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ABSTRACT. Polarization information of the light can provide rich cues for computer vision and
scene understanding tasks, such as the type of material, pose, and shape of the
objects. With the advent of new and cheap polarimetric sensors, this imaging modal-
ity is becoming accessible to a wider public for solving problems, such as pose esti-
mation, 3D reconstruction, underwater navigation, and depth estimation. However,
we observe several limitations regarding the usage of this sensorial modality, as well
as a lack of standards and publicly available tools to analyze polarization images.
Furthermore, although polarization camera manufacturers usually provide acquisi-
tion tools to interface with their cameras, they rarely include processing algorithms
that make use of the polarization information. In this work, we review recent
advances in applications that involve polarization imaging, including a comprehen-
sive survey of recent advances on polarization for vision and robotics perception
tasks. We also introduce a complete software toolkit that provides common stan-
dards to communicate with and process information from most of the existing
micro-grid polarization cameras on the market. The toolkit also implements several
image processing algorithms for this modality, and it is publicly available on GitHub.
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1 Introduction
The polarization of the light is present in several real-world physical phenomena. Light coming
from rainbows in the sky, reflections from water on highways, and monitors and cellphones
based on liquid-crystal display (LCD) screens are typical examples. Light polarization is nat-
urally generated when an unpolarized light source (e.g., light bulbs or the sun) hits a surface
and is reflected. The polarized light generated in this way can be of two types: specular, when
the reflection of the light is in a single direction; or diffuse, when the reflection is in all directions.
The way the reflected wave oscillates depends on the characteristics and the shape of the
material. This relationship between the observed light and the object properties is a key feature
that vision algorithms can use to improve their accuracy with respect to another one that uses
only texture information. These additional features can be leveraged, for instance, to improve
object detection and scene segmentation results, detect mirrors and other surfaces that polarize
the light, or uniquely identify places in a room that will serve as landmarks in navigation
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algorithms. It is worth noting that polarization cues are the main sources of information used by
many biological agents such as insects and bees for their orientation in space.1

The introduction of micro-grid polarization sensors, such as Sony Polarsens, boosted the
research in the polarization domain since they are capable of capturing the intensity, the color
and the linear polarization information in a single snapshot, and they also allow measurements
outside laboratory conditions. However, the number of approaches leveraging polarization for
performing computer vision and robotics tasks is, unfortunately, still quite limited. For these
reasons, to promote the usage of polarization cameras in robotics and computer vision tasks,
we provide in this paper a comprehensive review of the latest advances in the field of polarization
imaging. The revised papers have been chosen to show the potential of this modality to improve
the results given by RGB-only methods, especially in challenging situations, e.g., in the presence
of transparent and textureless objects. Furthermore, to push even more the research in this field,
we break the barrier of the practical problems by introducing a complete acquisition and process-
ing software toolkit. This toolkit comes with a graphical user interface (GUI) and is capable of
processing images coming from commonly available RGB-polarization sensors, such as the
Sony Polarsens, regardless the camera manufacturer. The aim of the software is to provide stan-
dard acquisition and processing tools for researchers and practitioners in the field to facilitate the
visualization and analysis of polarization images. In summary, the main contributions of this
paper are:

• A comprehensive review of the most recent advances in the polarization imaging field for
computer vision tasks. The selected works include the most representative application
cases in which the polarization information contributes outstandingly to an improvement
of the results compared to those that would have been obtained with an RGB-only camera.

• We provide a complete acquisition and processing toolkit, including a GUI to fill the gap of
a lack of a common software for RGB-polarization cameras. The objective of this tool is
twofold. On one hand, it is a toolkit that any researcher can use as a base framework, to
analyze and understand the images obtained by any RGB-polarization camera. On the other
hand, due to its careful design, it enables easy development and inclusion of additional
applications. We include in this paper some different use cases of the developed software
with the available features to highlight the potential usages.

In what follows, we start with a brief introduction to the theory of the polarization state of
light. We then present the main concepts used by all the reviewed papers, allowing the reader to
better understand the contribution of polarization for each approach. Finally, we describe the
developed software toolkit made publicly available to the community.

2 Polarization Background

2.1 Mathematical Polarization Model
Light is an electromagnetic wave of high frequency, and when it propagates through space, it can
be defined by its amplitude, its frequency, and the way it moves as it travels. The intensity of the
wave is equivalent to the brightness of the light, the frequency is equivalent to its color, and the
way it moves transversely to the propagation direction defines its polarization state. Let us con-
sider the projection of the oscillation of the electric field vector of the light wave on a plane
perpendicular to the propagation direction. The light is said to be linearly polarized if this pro-
jection gives a line. It is said to be circularly polarized if the projection describes a circle. If the
vector moves in all directions in a random manner, the light is said to be unpolarized.2

Furthermore, a combination of linearly and circularly polarized light gives an elliptically polar-
ized wave, and a light that has both an unpolarized and a polarized component is a partially
polarized light. This last case is the most common type of polarized light that can be found
in the nature.

There exist several models to depict mathematically the polarization state, but the most com-
monly adopted one is the Stokes model.3 This model defines the light wave as a 4D vector
s ¼ ½S0; S1; S2; S3�T . S0 represents the total light intensity (polarized and unpolarized). S1 and
S2 describe the amount of light that is linearly polarized horizontally/vertically, and in the
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direction of �45 deg, respectively. S3 represents the amount of light that is circularly polarized.
Using this model, it is possible to define two important physical polarization parameters

EQ-TARGET;temp:intralink-;e001;117;712ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S21 þ S22 þ S23

p
S0

and ϕ ¼ 1

2
arctan

�
S2
S1

�
; (1)

where ρ is called the degree of polarization (DoP), which represents the portion of the light that is
polarized, and ϕ is the angle of polarization (AoP). This angle represents the orientation of the
line segment, or of the ellipse, when the light is respectively linearly or elliptically polarized.
Circularly polarized light is rare in nature,4 thus considering only the first three components of
the Stokes vector is a good approximation to model the polarization state. Therefore, in most
applications, the S3 component is set to zero, and the Stokes model is represented by a 3D vector
of these physical variables as

EQ-TARGET;temp:intralink-;e002;117;589s ¼
0
@ S0

S0ρ cosð2ϕÞ
S0ρ sinð2ϕÞ

1
A: (2)

If the linear components of the Stokes vector are used, we refer to the AoP and the DoP as
the angle of linear polarization (AoLP), and the degree of linear polarization (DoLP),
respectively.

2.2 Polarization Measurement
An advantage of the Stokes model is that the effect produced by an object (either by transmission,
by reflection, or by scattering) on the incident wave can be modeled by a Mueller matrix M.3

More specifically, a Stokes vector sin that interacts with an object whose Mueller matrix is M is
converted into a Stokes vector sout according to the following equation:

EQ-TARGET;temp:intralink-;e003;117;432sout ¼ Msin: (3)

If the full-Stokes vector is used, the matrix M has a shape of 4 × 4 elements. However, if
only the linear part of the Stokes vector is considered, then this matrix has 3 × 3 components.
Until now, the only way to measure the Stokes vector components is by using an indirect meas-
urement method. For the linear components of the light, this process consists in measuring the
received intensity when the light passes through a linear polarization filter (LPF) at different
orientations. An LPF is an optical device that allows only the waves that have the same orien-
tation as the filter axis to pass through. Any other wave is filtered with a gain that has a sine curve
shape. The maximum gain occurs when the filter orientation matches the AoLP of the incident
light, and the minimum gain will occur when these angles are separated by π∕2 radians. An
optical device as the one described is modeled by the following Mueller matrix:5

EQ-TARGET;temp:intralink-;e004;117;288M ¼ 1

2

2
4 qþ r ðq − rÞC2θ ðq − rÞS2θ
ðq − rÞC2θ m11 m12

ðq − rÞS2θ m21 m22

3
5; (4)

where q and r are the major and minor light transmittance of the linear polarizer, respectively, θ is
the orientation of the filter, and

EQ-TARGET;temp:intralink-;sec2.2;117;215

S2θ ¼ sinð2θÞ; C2θ ¼ cosð2θÞ;
m11 ¼ ðqþ rÞC2

2θ þ 2
ffiffiffiffiffi
qr

p
S22θ;

m22 ¼ ðqþ rÞS22θ þ 2
ffiffiffiffiffi
qr

p
C2
2θ;

m21 ¼ m12 ¼
�
qþ r − 2

ffiffiffiffiffi
qr

p �
S2θC2θ:

If a camera is used to take the measurements of the filtered light, then, only the first com-
ponent of sout can be retrieved, which corresponds to the total intensity of the observed light Sout0 .
Thus, only the first line of the Mueller matrix M should be considered

EQ-TARGET;temp:intralink-;e005;117;102Sout0θ
¼ 1

2
½ qþ r ðq − rÞC2θ ðq − rÞS2θ �sin; (5)
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where Sout0θ
is the S0 component of the output Stokes vector, when the filter axis is oriented at an

angle of θ radians. If the filter is considered ideal, then q ¼ 1 and r ¼ 0, and Eq. (5) becomes

EQ-TARGET;temp:intralink-;e006;114;711Sout0θ
¼ 1

2
½ 1 cosð2θÞ sinð2θÞ �sin: (6)

In general, Sout0θ
¼ Iθ − d, where Iθ is the readout intensity given by a pixel, and d is the pixel

offset, often called dark current. Most works ignore d since in commercial cameras, this value is
negligible compared to the camera measurement.6 Thus, we have in general that

EQ-TARGET;temp:intralink-;e007;114;638Iθ ¼
1

2
½ 1 cosð2θÞ sinð2θÞ �sin: (7)

To find the vector sin, several measurements at different angles θ are required. This can be
done by using a division of focal plane (DoFP) polarization sensor composed of super-pixels. A
super-pixel is a matrix of 2 × 2 pixels on top of which are four linear polarization micro-filters,
one on each pixel and oriented at angles of 0 deg, 45 deg, 90 deg, and 135 deg. Moreover, to
capture the color information, the super-pixels are organized according to the Bayer pattern
where each of its constitutive pixels shares the same color filter, as shown in Fig. 1(a). This
method has the advantage of capturing all the required information in a single shot: color and
polarization. The choice of the four polarizer orientation values for the super-pixel is demon-
strated by Tyo8, in which it concludes that using equidistant angles in the range [0 deg, 180 deg]
optimizes the signal-to-noise ratio (SNR) of the computed Stokes vector.

For a DoFP sensor, four different orientations are used ðθ1; θ2; θ3; θ4Þ ¼
ð0 deg; 45 deg; 90 deg; 135 degÞ, thus four different intensity measurements are obtained
ðIθ1 ; Iθ2 ; Iθ3 ; Iθ4Þ ¼ ðI0 deg; I45 deg; I90 deg; I135 degÞ. Then, four expressions of Eq. (7) are
obtained, which when stacked together gives a linear system in the form i ¼ Asin with

EQ-TARGET;temp:intralink-;e008;114;435

2
6664
Iθ1
Iθ2
Iθ3
Iθ4

3
7775 ¼ 1

2

2
6664
1 cosð2θ1Þ sinð2θ1Þ
1 cosð2θ2Þ sinð2θ2Þ
1 cosð2θ3Þ sinð2θ3Þ
1 cosð2θ4Þ sinð2θ4Þ

3
7775sin; (8)

where i is the intensity measurements vector, A is called the pixel matrix, and sin is the Stokes
vector we want to estimate. Then, it is possible to find the Stokes vector sin by computing the
pseudo-inverse of A, which results in the following analytical form:

0

90 45

135 0

90 45

135

0

90 45

135 0

90 45

135

(a) (b)

Fig. 1 (a) Micro-grid sensor scheme with four super-pixels with polarizer orientations of 0 deg,
45 deg, 90 deg, and 135 deg arranged following a Bayer pattern of a typical RGB-polarization
sensor.7 (b) Sketch of the interaction between a light ray coming from the air with refractive index
n1 and an object with refractive index n2. When the incident light ray hits a point on the surface of
the object, a portion of the light is reflected and a portion of it is refracted or transmitted in the
second medium. The law of reflection states that the angle of reflection is equal to the angle
of incidence α1. Regarding the refracted light, its direction of travel will change, and it will be equal
to α2.
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EQ-TARGET;temp:intralink-;e009;117;736sin ¼

0
B@

I0 degþI45 degþI90 degþI135 deg

2

I0 deg − I90 deg

I45 deg − I135 deg

1
CA: (9)

2.3 Naturally Generated Polarization
An important property of the polarization state is that it conveys information about the shape and
the composition of the objects when they are made of dielectric materials. After hitting a surface,
an incident wave will create two new waves:3 a reflected and a refracted wave. In general, when a
camera observes an object, the captured light is the result of the reflection.

Furthermore, for insulator materials that produce specular light, there is a single angle in
which the reflected light will be 100% linearly polarized.3 Any other direction will produce
partially polarized light. The angle at which this type of reflection occurs depends on the index
of refraction, which is a value related to the material type and the wavelength of the incident
light. The interaction of the light, the material, and the observed intensity is depicted in
Fig. 1(b). In this image, n1 and n2 are the indexes of refraction of the top and bottom medium
respectively, α1 the angle of the reflected light with respect to the normal vector n to the sur-
face, and α2 the angle of the refracted light ray with respect to the opposite to the normal vector.
Another important property regarding the reflected light is that the polarization state is related
to the surface orientation. It is for this reason that, through Fresnel theory,9 if the ratio
λ ¼ n2∕n1 is known, by measuring the AoP and the DoP, it is possible to retrieve the normal
to the surface at each point of the object.

In summary, the polarization state of the light can provide rich geometric cues about the
shape, pose, and material of objects, notably in challenging conditions to classic imaging
approaches, such as in the presence of highly reflective objects’ surfaces (mirrors, windows,
water,. . . ) or transparent/translucent objects. We let the reader refer to these Refs. 9–12.

3 Deep-Learning Background
In this section, we introduce the basic concepts of deep learning algorithms, with the aim of
facilitating the understanding of the subsequent sections of the paper.

3.1 Overview of Deep-Learning Networks
In the fields of computer vision and robotics, data-driven algorithms are the most performant
ones, more particularly, deep-learning algorithms. These methods are based on a network model
developed to solve a task through a training process where the network would learn to interpret
the input data. Once the network is trained, it can be used on new and unseen data to perform the
intended task.

The training process is an optimization routine in which a set of input data, known as the
training data, is passed through a large equation with coefficients that can be tuned and the cor-
responding outputs determined. Next, an error function, called the loss function is computed
based on the input data, the output data, and the constraints with which the output must comply.
Finally, the equation coefficients, or network weights, are updated to try to reduce the loss func-
tion value. This process of updating the weights is called the back-propagation algorithm.13 Once
the weights have been updated, the process is repeated for a certain number of iterations, or
epochs.

The theory of deep neural networks has existed for several years, but it is only after
Krizhevsky et al.14 that these algorithms have become popular. The authors have shown that
convolutional neural networks (CNNs) are capable of outperforming hand-crafted theoretical
algorithms. A CNN is composed of several layers, and each of them includes several convolu-
tional, optimization, and normalization operations. At the output of each layer, we obtain the
different images called feature maps. The deeper the layer in the network, the higher the level
of information it represents. In other words, the output of the layers close to the network input
represents low-level features (edges, lines, and circles), and the output of the layers close to the
output of the network represents high-level features such as object labels (chair, building, car,
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dog, etc), depth of the objects in the scene with respect to the camera coordinate frame, a text
description of what the scene represents, or the pose of an object with respect to the camera
frame. In a CNN, a large number of convolutions are done to the input image, and the training
process is in charge of finding the convolution kernels coefficients to convert the input image into
the expected output image.

3.2 Popular Developed Models
In the last decade, several deep neural network algorithms have been developed. They signifi-
cantly improved the performance of their predecessors in various aspects, such as achieving
higher accuracies, maintaining the same precision with fewer parameters, and faster training
times. Examples of CNNs are the VGGNet,15 MobileNet,16 EfficientNet,17 DeepLabV3,18 and
ResNet.19 Even though there is a vast variety of models, in general, the models can be divided
into two main blocks: an encoder block and a decoder block. The encoder is composed of layers
designed to extract valuable information from the input data (also called features). The features
are then passed to the decoder for interpretation and determination of the output data. Many
authors use a known encoder block and tailor a specialized decoder module to meet their specific
needs. Additionally, when dealing with color data, the encoder blocks of the most popular net-
works are already included in the deep learning frameworks, and they have already been pre-
trained with the largest datasets available. This way, the optimization routine will converge faster
than training the same model with a tiny dataset.

