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ABSTRACT. Significance: Imaging blood oxygen saturation (SO2) in the skin can be of clinical
value when studying ischemic tissue. Emerging multispectral snapshot cameras
enable real-time imaging but are limited by slow analysis when using inverse
Monte Carlo (MC), the gold standard for analyzing multispectral data. Using artificial
neural networks (ANNs) facilitates a significantly faster analysis but requires a large
amount of high-quality training data from a wide range of tissue types for a precise
estimation of SO2.

Aim: We aim to develop a framework for training ANNs that estimates SO2 in real
time from multispectral data with a precision comparable to inverse MC.

Approach: ANNs are trained using synthetic data from a model that includes MC
simulations of light propagation in tissue and hardware characteristics. The model
includes physiologically relevant variations in optical properties, unique sensor char-
acteristics, variations in illumination spectrum, and detector noise. This approach
enables a rapid way of generating high-quality training data that covers different
tissue types and skin pigmentation.

Results: The ANN implementation analyzes an image in 0.11 s, which is at least
10,000 times faster than inverse MC. The hardware modeling is significantly
improved by an in-house calibration of the sensor spectral response. An in-vivo
example shows that inverse MC and ANN give almost identical SO2 values with
a mean absolute deviation of 1.3%-units.

Conclusions: ANN can replace inverse MC and enable real-time imaging of
microcirculatory SO2 in the skin if detailed and precise modeling of both tissue and
hardware is used when generating training data.
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1 Introduction
Blood oxygen saturation (SO2) is defined as the fraction of oxygen-saturated hemoglobin. Arterial
SO2 can be monitored through pulse oximetry (PO) and provides information on how well
the lungs oxygenate blood.1 Peripherally, the lack of significant blood pulsations makes PO
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insensitive to microvascular SO2. Instead, transcutaneous oximetry (tcpO2) can be used to mea-
sure the locally available free oxygen that has diffused from the microvascular blood.2 The tcpO2

is a technique that only measures slow changes in one point. Spectroscopic optical techniques,
including near-infrared spectroscopy3 (NIRS) and diffuse reflectance spectroscopy4,5 (DRS),
allow for the fast and direct assessment of local SO2 levels in the microcirculation and smaller
vessels. Due to a superficial sampling depth for DRS in the visible wavelength range, compared
with NIRS, DRS mainly monitors capillary and upper dermis microvascular vessels, whereas
NIRS includes deeper and larger vessels when measuring skin tissue.6

Microvascular networks are spatially heterogeneous and complex structures of arterioles,
capillaries, and venules connecting the arterial and venous systems. Blood flow in the network
varies temporally due to local regulatory and metabolic requirements of surrounding tissues and
cells.7 Regulation involves adjusting organ perfusion to facilitate the oxygen exchange and
carbon dioxide removal; the transport of hormones, nutrients, and drugs; and the immune
response, among other functions. The local microvascular SO2 is hence a marker for tissue viabil-
ity and could be used for studying different peripheral vascular diseases.8–11

Braverman et al.12 and Tenland et al.13 showed spatial heterogeneity in the microvasculature
in healthy skin by studying variations in measured microcirculatory perfusion using single-point
methods. The exact measurement position may, therefore, have a significant impact when deter-
mining skin microcirculatory disorders and regulation. Hence, imaging methods such as laser
Doppler perfusion imaging,14 hyperspectral imaging (HSI), or multispectral imaging (MSI)15

may be preferred. Previous studies have shown that HSI and MSI can aid the diagnosis of
diseases related to arterial occlusions such as peripheral arterial disease,16,17 diabetic foot,18 and
wound diagnostics.19,20

Spectral images are often acquired by scanning through either the spectral or spatial domain,
leading to long acquisition times and/or low resolution, hampering the widespread adoption of
HSI and MSI.21 This includes push-broom setups,6,22 tunable Fabry–Pérot filters,23 or setups that
cycle through wavelengths using filter wheels or multiple illumination bands.24 Using snap-shot
sensors25–28 allows for much faster acquisition rates.

Analysis of HSI and MSI data is often slow when using advanced iterative algorithms such
as an inverse diffusion model in a two-layer skin model6 or searches in multi-dimensional Monte
Carlo (MC)-simulated reflectance look-up tables.25 Fast solutions, based on Beer–Lambert’s law
in selected wavelength regions in single-layer skin models, have been proposed.22 MC simula-
tions, however, give a more accurate solution to the photon transport equation in comparison with
diffusion approximations and models based on Beer–Lambert’s law. The inverse MC method is
considered the gold standard and thus should be the preferred choice for a precise analysis of
DRS, HSI, and MSI data.

Recently, artificial neural networks (ANNs) trained on MC-simulated data from realistic
multilayer skin models23,29 show that MC and ANN can be combined for a fast analysis of
DRS and HSI data. Ewerlöf et al.26 also showed how ANN trained on in-vivo data from a refer-
ence device can be used for a precise and fast analysis of MSI snapshot images. This approach
circumvents the need for handling the complex spectral response found in snapshot sensors,
characterized by broad spectral bands or bands with multiple peaks. Unfortunately, it introduces
the need for acquiring training data from a large representative population at different SO2 levels
for every MSI snapshot camera as the sensor characteristics differ between each unique sample.

