of the objective superimposed. (c) The illumination pattern used for
each of the quadrants in QDF. (d) Diagram showing how light is directionally refracted by large
features according to Snell’s law (left) relative to how light is scattered when hitting a subcellular
feature according to Mie scattering theory (right). (e) Darkfield image of a melanoma PDX cell
(MTG021). (f) QDF image of the same cell from panel (e).
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2.3 Cell Culture

2.3.1 MDA-MB-231

MDA-MB-231 were acquired from ATCC (HTB-26, ATCC, United States) and passaged on
100 mm plates (12-567-650, Thermo Fisher Scientific, United States) in RPMI (11875093,
Thermo Fisher Scientific) with 10% FBS (10-437-028, Thermo Fisher Scientific) and 1%
Penicillin-Streptomycin (15-140-122, Thermo Fisher Scientific). For passaging, cells were
washed with Dulbecco’s phosphate-buffered saline (14-190-144, Thermo Fisher Scientific) and
then incubated with Trypsin (15-400-054, Thermo Fisher Scientific) at 37°C and 5% CO2 for
7 min followed by trypsin deactivation using RPMI medium at 1:1 ratio. The dissociated cell
suspension was centrifuged at 400 × g at room temperature for 4 min before resuspension in
RPMI medium and splitting at a 1:4 ratio.

2.3.2 MTG084 and MTG021

MTG084 (AM084) and MTG021 (ASM021) cells were previously generated from patient-derived
xenograft (PDX) models of melanoma (Huntsman Cancer Institute, Preclinical Research
Resource)55 and grown in AM3 media (80% MCDB153 (#M7403, Sigma, United States),
20% L-15 media (#11415-064, Thermo Fisher Scientific), 2.5% FBS (#FB5001-H, Thermo
Fisher Scientific), 1X Insulin-Transferrin-Selenium X (#51500-056, Thermo Fisher Scientific),
5 ng∕mL EGF, 0.2% BPE, 10 ng∕mL insulin-like growth factor, 5 μg∕mL transferrin,
3 ng∕mL BFGF, 3 μg∕mL heparin, 0.18 μg∕mL hydrocortisone, 10 nM endothelin 1, and
1.68 mM CaCl2) in 5% CO2 at 37°C.

2.4 Image Acquisition and Processing

2.4.1 Image acquisition

Cells were plated at 12,500 cells in each well of a 24-well plate (7000674, Greiner Bio-One,
Germany) for imaging. Cells were incubated for 24 h (MDA-MB-231) or 48 h (MTG021 and
MTG084) prior to imaging and placed inside the microscope incubator for 30 to 45 min prior to
imaging. Cells were imaged every 20 min with a single autofocus between imaging cycles to
account for thermal and z-stage drift. Nine imaging positions were chosen at the center of
each well to avoid scattering from the edges of the well.

2.4.2 QPI processing

QPI images were background corrected by masking cells and fitting an eighth-order polynomial to
background pixels that were subtracted from the raw phase image. Single cells were segmented
using a watershed algorithm, and cell dry mass was computed using a cell average-specific
refractive increment of 1.8 × 10−4 m3∕kg.35 Segmented cells were tracked over time using the
Crocker-Grier algorithm56 to aid in the detection of debris.

2.4.3 Darkfield image processing

Darkfield images were scaled down to 12 bits by dividing by 16 and rounding to the nearest
integer to match the camera bit depth. An image from an empty reference position was subtracted
from darkfield images to remove the background signal. An eighth-order polynomial fit was
removed from the background of masked quadrant and edge images.

2.5 Flow Cytometry
Cells were harvested using 0.05% trypsin (#25300054, Thermo Fisher Scientific) followed by
trypsin deactivation with 1:1 Soybean Trypsin Inhibitor (#17075029, Thermo Fisher Scientific).
The dissociated cell suspension was centrifuged at 500 g, 4°C, for 4 min, and resuspended in
ice-cold FACS buffer (0.1% BSA, 2.5% HEPES, in HBSS). Single-cell suspensions were
counted, diluted to 1 × 106 cells per 300 to 500 μl in ice-cold FACS buffer, and passed through
a 35 μm filter. Flow cytometry was performed using a BD FACS Aria sorter (BD, United States),
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BD Fortessa analyzer (BD, United States), and SONY SH800 sorter (SONY, Japan). SSC (Aria
and Fortessa)/BSC (SONY) analysis was conducted on single cells by gating to exclude debris
and doublets using a two-step doublet discrimination gating strategy first with FSC-A vs FSC-H
followed by SSC-A vs SSC-H or BSC-A vs BSC-H.