Very recently, a new type of neural network architecture has been developed that challenges
the existing CNNs. It is known as transformers, and it has been presented by Vaswani et al.20 This
new type of network does not use the convolution operation, and it has been shown to outperform
all the known networks in the field of natural language processing. Furthermore, Dosovitskiy
et al.21 showed that transformers can also provide more accurate results in the computer vision
field. The network is based on what is called the attention mechanism, and more precisely, on the
self-attention mechanism. This method computes the dot product between the different entries,
and the output is an indication of the importance of the data at a given position for the task.
Therefore, the attention mechanism can be used to ignore the areas where no important data
is present and to keep the regions where the data is valuable to accomplish the final task.
The disadvantage of this type of architecture is that it requires a large amount of data to out-
perform CNN. If the dataset used for training is not large enough, the performance of transform-
ers is poor.

3.3 Polarization and Multi-Modal Networks
In data-driven approaches, it is not common to use polarization data exclusively, either because
they are very noisy due to the acquisition process, or because there are not enough constraints
based purely on the polarization theory for the network to converge. Therefore, polarization data
are usually mixed with other modalities in a multi-modal network. This type of network takes
several sources of data (at least color and polarization), and try to mix them efficiently. The
process of mixing data in this way is called data fusion in the literature, and in general, one
of the following three configurations is used: early, middle, or late fusion.

In the early fusion architecture, the data are mixed before entering the encoder network for
feature extraction. This fusion mechanism is performed in general through operations that con-
tain learnable parameters as the network, and these parameters are adjusted during the training
process. In late fusion, the data from each modality passes through different encoders. The
weights for each modality can be shared between the encoders, but it is not a common practice
since each modality extracts different types of patterns from the inputs. Once the input modalities
have passed through the encoders, the high-level feature maps are fused into a single one that is
then passed to the decoder module. Finally, in the middle fusion architecture, as for the late
fusion model, the data from each modality is inputted to an independent encoder, but in this
case, the feature maps in the encoder at the different hierarchical levels are fused. In other words,
at each network layer of the encoder, the corresponding feature maps are fused. Middle fusion is
the heaviest fusion architecture in terms of parameters and forward pass time. Nonetheless, it
ensures a complete mixture of the data at all levels in the network, avoiding information loss
while the data passes from one layer to another.
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In what follows, we will review the different approaches that make use of the polarization
information in different ways, using distinct approaches such as optimization algorithms, hand-
crafted features, and data-driven approaches.

4 Related Work
In this section, we discuss recent advances in the field of polarization imaging within both model-
based and data-driven strategies. We have reviewed the latest applications in the computer vision
and robotics field that utilize polarimetry between the years 2016 and 2022. Older applications
have not been considered because the most significant advancements began after the release of
the first micro-grid DoFP sensor around 2014. Since then, DoFP sensors have been adopted and
widely used as it allows real-time imaging. In 2018, Sony introduced a DoFP sensor, named
PolarSens, which became the core device of many commercial polarization cameras. It offers
much better quality data and facilitates the development of more performant algorithms and real-
time applications beyond laboratory conditions. The works have been grouped into four repre-
sentative categories and complementary tasks: image enhancement, segmentation, surface depth
and normal estimation, and pose estimation. Table 1 shows a summary of the papers included in
each group. Most reviewed works focus on the application fields of computer vision and robotic
vision. Particularly, we focus our study on the context of scene understanding in both ground and
underwater environments. Polarization has also been extensively used in the field of remote sens-
ing, notably in combination with synthetic aperture radar data. Applications in remote sensing are
not the focus of this survey and a good review of the recent advances of applications of polari-
zation in this field using data-driven algorithms can be found in Ref. 56.

4.1 Image Enhancement
In real-world applications, changes in viewing conditions can strongly impact the performance of
computer vision algorithms. Thus, enhancing the quality of the visual information is often a
required step to keep the accuracy of the developed computer vision system. The type of image
quality improvement depends on the application itself. In some cases, this implies having high-
quality measurements independently of the camera used, which can be achieved through camera
calibration.5–7,57 In others, the improvement can be related to removing highly bright, specular
reflections, requiring a separation between this type of reflection from the diffuse ones.22,58,59 In
more complex cases, the background structure needs to be recovered when an atmospheric phe-
nomenon is present such as mist or fog, as shown for some examples in Fig. 2. In most cases, the

Table 1 Summary of the reviewed works (2016 to 2022) of this polarization survey.

Survey section Application Papers

Image enhancement White balance and demosaicing Refs. 22–25

Dehazing, reflection removal, and image
restoration

Refs. 26–34

Specular-diffuse separation Ref. 35

Image segmentation Material-based segmentation Ref. 36

Glass segmentation Ref. 37 and 38

Urban scenes segmentation Refs. 39–41

Surface normal and depth
estimation

Normal map estimation Refs. 42–46

Depth estimation Refs. 10, 11, 47, and 48

3D reconstruction/scene rendering Refs. 49–51

Pose estimation Object’s pose Refs. 12, 52, and 53

Optical flow Ref. 54

Underwater solar-tracking Ref. 55
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physical constraints defined by the polarization state of the light can be used to improve the
results obtained by conventional cameras.

In this context, Ono et al.22 presented a white balance algorithm for RGB-polarization sen-
sors based on the achromaticity of the Stokes vector in the visible spectrum. Rodriguez et al.7

relaxed the experiment setup to calibrate micro-grid color-polarization sensors to achieve a flat-
field response in all the polarization parameter images. Wen et al.35 solved the separation of
specular from diffuse reflections with a model-based optimization strategy.60 Their pipeline
is independent of the illumination source by exploiting polarization and chromaticity images.
Wen et al.24 proposed to jointly demosaic RGB and polarization information to obtain high-qual-
ity, 12-channeled RGB-polarization images using a sparse representation model. The model is
obtained through an optimization algorithm that uses the ADMM scheme. Similarly, Morimatsu
et al.23 obtained high-quality polarization images by extrapolating the residual interpolation for
RGB images61 to the monochrome and color polarization sensors. They achieve their results by
changing the guidance image so that it is edge-aware, and by making use of the raw polarization
intensity measurements. Tanaka et al.32 achieved better quality images by improving the con-
dition number of the transport matrix in comparison with conventional, passive non-line-of-sight
system. This is done using the polarization leakage effect model produced by the oblique reflec-
tion over a filter oriented at the Brewster angle9 of a wall.

Using hand-crafted theories provides good results when the scene and the effect to analyze
are not complex since a high-precision mathematical model of the problem can be established.
When this is not possible, data-driven algorithms can be used, as they have the capability to

Fig. 2 Results of some of the reviewed algorithms for image enhancement. (a)–(c) Input image,
ground truth, and algorithm results of DoLP-based color constancy.22 (d)–(f) Input image, obtained
diffuse image, and obtained specular image of polarization-guided specular reflection separa-
tion.35 (g)–(i) Input image, ground truth, and resulting images of the polarization dehazing
method.27 Images courtesy of the respective works.
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learn complex theories during training. For example, they can handle scenes with several
objects at the same time, or model effects for which no known mathematical model exists.
Data-driven approaches as described in Lei et al.29 have been designed to remove the reflec-
tions produced by different types of glasses using polarization theory. The input to their net-
work architecture, composed of pre-trained U-net and VGG-19 networks, is an image that is a
combination of the raw measurements, split by polarization channel and polarization param-
eters (I, ρ, ϕ), as presented in Eq. (1). Zhou et al.27 used a single polarization image and a deep
learning network composed of two U-net models and two autoencoders to dehaze urban
scenes. Hu et al.26 developed a data-driven approach and a dataset to increase the brightness
and quality of images under low-illumination conditions. They created a CNN that works in
two steps based on the raw measurements of the camera: first, an enhancement in the intensity
domain for all the color channels, and then each color channel is treated by a separate network.
Liu et al.28 proposed a generative adversarial network architecture to fuse the DoLP and the
intensity images into a single intensity image. By dividing the image into background and
foreground, the network fuses these two polarization images into a single image that has
an increased and better contrast than the original intensity image. The results produced by
this network can be used to train other networks, i.e., to perform an improved data augmen-
tation, in order to obtain models with increased generalization capabilities than the ones
obtained when trained only with the original intensity images. Despite the outstanding results
of data-driven algorithms with respect to the optimization-based approaches, the quality of
these results depends on the data and the type of model used. Particularly for the data, if not
all the cases have been considered in the images provided during training, the missing cases
might produce in less accurate results during testing.