This study aims to develop a framework for training an ANN to estimate SO2 from snapshot
MSI data with a precision comparable to inverse MC. The framework includes developing a
model that closely mimics both tissue reflectance and instrumental characteristics for the gen-
eration of synthetic high-quality training data. An integral part of modeling is to account for
variations in model characteristics to enable robust SO2 estimations insensitive to, e.g., tissue
melanin, tissue scattering, instrumental noise, and instrumental drift, allowing for accurate
real-time imaging of microcirculatory SO2.

2 Material and Methods
All images were acquired using an MSI snapshot camera (MQ022HG-IM-SM4X4-VIS, XIMEA
GmbH, Münster, Germany) with 16 different optical bands in the 470 to 650 nm wavelength
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range. The camera had a complementary metal-oxide semiconductor (CMOS) imaging sensor
with a native resolution of 2048 × 1088 pixels, where each pixel had a Fabry–Pérot bandpass
filter deposited on top of it. The 16 unique bandpass filters were arranged in a recurring 4 × 4

mosaic pattern, resulting in an MSI hypercube (16 × 512 × 272). The camera was connected to a
computer via USB3, allowing for a maximal theoretical frame rate of 170 fps. In our study, the
actual frame rate was limited to 4.2 fps due to the chosen exposure time and on-the-fly averaging
of multiple consecutive images.

The camera was equipped with a 16-mm c-mount lens (TECHSPEC, Edmund Optics,
Barrington, New Jersey, United States) with the aperture size set to f/1.6. A long-pass (LP) filter
with a cut-off wavelength of 470 nm (LP470 stablEDGE, Midwest Optical Systems, Palatine,
Illinois, United States) was attached to the lens to suppress the dominant blue peak found in
fluorescent white light-emitting diodes (LEDs). The spectral response for each of the 16 bands
is influenced by, e.g., the attached optics and lens aperture size. Therefore, to complement the
spectral responses supplied by the manufacturer, an in-house calibration was performed with the
lens and LP filter attached. In addition, the spectral characteristics of the 8 W white LED ring
light (R130, Smart Vision Lights, Norton Shores, Michigan, United States) and polarizing filters
used in the in-vivo measurements were determined using a calibrated spectrometer (AvaSpec-
2048L-USB2, calibrated using AvaLight-HAL-CAL-Mini; Avantes B.V., Apeldoorn, The
Netherlands). The complete camera and LED setup was further characterized by repeated diffuse
reflectance measurements from a white reference Spectralon target with a 99% nominal reflec-
tance (Labsphere Inc., North Sutton, New Hampshire, United States). These measurements were
used to describe temporal noise in the pixel intensity and to white-normalize all acquired in-vivo
MSI data.

An optical model describing the camera system was combined with MC simulations of a
tissue model describing the spectral reflectance of skin tissue. This combined model was used
both in an inverse MC algorithm and for generating training data for an ANN algorithm trained to
assess blood SO2 in skin tissue. The inverse MC and ANN algorithms were evaluated on in-vivo
measured data from a healthy subject during an occlusion-release provocation.

2.1 Characterization of Sensor Spectral Response
The spectral response of the 16 different wavelength bands in the MSI camera was characterized
using the calibration setup in Fig. 1. The setup included a white LED spotlight (SXA30, Smart
Vision Lights) mounted in front of a liquid crystal tunable filter (LCTF; VariSpec VIS-7, CRi
Inc., McLean, Virginia, United States). A standard optical diffusor was placed after the LCTF
to further mix and diffuse the filtered light. The light was then diffusely reflected by a white
reference Spectralon tile and captured simultaneously by the MSI camera and an optical fiber con-
nected to the calibrated spectrometer. The MSI camera included a 16-mm lens and LP470 filter.

The LCTF, with a 7 nm full width at half maximum (FWHM) transmission peak, was com-
puter controllable, allowing for an automated scanning from 400 to 700 nm in steps of 1 nm. At

Fig. 1 MSI camera calibration setup with a calibrated spectrometer and an LCTF-based tunable
light source. The setup was used for quantifying the spectral response of the 16 different wave-
length bands.
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each wavelength, MSI images and calibrated spectra were acquired. Dark MSI images and spec-
tra were additionally recorded at every 10th wavelength.

Data were processed by first subtracting the dark level from the acquired MSI images and the
high-resolution spectra acquired by the calibrated spectrometer. The high-resolution spectra were
then smoothed with a 1 nm wide moving average filter, to avoid aliasing, and down-sampled to a
1 nm resolution between 400 and 700 nm. The MSI data were spatially averaged using a region
of interest (ROI) that included all pixels with an intensity of more than 85% of the maximum
intensity in the wavelength-averaged image. This resulted in a centrally positioned fixed-size
ROI that included 11% of the sensor pixels.

The intensity detected by the MSI camera in the calibration setup is modeled as

EQ-TARGET;temp:intralink-;e001;114;616IC½n;m� ¼
X700
λ¼400

rnðλÞRmðλÞ; (1)

where n marks the spectral band for the MSI sensor, rnðλÞ is the unknown response for each
spectral band, and RmðλÞ is the reflected irradiance as detected by the calibrated spectrometer
while having the LCTF filter tuned to wavelength setting m. As a result of the 7 nm FWHM
transmission peak of the LCTF, the spectral response is not given directly by the calibration
dataset. Hence, the spectral response was estimated using a non-linear optimization algorithm
to find the rn that minimizes the difference between the modeled and measured MSI intensities
for all LCTF settings. Rapid changes in the estimated spectral response between
consecutive wavelengths were additionally penalized to make the solution less sensitive to
measurement noise.