2.6 Statistics
Segmented objects were filtered using thresholds of area, track length, and averages of phase
shift, darkfield, and QDF to remove debris. Segmented cells were manually inspected to remove
the under-segmentation of multiple cells and the over-segmentation of single cells. A least-
squares linear regression was applied to QDF and darkfield signals against mass per area.
Linear fits were evaluated relative to the null hypothesis of a better fit to a flat line parallel
to the y-axis using an F-test with a p value of 0.05. Correlation between variables was computed
using the Pearson correlation coefficient in Matlab (Matlabs R2021a, Mathworks, United States).
Kullback-Leibler divergence was computed using the relativeEntropy function in Matlab
(Matlabs R2021a, Mathworks, United States). A two-sample t-test was computed using ttest2
function in Matlab (Matlabs R2021a, Mathworks, United States).

2.7 Signal-to-Noise Ratio Calculation
To quantify the signal, a threshold mask equal to 4× the 99th percentile of the background
signal in each image was applied to each QDF image. The intersection of single-cell labels and
the threshold mask is the QDF signal from puncta in each cell. The noise level is defined as the
standard deviation of the background signal outside masked cells. Results are reported as
mean ± standard deviation.

2.8 Bead Sample Preparation
20 μm diameter polystyrene beads (18329-5, Polysciences, United States) were embedded in
NOA73 (NOA73, Norland Products, United States) sandwiched between a standard microscope
slide (12-544-4, Fisher scientific, United States) and a no. 1.5 cover glass (22-037-082, Fisher
scientific) and cured under ultraviolet radiation (IntelliRay, Uvitron, United States).

2.9 Digital Edge Detection
Each image was filtered using a Gaussian filter with a standard deviation of two pixels. A Sobel
or Canny filter was applied with varying thresholds. A dilation structure was used to expand the
binary mask with varying sizes.

3 Results
The use of an LED array as an illumination source [Fig. 1(a)] enables the display of different
illumination schemes, such as a ring of LEDs outside the numerical aperture of the objective lens
for darkfield imaging [Fig. 1(b)].53 In QDF, this darkfield illumination ring is divided into
four quadrants [Fig. 1(c)]. This setting allows each image acquired under a unique quadrant ring
illumination pattern to capture angle-specific interactions with the sample. In living cells, there
are two main types of scattering based on the relative size of the cellular feature to the wavelength
of light used for imaging. Features much larger than the wavelength, e.g., the outer cell mem-
brane act as lenses that primarily refract light. Thus, the path of light can be predicted by classical
optics [Snell’s Law, Fig. 1(d)]. For features close in size to the wavelength, e.g., sub-cellular
puncta or organelles, the path of light can be explained by Mie scattering theory [Fig. 1(d)].
Features of both sizes generate a sufficient signal to be captured in the darkfield [Fig. 1(e)].
However, the larger features (e.g., cell boundaries) often obscure the smaller features (e.g., organ-
elles), especially near cell edges. QDF separates the darkfield signal based on the directionality of
light allowing for a cleaner image of sub-cellular features [Fig. 1(f)].

To validate feature differentiation with QDF, we embedded 20 μm polystyrene beads into an
optical adhesive for use as an imaging phantom. When imaged in darkfield, these beads behave
as spherical lenses with the center rays passing straight through and the edges refracting light,
resulting in the bead edges appearing as a bright ring [Fig. 2(a)]. In most beads, some weaker
signals inside and outside the bead due to diffraction around the bead as well as light from other
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out-of-focus sections of the bead are also observed [Fig. 2(b)]. Under asymmetric quadrant illu-
mination, we observe light being refracted by the opposing quarter of the bead [Figs. 2(c)–2(d)].
When we combine the quadrants into an edge image [Eq. (1)], the edges of the bead are captured
clearly [Fig. 2(e)]. Subtraction of this edge image in QDF removes nearly all the signal from
most beads [Fig. 2(f)]. Some residual signal remains, possibly due to diffraction from the edge of
the object opposite to the edge that is visible due to scattered light. This is accounted for by the
scaling factor, c, in the QDF image calculation [Eq. (2) and Supplementary Material]. We also
observed a number of beads with imperfections, possibly due to material deformations or the
accumulation of impurities as the beads dry on top of the glass slide.57 Looking closer at an
imperfect bead [Fig. 2(g)], darkfield imaging shows both the imperfection as well as the bead
edge. Under asymmetric quadrant illumination, the imperfection is always present in all images
along with the opposing edge [Figs. 2(h), 2(i)]. This validates that the signal from the smaller
features is less directionally dependent on the angle of illumination in the darkfield when com-
pared with the signal from the edges. Thus, when the quadrant images are combined [Eq. (1)],