Several relevant image enhancing approaches have also been proposed to deal with the
challenging scenario of underwater imaging. Li et al.30 aimed to improve the contrast of under-
water images due to turbidity using polarization and an optimization strategy. They propose to
split the Stokes vector into three contributions (diffuse, specular, and scattered light) since they
claim that the scattering reflection underwater cannot be neglected. In the same direction, Hu
et al.31 present a novel CNN based on residual blocks that fuse the polarization features to
restore the contrast of underwater images. Using the raw measurements of three polarization
channels of a monochrome polarization camera, they are able to see through turbid water and
obtain a clear image of the hidden objects. Amer et al.33 proposed a static pipeline to increase
the image quality for underwater applications. Based on the active cross-polarization technique
and an optimized version of the dark channel prior, they achieve contrast improvement for
underwater imaging, with a single snapshot in real-time. Shen and Zhao34 developed an iter-
ative pipeline to jointly improve the image contrast and denoise the image. With two polari-
zation images taken with a rotative filter at 0 deg and 90 deg, they compute the transmittance
and the irradiance maps in underwater conditions for each color channel. Then, they establish
an iterative process to refine these results using an adaptive bilateral filter and an adaptive color
correction routine.

Despite the remarkable improvement brought by polarization to image enhancement, as
compared to similar applications for RGB-only cameras, several challenges still remain. For
example, Ono et al.22 outperformed different baselines in many scenes, but it is left as future
work to improve the results obtained when the sky occupies a large portion of the image.
Similarly, Zhou et al.27 retrieved the hidden structure of objects behind the haze with good accu-
racy in real-world situations, after training the network with computer generated images. Despite
this, the authors claim that the model does not produce adequate reconstructions for fog and mist
due to the physical phenomena produced by these perturbations that are not the same as for the
haze. It is important to note that one of the barriers in the polarization image enhancement field is
the lack of standard benchmarks. Indeed, most works had to create a dataset to demonstrate their
contributions. Some of the created datasets, which often required a huge amount of work, can be
reused as in Lei et al.,29 where the authors realized acquisitions in a large variety of environments,
and with different types of glasses. On the other hand, other applications have been demonstrated
using small non-available datasets, which may not necessarily cover all the required cases,24 or
they have created a polarization dataset based on RGB ones and a mathematical model of the
polarization effect.27
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4.2 Image Segmentation
The polarization state of the light is directly linked to the object’s material and shape as intro-
duced in Sec. 2.3. This property can provide insightful and complementary information to guide
object segmentation approaches in scenarios where only the surface color is not discriminant.
Indeed, the index of refraction depends on the internal structure of the objects, and on the wave-
length of the incident light as defined by the Fresnel equations.2 It is for this reason that material
classification is one of the most fruitful application of polarization theory. Previously, this task
was accomplished using hand-crafted features, in controlled acquisition conditions, using rota-
tive filters, and considering a single object to be analyzed at a time.62–65 Nowadays, with the
advances in sensors and the advent of data-driven algorithms, object characterization with polari-
zation cues has been ported to more complex, constraint-relaxed scenarios.

In the domain of infra-red imaging, Li et al.39 succeeded in efficiently detecting the road area
in urban scenes using the zero-distribution prior in the AoLP and the difference in the DoLP of
the objects to increase the accuracy of the segmentation. This information is further used in a
visual tracking algorithm to continuously track the road online. In an extension of their previous
work, Li et al.40 used the zero-distribution prior of the AoLP to create a coarse map of the road.
Then, they developed a deep-learning network to refine the coarse road map. Their network
consists of two branches that analyze different aspects of the scene. The main branch receives
the information captured by an infra-red camera, already converted into a fake color image, i.e., a
three-channel image result of stacking the AoLP, the DoLP, and the total intensity together, and
then converted from the Hue-Saturation-Value (HSV) to the RGB color space. The objective of
this branch is to extract multi-modal features of the scene. The other branch or polarization-
guided branch also receives the AoLP and the DoLP of the scene, but it does not receive the
intensity image. Instead, the coarse map obtained from the zero-distribution prior of the AoLP is
provided. By doing so, the authors aim to guide the network based on the polarization properties
of the road and not of the entire scene. In the visible spectrum, Xiang et al.41 developed a fusion
network to combine color and polarization data to better segment objects of urban scenes. They
tested several combinations of polarization information with attention mechanisms and con-
cluded that using only color and the AoLP is the best combination to improve the results.
Kalra et al.38 improved the instance-semantic segmentation network Mask R-CNN66 to handle
transparent objects (as shown in Fig. 3) by adding monochrome polarization cues to the original
mid-fusion pipeline. Each polarization parameter image (intensity, AoLP, and DoLP) is fed into a
different backbone encoder, and the fusion of the feature maps is performed at each encoder level.
Mei et al.37 extended the work presented in Ref. 38 using RGB polarization cues, instead of mono-
chrome, with the aim of segmenting glasses in urban scenes. Since they use an RGB-Polarization
camera, they can measure RGB intensity, RGB DoLP, and RGB AoLP. Each of the two RGB
polarization images (DoLP and AoLP) is balanced using an attention mechanism. Then, these two
results, and the intensity RGB image are fed into three independent conformer encoders67 and fused
using local and global guidance. In a more complex scenario, Liang et al.36 built a network to fuse
RGB, infra-red, and polarization cues to produce an outdoor scene segmentation based on the
object material type. The proposed pipeline is composed of two core elements: a network that
will classify the objects present in one class of a subset of the segmentation labels from the
CityScapes dataset68 and a region-based filter selection module that chooses the modality that pro-
vides the most relevant information for determining the type of material of the constitutive elements
of each detected object. The full network is composed of four encoders: one for the RGB intensity,
one for the AoLP image, one for the DoLP image, and one for the infra-red image.

All these works outperform RGB systems when the polarization information is added to
each developed pipeline. A higher gain in performance is also often obtained when the network
is adapted to correctly process the AoLP and the DoLP, and not when an RGB network is trained
with polarization images. This is why most of these works propose carefully designed fusion
schemes. However, the lack of datasets including polarization information in the field of image
segmentation poses limitations on the development of polarization-based approaches. It is impor-
tant to highlight that all the previously discussed works have presented their own dataset to show
that polarization is a path to consider in image segmentation. For instance, Kalra et al.38 used a
private dataset acquired in a very specific environment, focused on the particular application with
a pick-and-place robotic arm. Xiang et al.41 provided a small-scale dataset of RGB-polarization
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images captured in various urban scenes. Although informative, the dataset contains only 394
annotated images segmented into 9 different classes. Mei et al.37 introduced a medium-scale
dataset, with 4511 images annotated only for the labels glass and no-glass. Similarly, Liang
et al.36 made publicly available a dataset of semantic segmentation of urban scenes, with
multi-modal sensors, but it only includes 500 labeled images, and Li et al.39 did it for road seg-
mentation, and with their personalized infra-red polarization camera. Thus, there is a need for a
common large-scale benchmark to evaluate the performance of these different segmentation
algorithms to trace the direction toward a generalization of the polarization modality.

4.3 Surface Normal and Depth Estimation
Polarization is well known to encode shape information of the different objects being observed.
Most existing approaches consider an orthographic projection of the incoming light, and if the
refractive index of the object is known, then the normal vectors to the surface can be estimated,
and through integration, the depth map can be retrieved. These approaches are again based on the
Fresnel’s theory, which has been briefly introduced in Sec. 2.3, which establishes the relationship
between the degree of linear polarization with the zenith angle of the normal, and the AoLP with
the azimuth angle. Even though effective in several works and scenarios,69–72 the fact that both
the object’s refraction index and the light direction must be known makes this approach limited to
laboratory strict conditions. Additionally, the relationship between polarization and the normal
vector has geometric ambiguities. Therefore, one important research direction is to reduce the
constraints and priors required for the acquisition while maintaining low reconstruction errors.