The applied penalty function is given by

EQ-TARGET;temp:intralink-;e002;114;454χrn ¼
�

I½n;m�
hI½n;m�in;m

− IC½n;m�; 0.2ΔrnðλÞ
�
; (2)

where I½n;m� is the intensity detected by the MSI camera in band n using LCTF wavelength m.
The normalization with the average overall detected intensity hI½n;m�in;m makes the inverse
solution insensitive to, e.g., overall lamp intensity, camera exposure time, and gain settings.
No such normalization factor is needed for the modeled intensity IC½n;m� as this factor is instead
handled by the overall magnitude of rnðλÞ. The additional term ΔrnðλÞ in the penalty function is
given by

EQ-TARGET;temp:intralink-;e003;114;343ΔrnðλÞ ¼
rnðλiþ1Þ − rnðλiÞ

0.5rnðλiÞ þ 0.5rnðλiþ1Þ þ hrnðλÞiλ
: (3)

The Δrn penalty term was designed as an amplitude-normalized derivative of the estimated
sensor response. The normalization is equally balanced between the local and the global average
amplitude. The local amplitude normalization improves spectral characteristics for low ampli-
tudes, and the global amplitude normalization adds stability by avoiding zero division for a wave-
length with zero response. The optimal response r�nðλÞ with the minimal penalty is found using a
nonlinear least-square fitting algorithm (lsqnonlin in Matlab 2021a, The Mathworks Inc., Natick,
Massachusetts, United States) that solved

EQ-TARGET;temp:intralink-;e004;114;221min
rn

kχrnk22: (4)

The optimal sensor response r�nðλÞ (a.k.a. in-house sensor response) and the sensor response
supplied by the camera manufacturer were validated by comparing white-normalized measured
and modeled MSI intensities from a tissue-like wide-band phantom. The validation data were
acquired by replacing the LCTF with a skin-like transparent color filter (Roscolux #4615, Rosco
Laboratories Inc., Stamford, Connecticut, United States). Spectral characteristics of the 470 nm
LP filter were added to the spectral response in Eq. (1) when evaluating modeled intensities based
on the sensor response data supplied by the manufacturer.
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2.2 Modelling In-Vivo Detected MSI Intensities
Intensities detected by an MSI snapshot camera depend not only on the unique and complex
response of each wavelength band but also on the LED irradiance, transmission of additional
optical components, and reflectance of the target. Together, these effects contribute to the mod-
eled detected intensity IT½n� in wavelength band n as outlined in the schematic overview in Fig. 2
and described by

EQ-TARGET;temp:intralink-;e005;117;262IT½n� ¼ kn
X700
λ¼400

r�nðλÞFðλÞLðλÞTðλÞ; (5)

where FðλÞ is the spectral transmission of additional optical components (e.g., polarizing filter)
not included in r�n, LðλÞ is the LED emission spectrum, and TðλÞ is the spectral reflectance of the
target.25,28 The detected intensity in each pixel is also dependent on, e.g., local variations in the
on-chip filter mosaic, setting of the lens, and analog-to-digital converters. The overall amplitude
of these factors may vary spatially over the sensor and hence affect each band/pixel slightly
differently. The local pixel-amplification effect is modeled by the coefficient kn.

To effectively cancel out any influence from a kn that varies spatially over the imaging
sensor, all MSI data were normalized with a hypercube measured on a white reference target.
The white-normalized MSI spectra were also normalized with the local spectral-averaged inten-
sity (i.e., average overall wavelength bands) to further reduce any dependency on, e.g., uneven
emission intensity, target distance, and white calibration distance. For modeled intensities, this
results in a normalized detected intensity that is calculated as

Fig. 2 Schematic overview of how MSI intensities are modeled from the sensor response, lamp
intensity, and MC-simulated reflectance using a two-layered skin tissue model. The modeled MSI
intensities are used in the slow iterative inverse MC analysis (purple annotations) and the ANN
training (green annotations), with variations and noise added, targeting estimation of the SO2 level.
The blue box and lower blue arrowmark howMSI measurements are analyzed at high speed using
a pre-trained ANN algorithm without needing any additional modeling of MSI intensities (in contrast
to inverse MC).
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EQ-TARGET;temp:intralink-;e006;114;736N½n� ¼ IT½n�
IW½n�

��
IT½n�
IW½n�

�
n
; (6)

where h: : : in denotes the average over all spectral bands and IW½n� is the MSI intensity from a
white reference target modeled with TðλÞ ¼ 1.

2.3 MC Model for Simulating Tissue Reflectance
The spectral response TðλÞ of the tissue is modeled using MC simulations of a two-layer skin
model. The model is a simplification of a three-layer model, used for DRS, that has been
thoroughly described previously.5,29 The two-layer model consists of one epidermis layer with
variable thickness tepi and a variable tissue fraction of melanin fmel and one dermis layer with an
infinite thickness. The dermis layer consists of variable tissue fractions of blood fblood, variable
blood SO2 s, and variable vessel diameter D.