Fig. 2 (a) Full field of view image of 20 μm polystyrene beads in darkfield. (b) Zoomed in darkfield
image of a clean bead. (c) Top-left illuminated quadrant image of the clean bead. (d) Bottom-right
illuminated quadrant image of the clean bead. (e) The resulting edge image from combining the
four quadrants. (f) QDF image of the clean bead. (g) Zoomed-in image of the imperfect bead. The
arrow highlights visible imperfections. (h) Top-left illuminated quadrant image of the imperfect
bead. (i) Bottom-right illuminated quadrant image of the imperfect bead. (j) The resulting edge
image from combining the four quadrants. (k) QDF image of the imperfect bead. Red and blue
boxes in panel (a) correspond to fields of view in panels (b)–(f) and (g)–(k), respectively.
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the resulting edge image primarily has a signal from the edges. When the QDF image is com-
puted, the imperfections at the center of the bead are observed clearly without being obscured by
signal from the edges [Fig. 2(k)]. QDF is fundamentally based on optical edge detection and
removal; therefore, we also compared QDF with digital edge detection methods with Canny
and Sobel filters. We find that compared with digital edge detection methods, QDF more con-
sistently detects edges of polystyrene beads and reveals structures such as imperfections within
them (Fig. S1 in the Supplementary Material).

Next, we applied QDF to a melanoma cell line, as they have an abundance of melanosomes,
pigment-producing lysosome-related organelles, with a size range between ∼100 nm and
1 μm.9,58 Within this size range, Mie theory predicts that QDF will be able to separate subcellular
features from cell edges due to the broad directionality of scattering from organelles relative to
the directional uniform scattering at cell boundaries. We additionally imaged the cells using QPI
to aid in segmenting the cells [Fig. 3(a)]. In darkfield, cells show varied signals based on shape
and cellular content with more rounded cells producing higher signals from the edges [Fig. 3(b)].
Using QDF, we were able to differentiate smaller features within cells from cell edges giving
a clear view of puncta inside the cells. QPI also quantifies the dry mass of cells and helps differ-
entiate flat from more rounded cells based on the density at each pixel59 [Fig. 3(d)]. When we
view two cells with high mass density (reflecting cell rounding) and low mass density (reflecting
a flatter cell morphology) in darkfield, the difference in signal from cell edges is apparent
[Fig. 3(e)]. In these same cells, the edge image [Eq. (1)] shows the edge of each cell [Fig. 3(f)].
The resulting QDF image shows a much greater contrast in intracellular puncta [Fig. 3(g)].
In addition, we characterized the signal-to-noise ratio (SNR) of individual puncta resolved by
QDF in MTG021 as 31� 6 (Fig. S2 in the Supplementary Material). In MTG084, an additional
melanoma cell line with different pigmentation, the QDF SNR was 24� 5.

One of the issues with using traditional darkfield imaging for longitudinal tracking of sub-
cellular features is the dependency of the signal from cell edges on the shape of the cell. Cell
morphology changes naturally throughout the cell cycle. For example, adherent cells become
rounded just prior to cell division.60,61 To validate QDF signal independence from shape, we
imaged a breast cancer cell line that does not contain melanosomes [Fig. 4(a)].

As an example of the shape changes that occur during cell cycle progression, we followed
one individual cell as it changes shape from flat to rounded over 40 min [Fig. 4(b)]. In darkfield,
the signal increases significantly due to the additional lensing effect of the rounded edges of the
cell [Fig. 4(c)]. By looking at the computed edge images [Eq. (1)], the difference in the brightness

Fig. 3 Melanoma cell line MTG021 imaged via (a) QPI, (b) darkfield, and (c) QDF. (d) QPI of two
adjacent cells of varying shape and mass density from the outlined region in panel (a). (e) Darkfield
image of these cells. (f) Edge image resulting from the quadrant image processing. (g) Resulting
QDF image of the two cells.
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of the edges is drastic [Fig. 4(d)]. In the resulting QDF images, the density of the signal increases
more moderately as the puncta are pulled closer to each other [Fig. 4(e)]. During this transition,
the total darkfield signal increased by 40%. On the other hand, the total QDF signal change was
5%. This is within the accuracy limits of our system, reflecting that the total organelle content of
the cell did not appreciably change over this period. When analyzing the QDF and darkfield
signal on a population basis, the dependency of darkfield on shape, as measured using mass
per area,59 is clear (Fig. S3 in the Supplementary Material). QDF does show a weak dependency
on the mass per area, potentially due to an increase in mass resulting in an increase in scattering
organelle content. This is confirmed by looking at darkfield and QDF signal per mass against