Fig. 3 Segmentation examples with polarization cues. From left to right: (a)–(c) Input image,
results obtained with an RGB-only method, and the result of glass segmentation using intensity
and spectral polarization information.37 (d)–(f) Input image with transparent objects, RGB-only
method object segmentation results, and results obtained with the polarization data-driven
method.38 (g)–(i) Input image, RGB-only method results, and the results of the multimodal material
segmentation algorithm.36 Images courtesy of the respective works.
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Ba et al.45 proposed a learning-based approach to estimate the normal map of objects as
shown in Fig. 4. The ambiguous normal maps from Fresnel’s theory are used as priors given
directly to a deep neural network as inputs. Fukao et al.44 present a shape from polarization
algorithm that uses a stereo pair of polarization cameras. The coarse map from the stereo vision
is refined by filtering the normal maps with a belief propagation scheme. They exploit Fresnel’s
theory, and an improved modeling of the micro-facet reflection effect by considering that it is a
linear combination of the diffuse and the specular lobe reflection. Similarly, Ichikawa et al.42

relaxed the constraints for shape from polarization by using the Rayleigh and the Perez models
to estimate the sun polarization state and direction on a clear day. Then, through mathematical
optimization, the normal and shading maps are obtained. The additional cues about the incident
Stokes vector serve to determine how the object modulates the incident light (Mueller calculus)
and jointly with the shading constraints, the normal map can be estimated. Deschaintre et al.46

proposed a 3D object shape estimation, jointly with a spatially variable bidirectional reflectance
distribution function (BRDF) model estimation, by using a single-view polarization image fed to
a U-Net based network architecture. The full input of the model is the intensity image, the nor-
malized Stokes map, and the normalized diffuse color, which encodes the object reflectance
information. Lei et al.43 proposed a deep-learning network to estimate the normal map of com-
plex scenes. Their aim is to improve the accuracy limits by incorporating viewing encoding as
input to the network, which accounts for the non-orthographic projection. This input is an image
where each pixel represents the direction of the incident light. When estimating the normal

Fig. 4 Results of some of the reviewed algorithms for surface normal and depth estimation. From
left to right: (a)–(c) intensity input image, reconstructed mesh, and estimated normal map by the
method introduced by Ref. 49. (d)–(f) Real RGB image, corresponding rendered image, and the
corresponding rendered degree of linear polarization. This result corresponds to the scene ren-
dering technique implemented in Ref. 51. (g)–(i) Input polarization images, ground truth, and esti-
mated normal maps. These results are courtesy of Ref. 45.
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vectors from polarization under the orthographic assumption, all the incident light rays are sup-
posed to be colinear to the Z axis of the camera coordinate frame. Thus, all the zenith angles are
measured with respect to a common coordinate frame. When using a perspective lens, the zenith
angle given by the polarization theory is measured with respect to the direction of propagation of
the light, which in this case, will be different for each pixel. By providing the viewing encoding,
the authors claim the network will understand the viewing direction of the polarization state and
use this information to improve the results of a network that works under the orthographic
assumption with a perspective lens. The other inputs to the model are the raw measurements
of the camera separated by polarization channel, the AoLP, the DoLP, and the total intensity.
Their network is also grounded by an architecture similar to a U-Net model, with a multi-head
self-attention module in the bottleneck. Smith et al.10 defined the shape from polarization prob-
lem as a large linear system of equations. They combine the physics theory of polarization with
the geometry of the problem to formulate the depth equations directly, without passing through
the computation of the normals. Berger et al.47 present a depth estimation algorithm that uses the
polarization cues in a stereo vision system. They improve the correspondence matching by add-
ing the AoLP-normal constraint to the intensity similarity function. In the same direction, Zhu
and Smith11 propose a hybrid RGB-polarization acquisition system to obtain a dense depth
reconstruction. By classifying the pixels into specular or diffuse, they make use of normal vectors
obtained from Fresnel’s theory to improve the estimation of the normal maps obtained from the
stereo images. Blanchon et al.48 extend the monocular depth estimation network Monodepthv273

to consider polarization information by adding the azimuthal constraint to the deep-learning loss.
Zhao et al.50 extended the multi-view reconstruction system74 by adding polarization cues to the
optimization. They introduce a continuous function that has four minimum values, each of them
at one of the ambiguous normal azimuth possibilities of Fresnel’s theory. Kondo et al.51 devel-
oped a polarimetric BRDF model that does not constrain the illumination nor the camera position
during acquisition. This model is used to synthesize polarization images out of the RGB images,
easing the dataset creation for data-driven algorithms. By acquiring images with different illu-
mination of known Stokes vectors, they use Mueller calculus to model the object reflectance.
Shakeri et al.49 produced a dense 3D reconstruction using polarization cues. This is done by
optimizing an initial depth map obtained from MiDaS,75 and the coarse depth map from
COLMAP.76 The optimization routine constraints the normals with the ones from Fresnel’s
theory. The initial depth map is used to disambiguate the polarization normals, and the coarse
map is used to regularize the optimization routine since they are metrically correct but sparse.

The previously presented works have all been developed for shape/depth estimation while
leveraging the polarization information. Combining the polarization state of the light with any
geometry problem developed for the RGB space results in a significant improvement in accu-
racy and image quality. This is because the polarization measurements are dense since they are
provided pixel-wise, which means that the normal constraints are also dense. Thus, passive,
high-quality far-field 3D reconstructions can be retrieved using a multi-modal RGB-polariza-
tion camera, which cannot be done with active sensors, such as LiDAR or Microsoft Kinect.
However, these polarization constraints are still often dependent on knowing priors about the
material (metallic versus insulator) and the reflection type (specular versus diffuse), thus some-
times they can produce low-quality results in the wild. To overcome this problem, some works
decide to use only diffuse reflections46 or to classify the pixels into either diffuse dominant or
specular dominant (such as in Refs. 10 and 49). To deal with more complex cases, a better
modeling of the reflection effect might be required.44 For data-driven algorithms, this field
also suffers from the lack of large-scale datasets that can be used as benchmarks for research.
Most papers propose their own dataset by doing acquisitions,43 or they model the polarization
state assuming artificial conditions to simulate polarization over already existing RGB
images.51

In summary, the polarization clearly provides valuable cues in the field of shape estimation
and 3D reconstruction but two main problems need to be addressed. Foremost, the lack of large-
scale, standard evaluation benchmarks hinders the development of techniques using this modality
in the current era of data-driven algorithms. On the other hand, there is no generic model that can
effectively handle generic types of reflections over any type of material. Therefore, the challenge
of interpreting the measured data and determining which model to use remains open.
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4.4 Pose Estimation
The polarization of light can also play a significant role in object pose estimation since it provides
valuable geometric constraints in the determination of the vectors normal to the observed surfaces
(as discussed in Sec. 4.3). Hence, this additional information can be used to overcome the ill-
posedness condition of many RGB problems, such as estimating the relative rotation and trans-
lation of textureless objects between two images. Particularly, these additional constraints are
useful when the objects to analyze are highly reflective and translucent since the polarization
measurements are independent of the intensity of the light. Cui et al.12 used the normal vectors
estimated from the Fresnel equations to add geometric constraints for pose estimation (some
visualizations of the pose estimation can be seen in Fig. 5). With this additional information,
only two corresponding points in two views are required to estimate the rotation matrix and
the translation vector. In the same direction, Gao et al.52 proposed a data-driven algorithm to
find the pose transformation of an object in the image with respect to the camera coordinate
frame. The algorithm uses three ambiguous normals as inputs to one encoder, and the polari-
zation parameters into another. Then, the features are fused at different levels, and given to the
decoder. Tzabari and Schechner54 present a static approach in which they use the AoLP and the
DoLP to expand the optical flow theory. This new component accounts for the rotation speed
estimation, which cannot be done with the classical optical-flow approach. Hu et al.55 utilized a
monochrome polarization camera to build a complete pipeline to estimate the sun’s position
based on the DoLP and the AoLP measured underwater. Jointly using the Snell and Fresnel
theories, they revert the ray bending caused by the change in medium and handle the problem
as if the measurements were done outside the water. Zou et al.53 pushed forward the accuracy in
the human shape and pose estimation by building a two steps network with polarization cues.
Assuming the human cloth to be diffuse dominant, they retrieve the human features by using the
raw polarization intensity images, and the ambiguous normal maps obtained from Fresnel theory.
The first network produces a high-quality normal map, and the second one uses this result jointly
with the output of the SMPL human shape model77 to estimate the final shape and pose of a
clothed person.