The reduced scattering coefficient is modeled to be equal for both layers according to

EQ-TARGET;temp:intralink-;e007;114;572μ 0
sðλÞ ¼ α

�
λ

λ0

�
−β
; (7)

where α and β are variable parameters and λ0 ¼ 600 nm. A Henyey–Greenstein scattering phase
function with an anisotropy factor of 0.8 for all wavelengths was used in the simulations.

The absorption coefficient of the epidermis layer is calculated as

EQ-TARGET;temp:intralink-;e008;114;501μa;epiðλÞ ¼ fmelk

�
λ

λ0

�
γmel

; (8)

where k ¼ 39.0 mm−1, λ0 ¼ 550 nm, and γmel ¼ −3.30
The absorption coefficient of the blood in the dermis is calculated as

EQ-TARGET;temp:intralink-;e009;114;439μa;bloodðλÞ ¼ sμa;oxyðλÞ þ ð1 − sÞμa;redðλÞ; (9)

where μa;oxy is the absorption coefficient of blood with oxygenated hemoglobin and μa;red is the
absorption coefficient of blood with reduced hemoglobin. Blood is modeled with a hematocrit of
43%, a hemoglobin concentration of 145 g=l blood, and a mean cell hemoglobin concentration
of 345 g=l red blood cells (RBCs). The absorption spectrum for oxygenized blood is calculated
from the absorption spectrum of oxygenized hemoglobin presented by Prahl,31 and that for
reduced hemoglobin is calculated from the absorption spectrum of deoxygenized hemoglobin
presented by Zijlstra et al.32

The absorption coefficient of the dermis is calculated as
EQ-TARGET;temp:intralink-;e010;114;318μa;dermðλÞ ¼ fbloodcVDðλÞμa;bloodðλÞ; (10)

where cVD is a vessel packaging effect factor, which is calculated as

EQ-TARGET;temp:intralink-;e011;114;290cVDðλÞ ¼
1 − expðDμa;dermðλÞÞ

Dμa;dermðλÞ
: (11)

White MC simulations were performed for various levels of epidermis thickness (2.5 to
490 μm) and scattering coefficient (1.0 to 90.5 mm−1). Each simulation ran until detecting
50 million photons. Various amounts of absorption were added in the post-processing using
Beer–Lambert’s law and the pathlength for each photon in each layer. The results were stored
in a four-dimensional grid where the detected intensity T could be interpolated for any values of
tepi, μ 0

s, μa;epi, and μa;derm.

2.4 Generating Data for ANN Training
The measured MSI spectra from tissue can be modeled by combining the MC tissue model and
the MSI model, as outlined in the schematic overview in Fig. 2. However, these models do not
fully include variations related to hardware imperfection. To synthesize realistic ANN training
data, valid for all pixels on the sensor, such variations need to be added. We identified three
different imperfections that significantly influence the MSI spectrum. This includes temporal
drift in the LED emission spectrum, angular variations in the LED emission spectrum, and tem-
poral noise-related variation in the detected intensity. Adding these three terms expands the mod-
eled MSI spectrum in Eq. (5) to
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EQ-TARGET;temp:intralink-;e012;117;736IT;ANN½n� ¼ knð1þ ϵt;nÞ
X700
λ¼400

r�nðλÞFðλÞLANNðλÞTðλÞ; (12)

where

EQ-TARGET;temp:intralink-;e013;117;688LANNðλÞ ¼ LðλÞð1þ δtðλÞÞð1þ δθðλÞÞ: (13)

In these equations, LðλÞ is the stable emission spectrum of the LED at a 0-deg emission
angle, ϵt;n describes the temporal noise-related intensity fluctuation in each band n, δtðλÞ relates
to temporal drift in the emission spectrum, and δθðλÞ adds emission-angle-dependent variations
to the emission spectrum.

Changes over time in the factor δtðλÞ were measured for the LED using a calibrated
spectrometer at a 0 deg emission angle during a 60 min warm-up period. After this period,
no significant drift was found, and the stable LED emission spectrum was determined as
LðλÞ ¼ Lt¼60 minðλÞ. During the warm-up period, all δtðλÞ were found to scale linearly to the
maximum deviation as

EQ-TARGET;temp:intralink-;e014;117;555δt;maxðλÞ ¼
Lt¼0 minðλÞ
Lt¼60 minðλÞ

− 1; (14)

where Lt¼0 minðλÞ is the emission spectrum measured during the first minute of warm-up.
Variations in the factor δθðλÞ were measured at emission angles between 0 and 22 deg,

matching the maximal angle of view for the camera setup. All δtðλÞ were found to scale linearly
to the maximum deviation as

EQ-TARGET;temp:intralink-;e015;117;470δθ;maxðλÞ ¼
Lθ¼22 degðλÞ
Lθ¼0 degðλÞ

− 1; (15)

where Lθ¼0 degðλÞ is the stable emission spectrum measured at a 0 deg emission angle and
Lθ¼22 degðλÞ is the stable emission spectrum measured at a 22 deg emission angle.

With these linear relations, Eq. (13) is rewritten as

EQ-TARGET;temp:intralink-;e016;117;394LANNðλÞ ¼ LðλÞð1þ qtδt;maxðλÞÞð1þ qθδθ;maxðλÞÞ; (16)

where qt ∈ ½0;1� and qθ ∈ ½0;1�. The spectral components for modeling the lamp emission spec-
trum in Eq. (16) are shown in Figs. 3 and. 4.