Fig. 4 (a) Phase images of MDA-MB-231 breast cancer cells, (b) darkfield images, (c) edge
images, and (d) QDF images. Sub-images in panels (b)–(e) correspond to black-boxed cells in
panel (a). (e) Scatter plot of darkfield (dark blue) and QDF (dark yellow) per mass (y -axis) against
mass per area (x -axis) as a proxy of shape change. Larger points are the average within bins of
0.1 pg∕μm2. Error bars show the standard deviation within each bin. Lines show linear fits to the
data as an indication of the overall trend (solid: darkfield, DF; dashed: QDF).
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mass per area [Fig. 4(f)]. When fitted with a linear fit, these data indicate that the darkfield signal
is significantly more dependent on cell shape than QDF (Pearson’s correlation coefficient, R, for
darkfield = 0.39 and for QDF = 0.02; Goodness of fit, R2, for darkfield = 0.15 and for
QDF ¼ 6.1 × 10−4). When plotting QDF against mass (Fig. S4 in the Supplementary Material),
QDF shows a strong dependency on mass (RQDF ¼ 0.60). However, this dependency is not
perfectly linear. As with polystyrene beads, we applied digital edge detection based on
Sobel and Canny filters to cells. Again, we find that digital edge detection failed to successfully
separate edges and puncta (Fig. S5 in the Supplementary Material), with generally worse
performance than observed in polystyrene beads (Fig. S1 in the Supplementary Material).
This is possibly due to the closer match in darkfield signal intensity between edges and intra-
cellular features than observed between bead edges and smaller features within beads. A close
match in edge and intracellular signals makes it more difficult to choose filter parameters that
accurately segment cell edges and do not also obscure intracellular features. This highlights the
utility of QDF, which detects edges based on optical properties of cell boundaries.

Finally, we examined the use of QDF to differentiate pigmentation in melanoma cell lines
with varying levels of pigmentation [Fig. 5(a)]. Flow cytometry was able to differentiate the two
cell lines based on side scatter [Figs. 5(b), S6 in the Supplementary Material]. In QDF images of
the two cell lines, the difference in puncta can clearly be seen [Fig. 5(c)]. Total QDF was also able
to differentiate the two different cell lines [Fig. 5(d)], similar to flow cytometry. On the other
hand, darkfield shows significantly more overlap between the two cell lines when compared to
QDF (Fig. S7 in the Supplementary Material) and cannot localize puncta as clearly as QDF
[Fig. 1(e), 1(f), and Fig. S8 in the Supplementary Material]. We performed a two-sample t-test
to compare means of the two populations of cells and found a p-value of 2 × 10−113 for QDF and
a p-value of 0.71 for darkfield. In addition, to estimate the differences between the distributions
of QDF and darkfield signal, we computed relative entropy based on Kullback-Leibler diver-
gence, DKL, which measures the difference between two probability density functions. A larger
DKL indicates a larger difference in the distributions. We found that DKL, for QDF ¼ 8.4 × 10−2

Fig. 5 (a) Cell pellets of two melanoma cell lines with significant differences in pigmentation.
(b) Distributions of side scatter measurements from flow cytometry for the two cell lines.
(c) QDF and QPI images of example cells for each cell line. (d) Distributions of QDFmeasurements
of the two cell lines.
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and DKL for darkfield ¼ 0.41 × 10−2 indicating the increased separation between distributions
from MTG084 and MTG021 when using QDF as compared with darkfield.

4 Discussion and Conclusion
Here, we demonstrated QDF as a label-free technique for imaging sub-cellular puncta. Unlike
darkfield, QDF signal does not depend on cell shape providing a more reliable quantitative meas-
urement of sub-cellular structure. We also find that QDF is superior to digital edge detection,
especially when applied to cells. In addition, the edge measurement used to compute QDF
images can be used as a fast indicator for shape change to signal stress or cell cycle events such
as division. This can potentially aid in better cell lineage tracking over time. We also demon-
strated that QDF can be used to measure pigment-containing melanosomes within melanoma cell
lines, with correlation to flow cytometry.

It should also be noted that QDF shares some limitations with darkfield. These limitations
include the need for alignment to avoid stray light, the use of a bright illumination source for
increased SNR, and the imaging of thin samples to avoid scattering from out-of-focus layers.
QDF is diffraction-limited, just as for conventional darkfield or brightfield imaging. Based on
Mie theory, the minimum size of observable particles with QDF is approximately one-fifth of the
wavelength of light used due to a sharp drop in scattering signal beyond this point.43,62 Here, we
demonstrated QDF’s ability to separate large and small cellular features based on their interaction
with light and showed a correlation with flow cytometry in the measurement of organelle content.
However, as with many other label-free methods such as QPI or phase contrast, QDF lacks the
specificity required to differentiate different kinds of puncta and organelles. Therefore, future
work should incorporate additional modalities that are capable of labeling specific organelles,
such as fluorescence, to more conclusively identify the source of the QDF signal.

As a computational imaging technique, QDF is relatively low to moderate in complexity.
In contrast to 3D ptychographic methods which require hundreds of images to be captured,40,63,64

QDF differentiates subcellular structures using four images. This enables the use of QDF for
applications requiring high throughput, such as drug screening applications.65

We showed that QDF was able to distinguish puncta inside cells of different masses (Fig. 3)
and from different origins including a breast cancer cell line and a non-pigmented melanoma line
[Figs. 4(c), 5(c)]. The ability of QDF to monitor subcellular heterogeneity within a single pop-
ulation [Figs. 4(f), 5(d)] is of great potential as an indicator of emerging resistance in melanoma.8

QDF signal in more mature cells showed brighter puncta which can potentially be used to track
melanosomematuration.9 In addition, QDF can be performed simultaneously with QPI to increase
the dimensionality of the data which can improve phenotype-based drug response assays.65

Compared with flow cytometry, QDF is inherently an imaging technique that produces
detailed images of cells. These images can be used to study subcellular dynamics over
time.66 QDF can be integrated with other modalities, including fluorescence imaging, for better
characterization of cellular puncta.