Due to the geometric nature of the pose estimation problem, the polarization state of the light
provides valuable clues that can be used in any computer vision algorithm in this field. The
applications included in this section of the review demonstrate the potential of accuracy gain
obtained with the polarization constraint while at the same time relaxing the other algorithms

Fig. 5 Results of some of the reviewed algorithms for pose estimation. From left to right:
(a)–(c) input RGB image, reconstructed surface with the algorithm provided in Ref. 12.
(d)–(f) Glass vase model and the detected pose from two viewpoints. Results courtesy of Ref. 52.
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hypothesis. In Ref. 12, it is shown that only two points are required to estimate the pose trans-
formation between two views, resulting in an improvement in speed and accuracy when added to
any structure from motion algorithm. Without any requirement in the type of clothes to be used,53

they were able to estimate the human pose with a lower error and fewer constraints than com-
petitors. In underwater applications, global positioning system (GPS) signals cannot be used
because their intensities decrease rapidly with the depth in the water. To address this issue,
Hu et al.55 propose an autonomous underwater navigation system that uses polarization instead
of a GPS signal. In their system, the camera’s global position is estimated by applying geomet-
rical constraints that link the sun’s position to its known trajectory.78,79 However, several lim-
itations still remain when doing pose estimation with polarization. For example, in Ref. 52, only
the position of one object can be done each time, whereas others adopt known object materials
and physical properties. Furthermore, most algorithms only consider one type of reflection
(either diffuse or specular), which limit their generalization to any type of scene.

5 Pola4all: Polarization Toolkit
From the presented study on the advances in polarization imaging, we have observed that in all
the reviewed applications there are no common standards either for data structure, acquisition, or
visualization tools. We can also notice a lack of a common library to boost the development,
evaluation, and deployment of algorithms using polarization. For these reasons, this section
presents a software library that allows to visualize and analyze polarization images, as well
as to develop and integrate any custom application in a structured manner. In what follows,
we briefly describe the software, including its basic components and the implemented image-
processing algorithms. The objective is to contribute to the community by providing several tools
integrated with a single common GUI software that can interact with any DoFP RGB-polariza-
tion camera available on the market. Additionally, this software is meant to provide access to all
the developed algorithms that showcase the power of polarization information, making it easier
for anyone interested in working with polarization modality to get started. The library has been
developed in C++ object oriented programming language and is built on top of three main libra-
ries/frameworks: OpenCV, Robot Operating System (ROS) and QT5. An overview of the final
GUI can be found in the GitHub repository of this project.

Throughout this section, we will show the output images of our program. To be able to
compare the polarization properties through the proposed software library toolkit, the same test
image of an urban scene is used in all the experiments. This image, corresponding to the raw
image obtained from the camera, is shown in Fig. 6. The library is composed of several modules
designed to be independent so as to enable easy maintenance and debugging. With such a struc-
ture the addition or removal of a functionality is straightforward. Regarding the architecture of

Fig. 6 Raw image of an urban scene used as a reference for all the algorithms implemented in the
toolkit Pola4All.
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the code, it is composed of two general components: the camera server, and the GUI client. They
are detailed in the documentation of the library repository.

5.1 Core Components
The first component is an ROS camera server package that interacts directly with the camera:
getting images and changing (or querying) its parameters, such as the pixel gain, exposure time,
and frame rate. It has been designed to support the integration of existing modern micro-grid
polarization cameras. The second component of the software is the GUI, which works as a client
of the ROS server. The final user interface, with a detailed explanation, is included in the GitHub
repository.80 This interface allows the user to perform all the required tasks involving the camera
such as changing the image parameters, and the super-pixels filter configuration. It also allows
image processing, raw image display, and sensor calibration. To analyze the calibration perfor-
mance, plotting functions are provided.

5.2 Basic Processing
The basic polarimetric processing techniques included in the toolkit are detailed below.

Raw split images: it produces as output four images, one per filter orientation independently
of the color. An example of the image for filter orientation of 0 deg and red channel is shown
in Fig. 7(a).

Polarized color images: it produces as output four images, which are the demosaiced version
of the output from the raw split images mode obtained using the bilinear interpolation algorithm.
Since the raw measurements of the camera are used, they are not white-balanced. Thus, the
resulting images exhibit a greenish aspect, as shown in Fig. 7(b) for the 0 deg polarization-red
color channel. To this image, the white-balance algorithm described in Sec. 5.2.1 can be applied
to obtain the resulting white-balanced image, as shown in Fig. 7(c). Polarized color images allow
to identify regions in the scene where light is polarized. To illustrate this, the demosaiced, white-
balanced image for the channel 135 deg is shown in Fig. 7(d). Note that the windshields of the
cars appear dark in this image compared to the one corresponding to filter orientation of 0 deg.

Fig. 7 (a) Raw mosaiced version of the reference image, for the polarization channel 0 deg.
(b) Demosaiced version of the reference image, without white-balance, for the 0 deg polarization
channel. (c) White-balanced demosaiced images for the polarization channel 0 deg. (d) White-bal-
anced demosaiced images for the polarization channel 135 deg.
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This indicates that the light reflected by the windshields is polarized because polarized light is
filtered by polarimetric filters according to their orientations. As explained in Sec. 2, the intensity
of linearly polarized light that passes through a rotating linear polarizer will exhibit a sine wave
curve with respect to the rotation angle. This sine wave is maximum when the orientation of the
filter is equal to the angle of the linearly polarized light and it decreases as the filter rotates. The
intensity reaches a minimum when the orientation of the filter is shifted by π∕2 radians with
respect to the angle of linear polarization of the light. In the case of the RGB-polarization camera,
four filter orientations are considered. If any of these orientations matches the AoLP of the
incoming polarized light, then the corresponding image will have a bright spot, and the one that
is shifted by π∕2 radians will have a dark spot at the same position. The windshields of the cars in
Fig. 7(d), for a filter orientation of 135 deg, are dark, whereas in Fig. 7(c), for a filter orientation
of 0 deg, it is rather bright; this means that the 135 deg filter has filtered out a great part, if not all,
of the polarized reflections. Thus, we can deduce that the reflected light has an AoLP close to
45 deg, and that it is highly linearly polarized.

Original color: only one image is returned. This image is equivalent to the one obtained with
a conventional RGB camera. It corresponds to the first component of the Stokes vector S0. It is
computed by applying Eq. (9) to the output of the Raw split images mode. The obtained image is
then demosaiced to obtain the three-channel color image.

Stokes images: after separating the input image by polarization channel, the three Stokes
components images can be obtained by applying Eq. (9). Since the polarization state of the light
depends on the frequency of the light, the Stokes vectors are split by color channel. As a con-
sequence, this function will provide 3 × 4 ¼ 12 images. Four color channels are considered since
the Bayer patterns consist of 2 × 2 patterns of red, green, green, and blue color filters. The three
linear components, S0, S1, and S2, of the Stokes vector for the red channel are shown in
Figs. 8(a)–8(c). The images for the other channels are included in the GitHub repository.80

Fig. 8 Polarization images for the red channel. (a)–(c) S0;1;2 components of the Stokes vector. The
parameter S0 corresponds also to the total intensity image. (d) and (e) Raw AoLP and Raw DoLP.
(f) Raw AoLP of the red channel, colored with the HSV palette. (g) Raw DoLP of the red channel
colored with the Jet palette.
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The S0 image is the red channel image of the original color image, whereas the S1 and S2 images
are functions of the orientation of the polarizer filters. Since S1 and S2 can have negative values, it
is their absolute values that are considered. In the same way as polarized color images, Stokes
component images can be used to detect regions with polarized light. Indeed, polarized light will
be characterized by a bright or high Stokes value region in one of the S1 and S2 images and a
corresponding dark or low Stokes value region in the other image. Conversely, regions that
appear dark in both images correspond to areas where the reflected light is weakly polarized.
In Figs. 8(a) and 8(c), we can deduce that the windshields exhibit highly polarized reflections.
This is consistent with what we have already deduced from the polarization color images.