The temporal detector noise ϵt;n depends on the light intensity quantified by each pixel. The
noise is assumed to be Gaussian distributed with a variance that increases with intensity.
Repeated white calibration measurements over time with the MSI camera, IW½t; n�, at different
LED light intensity levels, support the assumption of a Gaussian distribution. It also shows that
the temporal noise variance increases linearly with intensity (Fig. 5), and hence, the detector
noise is modeled by

EQ-TARGET;temp:intralink-;e017;117;274varðϵt;nÞ ¼ an þ I½n�bn; (17)

where an and bn are coefficients determined from the calibration measurement and hϵt;nit ¼ 0.
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Fig. 3 Normalized stable lamp emission spectrum measured at a 0 deg emission angle after a
60 min heat-up period.
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Having established a model that accounts for tissue and hardware variations, including
noise, enables the synthetization of realistic MSI spectra that can be used for training an
ANN to estimate blood SO2. The synthetization of a single MSI spectrum is done as follows:

1. generate an MC-simulated tissue reflectance spectrum TðλÞ using a randomized set of
tissue model parameters that comply with the expected parameter distribution found in
real skin tissue (Fig. 6)*

2. generate an emission spectrum LANNðλÞ, where qt and qθ are random numbers uniformly
distributed at ½0;1�
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Wavelength (nm)

–0.2

–0.1

0

0.1

0.2

x,
m

ax
 (–

)
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t,max

Fig. 4 Maximal temporal (δt ;maxðλÞ) and angular (δθ;maxðλÞ) variations in the lamp emission
spectrum.
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Fig. 5 Variance of temporal detector noise for each of the 16 different bands. The intensity is
normalized with the maximal detectable intensity Imax given by the camera analog-to-digital con-
verter resolution.
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Fig. 6 Distribution of the tissue model parameters for the ANN training set.
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3. randomize an average detected MSI intensity RI from a normal distribution with a mean of
half the maximal detectable intensity and a standard deviation of 20% of the maximal
detectable intensity

4. calculate the intensity-normalized and scaled spectrum I½n� ¼ RIIT;ANN½n�=hIT;ANN½n�in
assuming no temporal detector noise (i.e., ϵt;n ¼ 0)

5. generate a detector noise factor ϵt;n with a variance according to Eq. (17) and Fig. 5.
6. generate a synthetic MSI spectrum according to Eq. (12) with the detector noise

being added.

* Please note that it is the amount of melanin, i.e., the product of the melanin fraction
and the epidermis thickness, rather than the melanin fraction alone, that is random-
ized. The actual melanin fraction is then calculated from the melanin amount divided
by the epidermis thickness.

The white normalization of measured MSI spectra was also accounted for in the models by
normalizing the synthetic MSI spectra from skin tissue with synthetic white MSI spectra
IW;ANN½n�. Synthetic white MSI spectra were generated as outlined above, except for using
TðλÞ ¼ 1 instead of an MC-generated tissue reflectance. Finally, the intensity normalization
is calculated as

EQ-TARGET;temp:intralink-;e018;117;511NANN½n� ¼
IT;ANN½n�
IW;ANN½n�

��
IT;ANN½n�
IW;ANN½n�

�
n

; (18)

where h: : : in marks the average over all spectral bands. This effectively removes any dependency
on the absolute magnitude of the MSI spectra.

2.5 Analyzing MSI Data Using Inverse MC and ANN
In-vivo MSI data were analyzed with inverse MC and ANN using both the spectral response
supplied by the manufacturer and the optimal response r�nðλÞ measured as described above.
The inverse MC analysis was done by modeling normalized MSI spectra using Eq. (6). The
optimal solution with a minimal relative difference between the modeled and measured spectrum
was found using a nonlinear least-square fitting algorithm (lsqnonlin in Matlab 2023a, The
Mathworks Inc.) that searched the parameter space of tepi, fmel, fblood, s, D, α, and β. For the
first time-point in the in-vivo measurement, multiple start-points were used in the optimization to
assure that the global optimum was found. For consecutive time points, the solution of the
previous time point was used as a starting point.

ANN models with N½n� as input (i.e., 16 inputs), a single hidden layer containing either 5,
10, 15, or 20 nodes, and a single output targeting the blood SO2 were trained with synthetic MSI
spectra generated as described in Eq. (18). The hidden layer had a hyperbolic tangent sigmoid
transfer function, whereas the output layer had a linear transfer function. For each of the four
network sizes, the training was repeated 10 times using a randomized initialization of the ANN
model between training sessions. The training was done using the Levenberg–Marquardt
backpropagation algorithm. In each training session, a single set of 50,000 synthetic MSI spectra
was used and divided among training (70%), validation (15%), and testing (15%). The set of
training data was MC generated using random parameters according to the tissue model
described above.

2.6 In-Vivo Measurement Setup and Image Processing
As proof of principle, a single in-vivo measurement (male, age 48) was done targeting the dorsal
side of the hand before (1 min), during (5 min), and after (4 min) an occlusion provocation of the
middle finger. The subject was not suffering from any known microvascular disease, and he gave
his informed consent before the experiment. The study design was approved by the Regional
Ethical Review Board in Linköping, Sweden (D.no. 2018/282-31).