Disclosures
The authors declare no conflict of interest regarding this work.

Code and Data Availability
Data and code are publicly available to recreate the findings of this paper. Associated data is
available at doi: https://doi.org/10.5281/zenodo.13227201. The code is available at github.com/
Zangle-Lab/QDF.

Acknowledgments
This paper was supported by grants from the National Cancer Institute of the National Institutes of
Health (Grant No. 1R01CA276653, TAZ, and RLJT), DoD CDMRP (Grant No. W81XWH2210495,
RLB), and the University of Utah (1U4U Grant, TAZ, and RLJT). We utilized the Huntsman Cancer
Institute Shared Resource for Preclinical Research Resource and funding from the Cell Response

Moustafa et al.: Quadrant darkfield for label-free imaging of intracellular puncta

Journal of Biomedical Optics 116501-11 November 2024 • Vol. 29(11)

https://doi.org/10.5281/zenodo.13227201
https://doi.org/10.5281/zenodo.13227201
https://doi.org/10.5281/zenodo.13227201
https://doi.org/10.5281/zenodo.13227201
https://github.com/Zangle-Lab/QDF
https://github.com/Zangle-Lab/QDF


and Regulation Program (TAZ and RLJT), both supported by the National Cancer Institute of the
National Institutes of Health (Award No. P30CA042014).

References
1. S. M. Shaffer et al., “Rare cell variability and drug-induced reprogramming as a mode of cancer drug

resistance,” Nature 546(7658), 431–435 (2017).
2. E. Danielson and S. H. Lee, “SynPAnal: software for rapid quantification of the density and intensity of

protein puncta from fluorescence microscopy images of neurons,” PLoS One 9(12), e115298 (2014).
3. E. van der Pol et al., “Single vs. swarm detection of microparticles and exosomes by flow cytometry,”

J. Thromb. Haemost. 10(5), 919–930 (2012).
4. E. Bahar et al., “Chemotherapy resistance: role of mitochondrial and autophagic components,” Cancers

14(6), 1462 (2022).
5. S. Moon et al., “Spectrally resolved, functional super-resolution microscopy reveals nanoscale compositional

heterogeneity in live-cell membranes,” J. Am. Chem. Soc. 139(32), 10944–10947 (2017).
6. D. S. Schwarz and M. D. Blower, “The endoplasmic reticulum: structure, function and response to cellular

signaling,” Cell Mol. Life Sci. 73(1), 79–94 (2016).
7. R. Bajaj et al., “Dance of the Golgi: understanding Golgi dynamics in cancer metastasis,” Cells 11(9), 1484

(2022).
8. K. G. Chen et al., “Influence of melanosome dynamics on melanoma drug sensitivity,” J. Natl. Cancer Inst.

101(18), 1259–1271 (2009).
9. M. d’Ischia et al., “Melanins and melanogenesis: from pigment cells to human health and technological

applications,” Pigment Cell Melanoma Res. 28(5), 520–544 (2015).
10. I. B. Alieva et al., “The leading role of microtubules in endothelial barrier dysfunction: disassembly

of peripheral microtubules leaves behind the cytoskeletal reorganization,” J. Cell Biochem. 114(10),
2258–2272 (2013).

11. D. B. Jaunky et al., “Characterization of a recently synthesized microtubule-targeting compound that disrupts
mitotic spindle poles in human cells,” Sci. Rep. 11(1), 23665 (2021).

12. A. Weber et al., “Microtubule disruption changes endothelial cell mechanics and adhesion,” Sci. Rep.
9(1), 14903 (2019).

13. C. Dias and J. Nylandsted, “Plasma membrane integrity in health and disease: significance and therapeutic
potential,” Cell Discov. 7(1), 4 (2021).

14. R. Itri et al., “Membrane changes under oxidative stress: the impact of oxidized lipids,” Biophys. Rev.
6(1), 47–61 (2014).

15. K. Nakajima et al., “Changes in plasma membrane damage inducing cell death after treatment with near-
infrared photoimmunotherapy,” Cancer Sci. 109(9), 2889–2896 (2018).

16. C. Divei et al., “Analysis and discrimination of necrosis and apoptosis (programmed cell death) by multi-
parameter flow cytometry,” Biochim. Biophys. Acta (BBA) - Mol. Cell Res. 1133(3), 275–285 (1992).