Raw I - Rho - Phi: as also explained in Sec. 2, the Stokes vector can be represented as a
function of three physical parameters: the total intensity I, the degree of linear polarization ρ, and
the AoLP ϕ. The equations to compute these parameters as a function of the Stokes vector are
given in Eq. (1). Again, these three physical parameters can be computed for each color channel,
and thus 12 images are also returned in this mode. Since each parameter has a different interval of
values, all of them have been normalized to be in the range ½0;255�. The resulting images for the
red channel only are shown in Figs. 8(a), 8(d), and 8(e), respectively. These images are a good
representation of all the objects that reflect linearly polarized light. Note that a pixel value in the
AoLP image has a meaning only if its corresponding pixel in the DoLP image has a non-zero
value. In this set of images, it is possible to confirm that the road, the windshields, part of the
body of the car, and some door glasses have a large DoLP. Thus, the AoLP and DoLP features are
extremely valuable and can be used, for example, in deep learning models to improve the accu-
racy of the network results for these objects.

I - Rho - Phi: in the Raw I - Rho - Phi mode, all the images are single channeled, thus they are
displayed in gray-scale. Particularly for the AoLP, this is not an adequate representation since it is
a circular variable. A proper representation would be one that assigns the same color to the maxi-
mum and minimum values. In this mode, this is done by creating a color palette based on the
HSV color space. Let X be a gray-scale value in the range ½0;255�. The HSV palette is defined as
a function that assigns a 3D vector chsv to each value X, such that

EQ-TARGET;temp:intralink-;e010;114;400chsv ¼
�
179X
255

; 255;255

�
T
: (10)

Then, the obtained three-channeled image is converted from the HSV to the RGB color space.
On the other hand, the degree of linear polarization is colorized using the Jet palette, which maps
blue colors to low values, green colors to middle values, and red colors to high values. As in the
Raw I - Rho - Phi mode, 12 images are returned in this mode. The results of this mode for the
colored AoLP and DoLP are shown in Figs. 8(f) and 8(g), respectively, for the red channel.

Fake colors: when dealing with polarization imaging, a correspondence is established
between the HSV (hue, saturation, and value) color space and the intensity, degree of linear
polarization, and AoLP.81 Since the AoLP is a circular variable, it is considered to be the hue
of the color. The saturation is the purity of that color, meaning that a saturation of 100% is a pure
color, and a saturation of 0% means that it is a gray-level value. Similarly, the degree of linear
polarization indicates the “purity” of the light: if it is totally unpolarized, ρ is equal to zero, and if
it is totally linearly polarized, ρ is equal to 1. Finally, if a conventional color image is considered,
and the value channel is extracted from it in the HSV space, a gray-scale version of the original
image is obtained. This information is similar to the total intensity measured by the I parameter.
Thus, a color image can be obtained if the I, ϕ, and ρ images are stacked together, considered to
be in the HSV space, and then converted back to the RGB space. The result obtained in this way
is called a fake color image. The colors obtained with this processing algorithm have the follow-
ing properties.

• Unpolarized light is represented by gray-scale colors.
• Highly polarized light will be colored.
• The colors in the image depend mainly on the AoLP, thus, to the surface orientation.

This processing is interesting since it helps to quickly identify the objects that reflect polar-
ized light. As explained before, the polarization parameters depend on the frequency, thus the
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fake color images are separated by color channel. Therefore, this operation returns four images.
The resulting image for the red channel is shown in Fig. 9.

5.2.1 White-balance module

The observed light by a camera depends on two parameters: the observed object reflectance, and
the illumination of the color.22 Thus, a white-balance algorithm needs to be used in order to
restore the true colors in the scene. In some polarization cameras, and particularly in the
Basler RGB-polarization camera, this type of algorithm is not correctly implemented. Thus, our
software includes an implementation of a white-balance algorithm. The white balance is a gain
applied to each color channel to get the true color of the objects despite the environment where
the image is taken. In our implementation, the automatic white search is done globally, and not in
a user-defined region of interest. The algorithm computes the average of all the color channels of
a single orientation, and it searches for the pixels whose average is the highest. If there is a white
piece in the scene, even with the color gains unbalanced, its average will be the highest. Thus, the
pixel whose average is the highest is considered as white. Then, the highest channel value is left
untouched (gain equal to 1), and the other channel gains are computed such that their values
equal the highest channel value. This algorithm of automatic white balance is constrained to
work with no high-level saturated images. It can be deactivated and the different gains set man-
ually. An example of the input image to this algorithm, and its corresponding output are shown in
Figs. 7(b) and 7(c), respectively.

5.3 Polarimetric Camera Calibration Module
This module is an implementation of the polarimetric camera calibration algorithm described in
Ref. 7. The calibration algorithm is used to compute a series of matrices that are applied by a
correction function to rectify the measurement errors due to manufacturing imperfections. In this
way, two super-pixels of the same color channel that receive the same light source will provide
the same output measurements. The module also provides a function to correct the image, once
the calibration algorithm has been run. This function takes a raw image from the camera, and if
the calibration matrices have been computed, the function will return another image, with the
same structure as the input, but with all the pixel measurements corrected by the calibration
algorithm.

The calibration problem can be solved by taking several images of a uniform and linearly
polarized light. If the light source is uniform but unpolarized, it can be polarized using a linear
polarization filter. By turning the filter, the light received by the camera at each filter position will
have a different AoLP. A sample of a polarized light source with an AoLP of 40 deg is shown in
Fig. 10, for the 0 deg and 45 deg polarization channels. These images correspond to the results
before and after applying the calibration algorithm.

The calibration procedure will compute the pixel parameters given the model defined in
Ref. 7, i.e., ðTi; Pi; θiÞ. In this model: Ti is the pixel gain; Pi is a parameter that accounts for
the non-ideality of the micro-polarization filter implemented on the pixel; θi is the effective ori-
entation of the micro-polarization filter of the pixel; i is the position of the pixel considered. From

Fig. 9 (a) White-balanced color image. (b) Fake colors image representation for the red channel.
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Mueller calculus, these parameters have an ideal value of ðTi; PiÞ ¼ ð0.5; 1.0Þ for all i, and
θi ∈ f0 deg; 45 deg; 90 deg; 135 degg. However, in general, each pixel will have a set of param-
eters that will be different from these ideal values. Thus, the calibration algorithm allows to
compensate for these differences.

To assess the acquisition quality, the different plot functions of the software can be used.
With these plots, the user can determine if the acquisition is correct, and if the camera measure-
ments are valid. It can also assess the quality of the sensor and confirm the effectiveness of the
correction on the camera measurements.

Among the available plots, the histograms of the intensity, the DoLP, and the AoLP of the
incident light can be computed from the image currently displayed by the software. This infor-
mation allows to evaluate the quality of the calibration results. After correction, these three
parameters (intensity, DoLP, and AoLP) will have a narrower distribution than the uncalibrated
case. These histograms before and after calibration are represented in Figs. 11(a) to 11(f). They
have been computed with the same sample image, mentioned before, of a polarized light with an
AoLP of 40 deg.

A real-time plot of these three parameters (intensity, DoLP, and AoLP) can be done for a
given row of pixels of the sensor. These graphs are displayed in the last two columns of Fig. 11,
and they correspond to the measurements before and after applying the calibration. These plots
illustrate the vignetting effect and show how calibration can reduce its impact over the three
polarization parameters. It is important to note that this correction is achieved since the pixel
model used considers the polarization parameters of the pixel, and not only the unbalanced sens-
ing gain. A simple gain correction will only affect the intensity image but not the AoLP nor the
DoLP images.

Finally, the consequence of applying the calibration can be observed in the reference urban
scene image. The effects of the calibration over the intensity, AoLP, and DoLP images are shown
in Fig. 12. A zoom has been added to the top and bottom right areas of the image where it is
possible to see that the vignetting effect has been corrected. Particularly from these images, the
contribution of the calibration can be observed mostly in the AoLP and the intensity images. In

Fig. 10 Calibration effects over a uniform, linearly polarized light, with an AoLP of 40 deg. These
images are the demosaiced RGB polarization channels. (a) and (c) Uncalibrated polarization chan-
nels 0 deg and 45 deg, respectively. (b) and (d) Calibrated polarization channels 0 deg and 45 deg,
respectively.
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the scene, there are several walls that act as planes. Thus, they should reflect the same AoLP, i.e.,
they should have the same color. This happens only after calibration, mainly in the building
situated in the far region of the image, and in the walls on both sides of the road. In the intensity
image, since the pixel model includes a gain factor, the vignetting effect is also corrected with this
system, making the darker areas in the borders to be as bright as the center of the image.