An average of eight consecutive images was done on the fly before saving each MSI dataset.
This reduced image noise and data size while keeping an average frame rate of 4.2 fps. The
in-vivo images were acquired using an exposure time of 20 ms. Interleaved dark images were
collected every 20 s with the LED turned off.
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The raw MSI images were preprocessed in the following way:

1. correct for ambient light effects by subtracting the nearest-in-time dark image
2. convert to a hypercube, using a weighted bilinear interpolation demosaic algorithm33

3. white-normalize using a calibration recording from a white Spectralon target; process the
white hypercube as described above (steps 1 and 2)

4. intensity-normalize by dividing with the average spectral intensity in each hyper-
cube pixel.

This processing replicates what is modeled in Eqs. (6) and (18), and consequently, it enables
in-vivo data to be analyzed using either the trained ANNs or the inverse MC algorithm
described above.

3 Results
Data from the calibration setup show that the in-house optimal sensor response r�nðλÞ deviates
from the manufacturer-supplied response by 3.4% to 9.6% (mean-absolute-error of max-
normalized responses). Two representative examples of responses are shown in Fig. 7.

The validation measurement using a tissue-like color filter phantom shows that the in-house
spectral responses can model the white-normalized measured intensities more accurately com-
pared with the responses given by the manufacturer. The result, shown in Fig. 8, demonstrates a
4.3 times lower mean-absolute-percentage-error (mape) for the in-house spectral responses.

The calibrated and normalized in-vivo MSI data from the finger occlusion experiment were
analyzed by first selecting an ROI with a size of 5 × 5 pixels placed on the middle finger distal to
the cuff position (Fig. 13). The ROI-averaged spectral data were then analyzed with inverse MC
and the trained ANNs. The inverse MC analysis shows that the in-house spectral response yields
significantly lower fitting errors (Fig. 9), with a time-averaged mape of 0.24% compared with a
mape of 2.5% when using the manufacturer response. The time-resolved ROI data also show that
the spectral response has a significant effect on the estimated level of blood SO2 (Fig. 10). The
manufacturer response resulted in a consistently lower blood SO2 with a mean absolute
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Fig. 7 Representative examples of in-house and manufacturer-specified spectral responses for
two different spectral bands. In panel (a), a typical widening and shift toward shorter wavelengths
for the in-house spectral response is observed, and in panel (b), the worst matching case, a dual-
peak characteristic in which the prominent peak changes position, is observed.
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difference (mad ¼ hjsin-house − smanufacturerjit) of 13.0%, reaching an SO2 level of −13.7% during
the last 10 s of occlusion. The equivalent level for the in-house response was −5.4%.

All ANNs from the repeated training using the in-house spectral response showed great
consistency when applied to the in-vivo ROI data, with a time-averaged standard deviation
in estimated blood SO2 of 1.1%-units to 1.8%-units for the different network sizes. The equiv-
alent standard deviation for the ANNs trained with the manufacturer response was 5.9%-units to
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Fig. 8 Phantom validation measurement comparing the in-house estimated spectral response
with the one supplied by the manufacturer.
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Fig. 9 Example showing (a) measured and modeled normalized intensities and (b) the relative
difference between measured and modeled intensities. The modeled data originate from an
inverse MC fit to a single measured MSI spectrum during baseline. The measured data are
ROI-averaged and analyzed with both the in-house and the manufacturer sensor responses.
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60.0%-units, manifested as an almost random behavior with widely different time traces of
estimated blood SO2 for the different repeatedly trained networks. The random behavior and
standard deviation increased with the network size. Due to this inconsistency, no further mean-
ingful comparison using the manufacturer response can be made as the results will strongly and
randomly depend on which repetition of ANN training is selected. An example of SO2 estima-
tions from 10 repeatedly trained networks, all having a hidden layer size of 15 nodes, is presented
in Fig. 11(a) (manufacturer response) and Fig. 11(b) (in-house response).

ANN training performance (mean-square error evaluated with simulated test data) using the
in-house response initially improved when increasing the number of nodes in the hidden layer.
However, the improvement between a hidden layer size of 15 and 20 nodes was only marginal.
Applying the ANN with the best test performance trained with the in-house response using a
network size of 15 nodes demonstrates a close match to the time-trace of inverse MC estimated
blood SO2 (Fig. 12). The mean absolute difference (mad) between inverse MC and ANN-
estimated SO2 was 1.3%-units, and the coefficient of correlation R was 0.999. The only major
performance difference between the two methods occurs during the initial reperfusion phase
when SO2 rises quickly to its peak value. During this phase, the inverse MC algorithm fails
to fully capture the rapid change, most likely due to stopping the inverse solver before finding
the global optimum.
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Fig. 10 Inverse MC estimated blood SO2 during an occlusion-release provocation. ROI-averaged
MSI data are analyzed using both the in-house and the manufacturer sensor responses.
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Fig. 11 Example of SO2 estimations from 10 repeatedly trained networks, all having the same
configuration with a hidden layer size of 15 nodes. The training data are generated with (a) the
manufacturer response, with a time-averaged standard deviation of 38.2%-units, and (b) the
in-house response, with a time-averaged standard deviation of 1.1%-units.
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ANN analysis of a single MSI cube, including preprocessing with dark correction,
demosaicing, white normalization, and intensity normalization, took ∼0.11 s using a GPU imple-
mentation in Matlab R2021a (The MathWorks Inc.) and a GeForce GTX 1070 (Nvidia
Corporation, Santa Clara, California, United States). The resulting blood SO2 images are shown
in Video 1 and in Fig. 13, with representative still images of the occluded (at time 350 s) and a
reperfused (at time 370 s) middle finger from the in-vivo provocation experiment. The images
and video display the expected occlusion-release pattern with a close-to-zero SO2 at the end
occlusion and ∼85% SO2 at the reperfusion peak. No apparent curvature-dependent effects can
be seen, indicating that the demosaicing algorithm and the tissue model account for any such
effects.