17. S. W. Sherwood et al., “Defining cellular senescence in IMR-90 cells: a flow cytometric analysis,” Proc. Natl.
Acad. Sci. U. S. A. 85(23), 9086–9090 (1988).

18. S. Benito-Martínez et al., “Research techniques made simple: cell biology methods for the analysis of
pigmentation,” J. Invest Dermatol. 140(2), 257–268.e8 (2020).

19. B. I. Tarnowski, F. G. Spinale, and J. H. Nicholson, “DAPI as a useful stain for nuclear quantitation,” Biotech.
Histochem. 66(6), 296–302 (1991).

20. T. Haller et al., “The lysosomal compartment as intracellular calcium store in MDCK cells: a possible
involvement in InsP3-mediated Ca2+ release,” Cell Calc. 19(2), 157–165 (1996).

21. Y. S. Rajawat, Z. Hilioti, and I. Bossis, “Aging: central role for autophagy and the lysosomal degradative
system,” Ageing Res. Rev. 8(3), 199–213 (2009).

22. A. Ettinger and T. Wittmann, “Fluorescence live cell imaging,” Methods Cell Biol. 123, 77–94 (2014).
23. K. M. McKinnon, “Flow cytometry: an overview,” Curr. Protoc. Immunol. 120, 5.1.1–5.1.11 (2018).
24. K. Minoura et al., “Model-based cell clustering and population tracking for time-series flow cytometry data,”

BMC Bioinf. 20(Suppl. 23), 633 (2019).
25. S. Siddhanta et al., “Advances in Raman spectroscopy and imaging for biomedical research,” Adv. Opt.

Photonics 15(2), 318–384 (2023).
26. V. Backman et al., “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular

structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
27. I. Itzkan et al., “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in

live cells with no exogenous labels,” Proc. Natl. Acad. Sci. U. S. A. 104(44), 17255–17260 (2007).
28. L. Zhang et al., “Light scattering spectroscopy identifies the malignant potential of pancreatic cysts during

endoscopy,” Nat. Biomed. Eng. 1, 0040 (2017).
29. L. T. Perelman et al., “Observation of periodic fine structure in reflectance from biological tissue: a new

technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).

Moustafa et al.: Quadrant darkfield for label-free imaging of intracellular puncta

Journal of Biomedical Optics 116501-12 November 2024 • Vol. 29(11)

https://doi.org/10.1038/nature22794
https://doi.org/10.1371/journal.pone.0115298
https://doi.org/10.1111/j.1538-7836.2012.04683.x
https://doi.org/10.3390/cancers14061462
https://doi.org/10.1021/jacs.7b03846
https://doi.org/10.1007/s00018-015-2052-6
https://doi.org/10.3390/cells11091484
https://doi.org/10.1093/jnci/djp259
https://doi.org/10.1111/pcmr.12393
https://doi.org/10.1002/jcb.24575
https://doi.org/10.1038/s41598-021-03076-3
https://doi.org/10.1038/s41598-019-51024-z
https://doi.org/10.1038/s41421-020-00233-2
https://doi.org/10.1007/s12551-013-0128-9
https://doi.org/10.1111/cas.13713
https://doi.org/10.1016/0167-4889(92)90048-g
https://doi.org/10.1073/pnas.85.23.9086
https://doi.org/10.1073/pnas.85.23.9086
https://doi.org/10.1016/j.jid.2019.12.002
https://doi.org/10.3109/10520299109109990
https://doi.org/10.3109/10520299109109990
https://doi.org/10.1016/S0143-4160(96)90084-6
https://doi.org/10.1016/j.arr.2009.05.001
https://doi.org/10.1016/b978-0-12-420138-5.00005-7
https://doi.org/10.1002/cpim.40
https://doi.org/10.1186/s12859-019-3294-3
https://doi.org/10.1364/AOP.479884
https://doi.org/10.1364/AOP.479884
https://doi.org/10.1109/2944.796325
https://doi.org/10.1073/pnas.0708669104
https://doi.org/10.1038/s41551-017-0040
https://doi.org/10.1103/PhysRevLett.80.627


30. J. R. Mourant et al., “Predictions and measurements of scattering and absorption over broadwavelength
ranges in tissue phantoms,” Appl. Opt. 36(4), 949–957 (1997).

31. A. C. Croce and G. Bottiroli, “Autofluorescence spectroscopy and imaging: a tool for biomedical research
and diagnosis,” Eur. J. Histochem. 58(4), 2461 (2014).

32. G. Giugliano et al., “Investigation on lysosomal accumulation by a quantitative analysis of 2D phase-maps in
digital holography microscopy,” Cytometry Part A 105(5), 323–331 (2024).

33. R. M. Pasternack, J. Y. Zheng, and N. N. Boustany, “Optical scatter changes at the onset of apoptosis are
spatially associated with mitochondria,” J. Biomed. Opt. 15(4), 040504 (2010).