5.4 Polarization Processing Algorithms
Differently from Sec. 5.2 where basic polarimetric operations can be done, in this module two
applications of the polarization concepts are implemented. The first one is the simulated polari-
zation filter. As explained in Sec. 2, each super-pixel allows the computation of the Stokes vector
s ¼ ½S0; S1; S2�T of the incident light. Now, let us consider a light, described by the Stokes vector
sin that passes through a linear polarizer. The filter is oriented at an angle θ and modeled by a

Fig. 11 Calibrated camera quality evaluation. All the plots are computed before (first and third
columns) and after (second and fourth columns) calibration. (a) and (d) Intensity histograms.
(b) and (e) AoLP histograms. (c) and (f) DoLP histograms. (g) and (j) Intensity measurements plots
over a single row. (h) and (k) AoLP measurements plots over a single row. (i) and (l) DoLP mea-
surements plots over a single row.

Fig. 12 Calibration effects over the polarization images, for the red channel. Top row: uncalibrated
images. Bottom row: calibrated images. (a) and (d) Total intensity. (b) and (e) Angle of linear polari-
zation, colored with the HSV palette. (c) and (f) Degree of linear polarization, colored with the Jet
palette.
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Mueller matrix M, as explained in Sec. 2. Therefore, the effects of a linear polarizer in front of a
normal camera can be simulated by computing Eq. (7). Thus in this functionality, the inputs are a
raw image from the camera and the orientation of the filter θ that one would like to simulate.
Then, this algorithm returns two images: the input image and the filtered image after applying
Eq. (7) to all the super-pixels. This functionality is commonly used in photography to remove
annoying polarized reflections from the environment. In a real system with a conventional RGB
camera, the filter is physically placed on top of the lens, and turned until the reflection is
removed. With this software, the filter and its effects are simulated after the image has been
captured, and the exact angle for reflection removal can be found. This orientation is equal
to the AoLP of the incident light shifted by 90 deg. As an example, the results of simulating
a linear filter with the angles θ ¼ 60 deg and θ ¼ 120 deg are shown in Figs. 13(b) and 13(c),
respectively. Note that the choice of an angle or another will either reinforce or erase the reflec-
tions on the windshields.

The second functionality of this module is the polarized specularity removal. It is an exten-
sion of the simulated polarization filter, explained above. In the previous case, all the pixels are
affected by a single polarization filter. But, in a scene, there might be several objects that produce
this type of reflection, with different AoLP. To erase them all at once, let us consider the Stokes
vector of the observed light. This vector can be split into two other Stokes vectors: one that
represents totally unpolarized light and another that represents a totally linearly polarized light
s ¼ sunpol þ spol such as

EQ-TARGET;temp:intralink-;e011;114;496

2
4 S0
S0ρ cosð2ϕÞ
S0ρ sinð2ϕÞ

3
5 ¼ ð1 − ρÞ

2
4 S0

0

0

3
5þ ρ

2
4 S0
S0 cosð2ϕÞ
S0 sinð2ϕÞ

3
5: (11)

Removing the polarized reflection means erasing the component corresponding to spol. This
is equivalent to computing the sunpol vector. This functionality returns two images: the input and
the filtered images, both demosaiced. In contrast to the previous case, this functionality does not

Fig. 13 Specularity removal application results. (a) Unfiltered total intensity. (b) and (c) Filtered
image by simulating a linear polarization filter oriented at 60 deg and 120 deg, respectively.
(d) Polarized specularity removal by filtering with the degree of linear polarization.
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require the user to enter an angle to each filter. The filtering is done based on the measured DoLP
at each super-pixel. The results of the filtered image are shown in Fig. 13(d). One can note that
most reflections from the shiny surfaces, such as the windshield, the road, and the door glasses,
have been removed.

6 Discussion
Recent technological advances have made possible new sensors that allow for capturing RGB
and polarization information in a single snapshot. This is an important step forward in the devel-
opment of the polarization field since it reduces the movement constraints and the acquisition
time for this modality. This is one of the main reasons why many research works leveraging
polarization have been published in recent years with impressive results. From a global point
of view, all of the works make use of the AoLP and the DoLP as principal added features
to an RGB system. The Fresnel equations are used as geometrical constraints to better guide
an optimization algorithm or a data-driven model training toward more consistent results.
This last point can be used in two ways: either by computing the normal maps out of the
Fresnel equations and providing these maps as input cues for a deep learning network or using
these relationships to compute an energy function that will be later optimized. Going further,
some works27,29 use the raw measurements to avoid adding non-linearities to the relationships
between the polarization state and the intensity measurements. However, there is still much to
explore since one of the reasons why polarization has not been widely adopted in the computer
vision field is the required controlled acquisition conditions. In other words, many applications
have been developed in laboratory conditions or in environments where there are no perturba-
tions that might affect the measurements. One example of this is in shape from polarization
algorithms,11,42,44 where often the properties of the object being reconstructed are known before-
hand. Even though experiments can be done in outdoor conditions, the fact of having a single
object to analyze prevents their generalization to a more generic scene in which several objects,
with different properties, are present at the same time. Another example of the generalization
limitation are algorithms developed under simulated conditions, such as the underwater image
enhancement algorithm Li et al.30 In this particular case, the results show a clear improvement
with respect to RGB systems, but the experiments have been done in a small-sized water tank,
with known light, and no perturbations, such as waves or the presence of other objects inside the
tank. These constraints are not in line with the requirements of a real-world underwater situation,
leaving its actual applicability unknown. It is worth noting that for data-driven algorithms, it is
hard to make acquisitions of large number of images of highly reflective surfaces. These types of
surfaces are known to be challenging for RGB-only algorithms and the polarization information
can provide valuable cues. However, to obtain a ground truth regarding the shape or the depth,
sensors such as the Microsoft Kinect or LiDAR must be used, but the reflective or transparent
nature of the objects can result in inaccurate measurements by the sensors. Therefore, there are
still challenges in handling these types of situations. As also mentioned in the different categories
of Sec. 4, there is a lack of common standards to share data, acquisition and basic signal process-
ing tools to process polarization information. In this context, we have proposed a software library
toolkit that can serve to the objectives of facilitating the acquisition, application deployment, and
comparison of techniques with polarization cues. We expect this toolkit to be a step further to
help promoting the polarization imaging field in less constrained conditions.

7 Conclusion
In this paper, we have done a comprehensive review of recent works that have leveraged the
polarization modality in robotics and computer vision fields, summarizing some of their main
contributions and limitations. The rich information brought by RGB-polarization cameras has
allowed a huge improvement in the analysis of scenes where RGB-only systems generally fail.
The number of works in the recent years has increased due to the advent of new and cheap
RGB-polarization sensors, and data-driven algorithms. These devices facilitate data acquisi-
tion, in less constrained environments, and in real-time with a single snapshot. However, there
is still a long way to the vision community to fully exploit the potential and the benefits of this
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modality. There is no general rule to follow to extend most existing conventional RGB algo-
rithms to RGB-polarization cameras. As discussed before, just providing the polarization infor-
mation as an additional input to an algorithm is unlike to provide better results. A good
understanding of the physics and principles of light polarization is required to be able to get
the most out of this modality. Furthermore, the lack of standards, common processing tools,
and large-scale benchmarks limit the development of methods that extend the results obtained
for traditional vision systems since it is often not possible to train and compare different
approaches over a common dataset. To allow a greater number of researchers to easily and
rapidly acquire and analyze polarimetric images, we have developed an open-source software
library toolkit that makes available commonly used processing algorithms. This software has
been carefully developed to allow easy maintenance and the addition of features. We hope this
work will encourage other researchers to contribute to this field and to participate in the expan-
sion of the functionalities included in the presented toolkit, with the aim of making it accessible
to anyone who wants to explore polarization.
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