4 Discussion
We have shown that data from a snap-shot MSI camera with complex spectral characteristics can
image SO2 in real time using an ANN trained on synthetic data. It is, however, critically
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Fig. 12 Panel (a) shows time traces of inverse MC- and ANN-estimated blood SO2 in the ROI.
Panel (b) shows an absolute error between the two estimates.
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Fig. 13 Examples of blood oxygen saturation still images from the ANN analysis showing an
occluded (a) and reperfused (b) middle finger. The 5x5 pixel ROI, placed on the middle finger distal
to the occlusion cuff, is marked in both still images.
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important to apply a detailed and precise optical modeling of both the MSI camera system and the
skin tissue.

The in-house spectral response, measured with optical components mounted to the MSI
camera, and the response supplied by the manufacturer showed significant differences. In
general, the in-house measured responses have peaks that are broader and shifted a few nano-
meters toward a shorter wavelength, as shown in Fig. 7. This effect is explained by the large lens
aperture (f/1.6) used in this study, resulting in light impinging on the Fabry–Pérot filter deposited
on top of the sensor at a range of different angles in contrast to the optimal orthogonal
incidence.34 A smaller lens aperture could partly address this but would instead result in a lower
signal-to-noise ratio. Preliminary measurements with a more recent version of the snapshot MSI
camera indicate a better resemblance between the measured sensor response and the response
specified by the manufacturer.

Evaluating differences in sensor response using a color phantom (Fig. 8) indicates that the
manufacturer response is less accurate, suggesting that it is not fully valid for the lens and aper-
ture setting used in our measurements. When applied to in-vivo data, the response difference is
manifested as a large inverse MC fitting error when using the manufacturer response, as shown in
Fig. 9. It is inevitable that this model error will lead to erroneous estimations of SO2. This can be
seen in Fig. 10, for example, where SO2 assessed with inverse MC based on the manufacturer
response deviates considerably from the one based on the in-house response.

Assessing SO2 with ANN results in standard deviations of up to 60%-units between ANNs
that are repeatedly trained using the manufacturer response and random initialization. Using the
in-house measured response drastically decreases this standard deviation to around 1%-units
regardless of the network size. This shows that the ANN approach is much more sensitive
to imperfections in the modeling of the sensor response. Previous studies have also shown that
DRS training data must include realistic measurement noise and drift for accurate ANN results.29

For the MSI camera system, characterization and modeling of spatial and temporal variations in
the light source emission spectrum and detector noise are required. The low standard deviation
between outputs of repeatedly trained ANNs and the close match between inverse MC and ANN
support the validity of these noise models.

Our results emphasize the need for an accurate calibration of the MSI camera response using
the same optics, lens settings, and optical filters that are used in in-vivo measurements. The spec-
tral response is a unique feature for each MSI sensor, which means that each individual camera
must be characterized. Hahn et al.35 previously reported that this type of snapshot sensor may
also have band-dependent variations in the sensor response across the detector area. Our work did
not include any quantitative evaluation of this effect. The processed SO2 images from the in-vivo
measurement showed no apparent major variation that could have contributed to this effect. This
can be explained by the normalization with a white hyper cube, which effectively removes spatial
variations in the response magnitude for each band.

Analysis of in-vivomeasured data shows low fitting errors for the inverse MC algorithm and
low standard deviations between repeatedly trained ANNs when using the in-house sensor
response, as seen in Figs. 9 and 11. This strongly indicates that the applied tissue model is accu-
rate and detailed enough to mimic the optical reflectance from skin tissue using MC simulations.
The tissue model itself does not contain any limitation to the number of included absorbers or
scatterers but is constrained by only including melanin and hemoglobin as absorbers, which
seems sufficient for skin tissue, at least in the example presented in this work. Limitations
in the model parameter space need, however, to be introduced when using the tissue model for
inverse MC analysis as the algorithm relies on a pre-simulated set of simulated intensities.
Similarly, when used for generating synthetic reflectance data for ANN training, all physiologi-
cally reasonable parameter variations must be covered. If not, the ANN algorithm is likely to
perform poorly when used on tissue types that are not included in the model parameter space of
the training data.