34. T. L. Nguyen et al., “Quantitative phase imaging: recent advances and expanding potential in biomedicine,”
ACS Nano 16(8), 11516–11544 (2022).

35. T. A. Zangle and M. A. Teitell, “Live-cell mass profiling: an emerging approach in quantitative biophysics,”
Nat. Methods 11(12), 1221–1228 (2014).

36. Y. Park, C. Depeursinge, and G. Popescu, “Quantitative phase imaging in biomedicine,” Nat. Photonics
12(10), 578–589 (2018).

37. J. Park et al., “Artificial intelligence-enabled quantitative phase imaging methods for life sciences,” Nat.
Methods 20(11), 1645–1660 (2023).

38. G. Zheng et al., “Concept, implementations and applications of Fourier ptychography,” Nat. Rev. Phys.
3(3), 207–223 (2021).

39. Z. Huang and L. Cao, “Quantitative phase imaging based on holography: trends and new perspectives,”
Light Sci. Appl. 13(1), 145 (2024).

40. M. Chen, L. Tian, and L. Waller, “3D differential phase contrast microscopy,” Biomed. Opt. Express
7(10), 3940–3950 (2016).

41. N. G. Crawford et al., “Loci associated with skin pigmentation identified in African populations,” Science
358(6365), eaan8433 (2017).

42. O. C. Marina, C. K. Sanders, and J. R. Mourant, “Correlating light scattering with internal cellular struc-
tures,” Biomed. Opt. Express 3, 296–312 (2012).

43. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys., Lpz. 330(3),
377–445 (1908).

44. S. H. Gage, “Modern dark-field microscopy and the history of its development,” Trans. Am. Microsc. Soc.
39(2), 95–141 (1920).

45. X. Chen et al., “Nanometer precise red blood cell sizing using a cost-effective quantitative dark field imaging
system,” Biomed. Opt. Express 11(10), 5950–5966 (2020).

46. X.-Y. Wan et al., “Real-time light scattering tracking of gold nanoparticles- bioconjugated respiratory
syncytial virus infecting HEp-2 cells,” Sci. Rep. 4(1), 4529 (2014).

47. L. Veith et al., “Distribution of paramagnetic Fe2O3∕SiO2–core/shell nanoparticles in the rat lung studied by
time-of-flight secondary ion mass spectrometry: no indication for rapid lipid adsorption,” Nanomaterials
8(8), 571 (2018).

48. A. I. Abdel-Fattah, M. S. El-Genk, and P. W. Reimus, “On visualization of sub-micron particles with
dark-field light microscopy,” J. Colloid Interface Sci. 246(2), 410–412 (2002).

49. H. Lindner, G. Fritz, and O. Glatter, “Measurements on concentrated oil in water emulsions using static light
scattering,” J. Colloid Interface Sci. 242(1), 239–246 (2001).

50. H. G. Merkus, Particle Size Measurements: Fundamentals, Practice, Quality, Springer, Dordrecht (2009).
51. V. Backman et al., “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,”

IEEE J. Sel. Top. Quantum Electron. 7(6), 887–893 (2001).
52. T. E. Moustafa et al., “Fabrication and validation of an LED array microscope for multimodal, quantitative

imaging,” HardwareX 13, e00399 (2023).
53. Z. Liu et al., “Real-time brightfield, darkfield, and phase contrast imaging in a light-emitting diode array

microscope,” J. Biomed. Opt. 19(10), 106002 (2014).
54. L. Tian and L. Waller, “Quantitative differential phase contrast imaging in an LED array microscope,”

Opt. Express 23(9), 11394–11403 (2015).
55. E. A. Smith et al., “Receptor tyrosine kinase inhibition leads to regression of acral melanoma by targeting

the tumor microenvironment,” J. Exp. Clin. Cancer Res. (2024).
56. J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid

Interface Sci. 179(1), 298–310 (1996).
57. J. C. Contreras-Naranjo and V. M. Ugaz, “A nanometre-scale resolution interference-based probe of inter-

facial phenomena between microscopic objects and surfaces,” Nat. Commun. 4(1), 1919 (2013).
58. W. Song et al., “Wavelength-dependent optical properties of melanosomes in retinal pigmented epithelium

and their changes with melanin bleaching: a numerical study,” Biomed. Opt. Express 8(9), 3966–3980
(2017).

59. D. Huang et al., “Identifying fates of cancer cells exposed to mitotic inhibitors by quantitative phase
imaging,” Analyst 145(1), 97–106 (2019).

Moustafa et al.: Quadrant darkfield for label-free imaging of intracellular puncta

Journal of Biomedical Optics 116501-13 November 2024 • Vol. 29(11)

https://doi.org/10.1364/AO.36.000949
https://doi.org/10.4081/ejh.2014.2461
https://doi.org/10.1002/cyto.a.24833
https://doi.org/10.1117/1.3467501
https://doi.org/10.1021/acsnano.1c11507
https://doi.org/10.1038/nmeth.3175
https://doi.org/10.1038/s41566-018-0253-x
https://doi.org/10.1038/s41592-023-02041-4
https://doi.org/10.1038/s41592-023-02041-4
https://doi.org/10.1038/s42254-021-00280-y
https://doi.org/10.1038/s41377-024-01453-x
https://doi.org/10.1364/BOE.7.003940
https://doi.org/10.1126/science.aan8433
https://doi.org/10.1364/BOE.3.000296
https://doi.org/10.1002/andp.19083300302
https://doi.org/10.2307/3221838
https://doi.org/10.1364/BOE.405510
https://doi.org/10.1038/srep04529
https://doi.org/10.3390/nano8080571
https://doi.org/10.1006/jcis.2001.7922
https://doi.org/10.1006/jcis.2001.7754
https://doi.org/10.1109/2944.983289
https://doi.org/10.1016/j.ohx.2023.e00399
https://doi.org/10.1117/1.JBO.19.10.106002
https://doi.org/10.1364/OE.23.011394
https://doi.org/10.1101/2024.06.15.599116
https://doi.org/10.1006/jcis.1996.0217
https://doi.org/10.1006/jcis.1996.0217
https://doi.org/10.1038/ncomms2865
https://doi.org/10.1364/BOE.8.003966
https://doi.org/10.1039/C9AN01346F


60. T. J. Mitchison and E. D. Salmon, “Mitosis: a history of division,” Nat. Cell Biol. 3(1), E17–E21 (2001).
61. A. Nyga et al., “Dynamics of cell rounding during detachment,” iScience 26(5), 106696 (2023).
62. J. Moore and E. Cerasoli, “Particle light scattering methods and applications,” in Encyclopedia of

Spectroscopy and Spectrometry (Second Edition), J. C. Lindon, Ed., pp. 2077–2088, Academic Press,
Oxford (2010).

63. H. Wang et al., “Fourier ptychographic topography,” Opt. Express 31(7), 11007–11018 (2023).
64. R. Horstmeyer et al., “Diffraction tomography with Fourier ptychography,” Optica 3(8), 827–835 (2016).
65. E. R. Polanco et al., “Multiparametric quantitative phase imaging for real-time, single cell, drug screening in

breast cancer,” Commun. Biol. 5, 794 (2022).
66. S. Pradeep and T. A. Zangle, “Quantitative phase velocimetry measures bulk intracellular transport of

cell mass during the cell cycle,” Sci. Rep. 12(1), 6074 (2022).

Tarek Moustafa is a PhD candidate in the Department of Chemical Engineering at the
University of Utah. In 2018, he received his BSc in energy and bioprocess engineering from
Zewail City of Science and Technology in Egypt. In 2019 he joined the Zangle lab. His research
focuses on the development and applications of label-free imaging techniques to study single-cell
behavior in real time.

Rachel L. Belote is an assistant professor in the Department of Molecular Genetics at The Ohio
State University. She earned a BS in biochemistry from Rutgers University in 2008 and a PhD in
cellular biophysics from Rockefeller University in 2016, followed by postdoctoral training at the
Huntsman Cancer Institute, University of Utah. Her research investigates how cellular hetero-
geneity contributes to functional diversification within cell types in organ health and disease.

Edward R. Polanco is currently a materials science engineer at Gentex Corporation developing
new processes for fabricating organic semiconducting materials. He started his career at UCLA
where he studied the relationship between the biophysical properties of cancer cells and
metastatic potential. Afterward, he pursued a PhD at the University of Utah where he designed
a high-throughput platform for studying the heterogeneous response of cancer cells to therapy
using both cell lines and primary cells.

Robert L. Judson-Torres is an associate professor in the Department of Dermatology and a
Huntsman Cancer Institute Investigator at the University of Utah. He received his PhD in 2012
in biomedical sciences from the University of California, San Francisco, and began an NIH
Director’s Early Independence Fellowship in 2014. His research focuses on integrating
single-cell-omics to understand the mechanisms of skin cancer initiation and progression.

Thomas A. Zangle is an associate professor in the Department of Chemical Engineering at the
University of Utah and a member of the Huntsman Cancer Institute. He received his MS in 2007
and PhD in 2010 in mechanical engineering from Stanford University before postdoctoral
training in the Department of Pathology at UCLA. His research focuses on the application of
quantitative imaging to study cell biology and measure cancer cell response to therapy.

Moustafa et al.: Quadrant darkfield for label-free imaging of intracellular puncta

Journal of Biomedical Optics 116501-14 November 2024 • Vol. 29(11)

https://doi.org/10.1038/35050656
https://doi.org/10.1016/j.isci.2023.106696
https://doi.org/10.1364/OE.481712
https://doi.org/10.1364/OPTICA.3.000827
https://doi.org/10.1038/s42003-022-03759-1
https://doi.org/10.1038/s41598-022-10000-w