The overall behavior of SO2 in the in-vivo experiment (Fig. 12 and Video 1) follows the
expected occlusion-reperfusion pattern when analyzing spectral data in the visible 500 to 600 nm
wavelength range.6,36 The completely deoxygenized hemoglobin found after a prolonged occlu-
sion can be explained by the superficial penetration depth for visible light, in which only blood in
superficial microvascular vessels where oxygen is allowed to diffuse and metabolize in the
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surrounding tissue is sampled. This contrasts with techniques in which near-infrared wavelengths
with a higher penetration depth are analyzed, resulting in elevated SO2 levels due to the sampling
of blood in larger transport vessels.6

For transparency, we chose not to limit the estimated SO2 level to the 0% to 100% range. At
the end occlusion, our in-vivo example shows an SO2 level of ∼ − 5% for both the inverse MC
and ANN analyses in the selected 5 × 5 ROI. This is, of course, not physiologically possible.
Increasing the ROI size to 25 × 25 pixels results in an SO2 level of −1.6% for the ANN analysis,
indicating that some spatial noise is present, which, to some extent, causes the negative SO2

level. The negative SO2 values can also be explained by model errors, such as missing chro-
mophores, and small calibration errors in, e.g., the white calibration of the MSI camera. The
irradiance calibration is performed with a white reference target that has a very different reflec-
tance compared with skin tissue. This can potentially introduce errors if the detected intensity
response is not perfectly linear to the backscattered irradiance. With a well-known reference
target mimicking the skin tissue, the effect of such non-linearities could be minimized. This
is a strategy that has been successfully used in spatial-frequency domain imaging to minimize
the impact of system imperfections.37

In a previous study with an optical fiber probe-based system, we showed that the type of MC
model used in this study can be expanded to fully explain the diffuse reflectance spectra from a
wide range of skin tissue types.38 In this work, however, we did not thoroughly explore what
tissue model complexity is needed to produce algorithms capable of accurate modeling of MSI
reflectance of different skin tissue types. Our in-vivo example has, however, uncovered (data not
shown) that a single-layer tissue model or a model lacking melanin or vessel packaging effect
cannot be fitted accurately to the measured data. Another limitation is the structure of the ANN,
which has not been fully evaluated. The risk for overtraining certain parts or properties of the
spectrum increases with a larger network size, and the limited input training data (16 spectral
bands) should reduce the need for more complex or deep ANNs.26 We observe comparable
results for ANNs trained with fewer nodes in the hidden layer. To further explore what tissue
model complexity and parameter space is needed and how the ANN should be designed for a
more generalized inverse algorithm, additional in-vivo measurements covering a range of differ-
ent skin types are required. Adding a reference method to such a study would also aid in deter-
mining how well the technique works for different skin tissue types.

In a previous study,26 we used the same type of MSI camera and illumination setup but the
ANNs were instead trained targeting SO2 values captured in vivo on the volar side of the forearm
in 20 subjects (Fitzpatrick skin types I to III) using a reference probe-based technique. A leave-
one-out analysis (i.e., training on 19 subjects and evaluating on the non-included subject) showed
that the MSI SO2 estimation at end-occlusion was on par with (5%-units mean absolute error) the
SO2 level measured with the reference technique. Those results show that SO2 can be estimated
from MSI data for skin types I to III using an ANN-based approach if hardware and tissue can be
modeled accurately. To further demonstrate the accuracy of the proposed method, a validation
study using phantoms with a known SO2 level would be desirable.

Our ANN approach, in which SO2 is directly estimated, can analyze a single hypercube in
∼0.1 s. This is much faster than inverse MC, which typically takes up to 1 h to analyze a
comparable-sized dataset.25 The 0.1 s analysis time demonstrates that our ANN approach, paired
with a snapshot MSI camera, is fast enough for real-time imaging of SO2 dynamics at several
frames per second. This frame rate allows us to capture most, if not all, physiological variations
in SO2.

There are several clinical situations in which the utilization of HSI and MSI techniques is
emerging. During free flap surgery, HSI at 16 to 28 h post-operatively utilizing a combination of
tissue SO2 and a perfusion proxy index seemed to be superior to standard flap monitoring for
predicting flap survival.39 In human forehead flaps, HSI mapping traced the expected decrease in
SO2 during partial and full excision of the flap.

40 In diabetes, the blood amount in the foot dermis
and SO2 based on multispectral spatial frequency domain imaging could stratify subjects with
varying severities of the disease.41 Furthermore, with the same technique, a low amount of blood
in the superficial dermis and a high SO2 indicating poor oxygen transfer to tissue and a heter-
ogenous light scattering were predictive of leg ulcer risk in a diabetic population.42
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Other optical techniques for estimating SO2, e.g., near-infrared spectroscopy43 and
HSI,22,27,44,45 often need to be calibrated using standard occlusion provocations or phantom experi-
ments in which the SO2 level is known or measured with a reference technique. This is mainly due
to the use of either simplistic inverse algorithms based on modified Beer–Lambert’s law expres-
sions or pure empirical expressions in which only two or a few spectral components are analyzed.
These algorithms are also typically sensitive to variations in tissue optical properties, including
scattering and melanin content. The method presented in this work addresses these shortcomings
through a thorough modeling of both instrumental effects and skin tissue variations.

5 Conclusion
Our results demonstrate that, with precise modeling of both hardware characteristics and tissue
reflectance, ANN can estimate SO2 fromMSI data with an accuracy comparable to inverse MC, a
method often referred to as the gold standard for analyzing bio-optical signals. The use of ANN,
trained on synthetically generated data, is computationally much more efficient than inverse MC
and enables real-time SO2 imaging. The ANN approach is, however, more sensitive to imper-
fections in the modeling of the sensor response and requires noise and other hardware variations
to be included when generating synthetic training data.

6 Appendix: Supplementary Video
Video 1: Example of blood SO2 imaging from the ANN analysis showing an occluded (60–
360 s) and reperfused (>360 s) middle finger (MP4, 11.9 MB [URL: https://doi.org/10
.1117/1.JBO.29.S3.S33304.s1]).
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